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Partially Observable Markov Decision Process (POMDP)
e A Markov decision process is a framework for decision making in an environment where
outcomes are partly random, and partly determined by the agent’s actions
e The state is not fully observable, so the agent relies on sensor observations, like a camera view
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Sense

l World State s
Observation o Action a
_ Sense | ~ Plan |
External (Environmental) Observations Wikipedia - Human Eye |l

e Eyes (Camera, LIDAR, RADAR)
e Ears (Microphone)

e Nose

Internal (Proprioceptive) Observations A S il
e Muscles (Joint Angles, Velocities, Torques) Sa
e Inertial Measurement Units (IMU) .

N

LA,
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Policy: Function 1t mapping observation o to action a to maximize return.

Act
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l World State s

) Action a
Plan |

Observation o
| Sense | >

Policy: Function 1t mapping observation o to action a to maximize return.
What Return (Goal)?

e For natural agents? Survive and reproduce

e For robotic agents? Serve humans

How can we create policies that serve humans best?

Fetch Robotics
Fetch Mobile Manipulator

Wikipedia - Cheetah ¢

LA,
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l World State s

Observation o
| Sense | -

—

Plan Action a > Act |

How can we create such policies?
e Algorithmic (Rule-based, Search, Sampling, etc.)

N Wikipedia
—15T5 A* Search Algorithm i A %,
o| |x 0|x|x o |x
x [ X x| Ix
xX|0|0 X|0|0 x|0|0
-l AT 7 0 N
O|X|X O |X|X o X 0|0|x
x|o x| Jo x[o]x x| [x
x|ofo  x|ofo x]ofo  x[ofo
-10 ‘ 9 -10 ‘ 10
O |X|Xx o |0|Xx o *
x[<|o <<% never stop building
x|ofo olo minimax Figu.re 1: A 2D projection of a 5D RRT for a kinody-
+10 +10 namic car.

M Rapidly-Exploring Random Trees: A New Tool For Path Planning
(LaValle 1998)
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l World State s

[ Sense } Observation o »{ Plan } Action a »{ Act ]

How can we create high-dimensional policies? Learning!
e Reinforcement Learning (Learning from Exploration)
o “Try a lot of things. Figure out what works best”

Playing Atari with Deep Reinforcement Learning
(NeurlPS 2014)

(Deepmind, arxiv 2017)
Emergence of Locomotion Behaviours in Rich Environments

YAH

IR,
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l World State s

[ Sense } Observation o »{ Plan ) Action a »{ Act J

How can humans create high-dimensional, data-efficient policies?

e Imitation Learning (Learning from Demonstration)
o “Get a (human) expert to demonstrate the task. Copy it as best as you can”

predictons
8 2 32 32 pa
57 57 55 5
concay || 2o 3 conv 33 conv .
stide 1 convt || stnce 1 conv2 || stnde 1 conv | 3 . - —— 2
e S mamas S emames i P Yiew from ingide VR
- 50 50
7 7
reaching | grasping | pushing | plane cube nail grasp-and-place | _grasp-drop-push | _grasp-place-x2 cloth | h =
972% | 989% | 87.5% | 85.1% | 87.5% 96.0% 83.3% 80% 974% PFEN -
101 169 25.0 127 13.6 123 145 11.6 10.1 a7
{ < & |
37 58 47 37 38 68 87 116 60
180 175 319 206 215 109 100 60 100
reakime

The AN PodF 1

Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation
(Zhang et al. ICRA 2018)



http://www.youtube.com/watch?v=QkNNlfYG7kg&t=145
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Discrete
e Up, Down, Left, Right (Atari, GridWorld)
e Gripper open or close all the way

Continuous

e Acceleration (Vehicles)
Steering (Vehicles)
Joint Position, Velocity, Torque (Robot Arm)
End-effector Pose or Velocity (Robot Arm)
Gripper position (Robot Arm)

IR,

-

Act
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Simple Imitation Learning
Example
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Collect Demonstrations

Coppeliasim ® g Coppeliasim

Examples of procedural demonstrations in CoppeliaSim using RLBench. The
robot moves to the cyan target, which is randomly generated in plane with the
robot end effector.



DR |
Train the Network

ResNet18, through —

| > MLP —
average poo Ay

Huber Loss (PyTorch)

] 0.5(zn — yn)?, if |z, — yn| < delta
1 ") delta * (|, — yn| — 0.5 % delta), otherwise
M -~ 7 wherex_are predictions and y_are ground truth values
Wikipedia
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Get Observation

Evaluate

Perform Action

ResNet18, through
average pool

MLP

AX

Ay

Results
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Summary

Sense Plan Act

— Agent

— POMDP

Policy

— Algorithmic

— Reinforcement Learning (Learning from Exploration)
— Imitation Learning (Learning from Demonstration)

What about higher dimensional action space and longer horizon
goals?

LA,
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Long Horizon Planning
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Goals of Robots

- Using the control policies from the previous section
robots can now perform simple tasks

- We want robots to perform complex tasks

- How do we perform complex tasks?
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Controlvs. Planning

Control is low level: motor torque, velocity, and position
Motion planning uses motor controls to complete a
trajectory

Task planning typically requires several trajectories in
sequence to achieve a goal state

Several sub-tasks may be needed to complete a complex
task

LA,



DR

Short Horizon vs. Long Horizon

- Short horizon task examples push, pull, place, etc.
- Long horizon task examples clean up spill, fetch food
- Control policies learn short horizon tasks

- Cannot do long horizon tasks
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Long Horizon Tasks

- Large search space of low

level tasks
- Shrink the search space by
creating sub goals

M A Long Horizon Planning Framework for Manipulating Rigid Pointcloud Objects
(CoRL 2020)
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Breaking Long Horizon Tasks into Subgoals

« Symbolic Planning
— Finds effective subgoals
— Needs explicit primitives and constraints
— Uses predicate calculus to represent the world and actions
— Uses the possible actions and world state to formulate plans

IF_{M@I STRIPS: A New Approach to the Application of .Theorem Proving to Problem Solving
(IJCAI 1971)
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Breaking Long Horizon Tasks into Subgoals

ATR(a)

_ M,: | AT(BOXI, b)

, E " ] AT(BOX2, ¢) World Model

T AT(BOX3, d) |

The goal wif describing this tas’: is
Gyo: (3x) [AT(20X1, x) A AT(BOX2, x)

Goal

i § ' A AT(BOX3, x)].
(1) push (k, m, n): Robot pushes object k£ from place m to place ».
§ Precondition: AT(k, m) A ATR(m)
Negated precondition: ~ AT(k,m) v ~ ATR(m)
i i Delete list: ATR(m)
T AT(k, m)
Add list:  AT(k, n) Operators
ATR(n)
OE t L (2) goto(m, n): Robot goes from place m to place ».
@ ) ! Precondition: ATR(m)

T Negated precondition: ~ ATR(m)
‘ Delete list: ATR(m)
Add list:  ATR(n) .
STRIPS: A New Approach to the Application of .Theorem Proving to Problem Solving
(IJCAI 1971)
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Semantic Planning

-The world model describes the ' ATR(a)

initial state M,: AT(BOXI1, b) |
-In this example the initial state is AT(BOX2, c)
that the robot is at location a, box1 AT(BOX3, d)

is at location b, box2 is at location
¢, and box 3 is at locationd

M STRIPS: A New Approach to the Application of .Theorem Proving to Problem Solving
(IJCAI 1971)
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Semantic Planning

- Goal needs to be stated in G,: (3x) [AT(20X1, x) A AT(BOX2, x)

a way which allows a A AT(BOX3, x)].
logical plan

- STRIPS calls this awell
formulated formula

- This statement says there

exists an x such that box1
isatxand box 2 is at x and
box 3 is at x

M STRIPS: A New Approach to the Application of .Theorem Proving to Problem Solving
(IJCAI 1971)
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Semantic Planning

Ope rators describe (1) push (k, m, n): Robot pushes object k from place m to place ».
. Precondition: AT(k, m) A ATR(m)
actions the agent can take Negated precondition: ~ AT(k,m) v ~ ATR(m)
Preconditions must be. Delete list: ATR(m)
met that enable an action AT(k, m)
which in turn updates the Add list:  AT(k, n)
world state e
(2) goto(m, n): Robot goes from place m to place n.
for the example push the Precondition: ATR(r)
precondition is that both Negated precondition: ~ ATR(m)
the robot and object are Betete izt TR im)

. Add list: ATR(n) .
at the location m @)

M STRIPS: A New Approach to the Application of .Theorem Proving to Problem Solving
(IJCAI 1971)
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Machine Learning Approaches

Define these primitives from learning
Graph Neural Network Planner
Hierarchical Reinforcement Learning
Large Language Models
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Learning Predicates

« Takes goal predicates and iteratively learns new
predicates, operators, and samplers
« Adds intuitive predicates until a feasible planis given

Given: Goal Predicates

Learned Operators

Learned Samplers

Bilevel Planning

P1(?b) £ - (?b.z s 0.875)
P2(?b) £ (?b.z < 0.875)

P3 (?r) & ~(?r.grip < 0.5)
P4 (?b) £ V?2c.-0On(?c, ?b)

Op3:

Del: {P1(?b)}
Con: PutOnTable (?r, ©)

Op4:

Parameters: [?b, ?c, ?r]

X

v

Pick(bl, r, ©)
>

Oif;;;‘i;(??cg) parameters: [7b, 2r] P2 (bl), opl(bl, b2, r) [ Pl(bl), P2 (bl),
Pre: {P1(2b), P4(2b)} P2i(b2), - — P2i(b2), e | —» —_— P22y .
Add: {P2(2b), P3(2r), s
Learned Predicates OnTable (?b) } T Abstract Sample Abstract T Abstract

3

24,

Predicate Invention for Bilevel Planning

(AAAI 2023)
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Operator Learning

Each demonstration is a set of
states and actions which are
combined and called dataset
transitions

The condition, added effect,
and deleted effect are created
by applylng a parameter to
each transition

From the condition, and
effects the precondition can
be extrapolated which gives
the full operator

LA,

Learned Operators

Op3:
Parameters:

Pre: {(P1l(?b),
Add: {(P2(?b),

[?b, ?r]
P4 (?b) }
P3(?r),

OnTable (?b) }

Del: {P1l(?b)

}

Con: PutOnTable(?r, ©)

Op4:
Parameters:

(D, 2¢,;. 2x)
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Bilevel Planning

PLAN(zg, g, ¥, 2, 32)

// Parameters: Tabstract,
So <~ ABSTRACT(xg, V)

for 7 in GENABSTRACTPLAN(Ssq, 9, 2, Napsiract)

Nsamples »

B W N =

Algorithm 1: Pseudocode for our bilevel planning algorithm.
The inputs are an initial state xo, goal g, predicates ¥, op-
erators {2, and samplers X; the output is a plan 7. An outer
loop runs GENABSTRACTPLAN, which generates plans in the
abstract state and action spaces. An inner loop runs REFINE,
which attempts to refine each abstract plan 7 into a plan 7. If
REFINE succeeds, then the found plan 7 is returned as the so-
lution; if REFINE fails, then GENABSTRACTPLAN continues.

LA,

if m ~ REFINE(T, Zo, ¥, X, Ngumples) then
| return 7 1

P2 (bl),
b2),

opl(bl, b2, r)

Pick(bl, r, ©)
>

Pl (bl),
P2 (b2),

* Abstract

&7

Predicate Invention for Bilevel Planning

(AAAI 2023)
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Initial state:

Goal:
OnTable (b3)
On (b2, b3)
On (bl, b2)

LA,

Bilevel Planning

Search . Jsurr Success Rate on
. Predicate Set . .
Iteration (lower is better) | Evaluation Tasks
on(?b, 2¢c) 107 =
0 OnTable (?b) 13-10 0%
on(?b, 2¢)
1 OnTable (?b) 1.0- 107 12%
-~ (?b.z < 0.875)
On(?b, 2c)
OnTable (?b) 6 P
2 -(?b.z < 0.875) 2.0-10 14%
V?c.-0On(?c, ?b)
On(?b, ?c)
OnTable (2b)
3 ~(?b.z £ 0.875) 9351 100%

V?c.=-0On(?c, ?b)
-(?r.grip £ 0.5)

[Stack b2

[Pick b2,
Pick bl,

[Pick b4,
Pick bl,

[Pick b4,
Stack b2
Stack bl

Abstract plans: Refinable?

on b3, Stack bl on b2] x
Stack b2 on b3, x
Stack bl on b2]

Pick b2, Stack b2 on b3,

Stack bl on b2] x

PutOnTable b4, Pick b2,
on b3, Pick bl,
on b2]

Predicate Invention for Bilevel Planning
(AAAI 2023)
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GNN-based Planner

Existing One-shot Learning Models

meta-leamng
madel
Viivo Demnocatralion Damo Condtional Polcy
{03 ®
D Neos Progoan
o - CAoK (¥
2
Cumort Enc-o-ined LSTM Moo
Qosoraticn
Black-50x
Maogel
IMI Neural Task Graphs: Generalizing to Unseen Tasks from a Single Video Demonstration
(CVPR 2019)


http://www.youtube.com/watch?v=Rwog52mbMCI&t=10

DR
GNN-based Planner

- Input: Video of expert
Demonstration
- Output: Task Plan

NTG Generator x/ NTG Execution Engine \\
\ o Graph Visual Observation (o)
C)> Completion = Node Y Edge
| Interpreter Network Conjugate 4 Locahzer v CIass:fler Env.

< S Task Graph

5 3o @@é\w@@

Actlon (a)

Demonstration

IMI Neural Task Graphs: Generalizing to Unseen Tasks from a Single Video Demonstration
(CVPR 2019)
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GNN-based Planner

- Task graph: edges represent states, nodes represent actions
- This composition limits the number of nodes in the graph by
considering only actions seen in the video

W : _ O
NTG Generator < NTG Execution Engine N
o Eraon Visual Observation (o)
C2lint . Completion = Node Y Edge
/| Interpreter Network Conjugate . Locahzer e CIassnfler Env.
,\f\,, Task Graph
S @ ﬁé&b @ @
Actlon (a)
Demonstration

M‘ Neural Task Graphs: Generalizing to Unseen Tasks from a Single Video Demonstration
(CVPR 2019)
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GNN-based Planner

- The network learns a policy that creates one action for
each observed time step of a video

- The graph completion network takes in a set of actions
and learns the graph state transitions

o : _ O
NTG Generator < NTG Execution Engine N
o Eraon Visual Observation (o)
> Completion = Node Y Edge
1 Network Conjugate . Locahzer v Classmer Env.
\f\,, Task Graph
S @ ﬁé&b @ @
Actlon (a)
Demonstration
M‘ Neural Task Graphs: Generalizing to Unseen Tasks from a Single Video Demonstration

(CVPR 2019)
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Hierarchical Reinforcement Learning

M HRL4IN: Hierarchical Reinforcement Learning for Interactive Navigation with Mobile Manipulators
(CoRL 2019)


https://docs.google.com/file/d/18cHXi7TFZztd5jQW3kmpTcXlTVPZB0pO/preview
https://docs.google.com/file/d/1LiLkyXmrfJ-SMZHUYRBgoSHbbp_-1Xhk/preview

DR
Hierarchical Reinforcement Learning

- Uses multiple Policies
- Onelearns the subgoals
- Others are used to achieve these subgoals

M‘ HRL4IN: Hierarchical Reinforcement Learning for Interactive Navigation with Mobile Manipulators
(CoRL 2019)
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Hierarchical Reinforcement Learning

; aHL l aHL
t t+T

T e _— ”HL ?’j‘
8 i Jr 8 2 J1 8 3 Jl gt+LT €T

LL ,® EE LL L
%" O1[ Y IL Onr-1[" & " X ourp At =7 "X
a, Ayl Q71 QT
a QA A 71 it

Environment

Ly rt+gl rt+T—1££ Pyt

AN ZAdia g
L

HL: High Level, LL: Low Level, a: action, m: policy, g = goal, e = embodiment selector, r = reward

I'/FMR}_'I HRL4IN: Hierarchical Reinforcement Learning for Interactive Navigation with Mobile Manipulators
(CoRL 2019)
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Language in Robotics



Language in Robotics

Policy with Language Conditioning

Language-Conditioned Imitation Learning for
Robot Manipulation Tasks
(Stepputtis et al. NeurlPS 2020)

BC-Z: Zero-Shot Task Generalization with
Robotic Imitation Learning
(Jang et al. CoRL 2021)

Open-World Object Manipulation using
Pre-Trained Vision-Language Models
(Robotics@Google 2023)

IR,

Planning with Language Models

Do As | Can, Not As | Say:
Grounding Language in Robotic Affordances
(Ahn et al. CoRL 2022)




Language Conditioned Imitation Learning

{DRaise the green cup

M M Language-Conditioned Imitation Learning for Robot Manipulation Tasks (Stepputtis et al. NeurlPS 2020)
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Language Conditioned Imitation Learning

7 Control Model . _ Semantic Model
) i N\ &
| rt+1T rtl \( "Pick up the green cup” ) ff (Image I yCommand v )
| v =f56uw) || b= GRUG) | T“_ Z S| | Faser RONN | Glove |
" . S || - -
fwe —— i @ 1 il . S F = |V
7 (W= folleh))< o — — S [aizfa([fi,s]) }‘ﬁ[ s = GRU(V) ]
& \ s — I‘t+1T wrt ilmagef =
+<[ 6= folle.n)) | i . o s 2y
Li “ Control Model “<e—[Semantic Model] e e =3, fia; J
! At = fa(e) | J| once per step once per task | =< 5 J

LA,

Language-Conditioned Imitation Learning for Robot Manipulation Tasks (Stepputtis et al. NeurlPS 2020)
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Simpler End-to-end

RGB image fully fully C““ag?““e"
(512, 640, 3) P connected — o
Rel U (256)}— linear (3N) [i]
i ReLU (256)/ donbored] 2 N 1 )[zs‘?;‘;‘l’j'em —» Huber Loss
e : i~ s
450, 4 . 150, i
oI S0P (150, o) Vision Network (ResNet-18) / fully
Mean
I 1. Pool s — connected — _
‘ Rel U (256)— linear (4N)
B B = Delta Axis-angle
| aataing Py = H
] | B B’ rotation sequence e Lows
=y L =]
__ connected __ linear (N)
— RelU (256)}— Sigmoid )
3 3 Gripper Angle
: - : » oE -0 \.’ sequence —» Log Loss

[[] network activations

= policy parameters
== SUpervision signal
[[] actions taken by robot

“Place bottle in the ceramic bowl!”

IMI BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning (Jang et al. CoRL 2021)
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Simpler End-to-end

e Generalize to “Unseen Tasks”
e “Last-centimeter errors”

Skill Held-out tasks Lang-conditioned Lang-conditioned Video-conditioned
(no demos during training) (1 distractor) (4-5 distractors) (4-5 distractors)
‘place sponge in tray’ 83% (6.8) 82% (9.2) 22% (2.2)
pick-place ‘place grapes in red bowl’ 87% (6.2) 75% (10.8) 12% (7.8)
‘place apple in paper cup’ 30% (8.4) 33% (12.2) 14% (7.8)
pick-wipe ‘wipe tray with sponge’ 40% (8.9) 0% (0) 28% (10.6)

Place Grapes in Ceramic Bowl Place Bottle in Tray Push Purple Bowl Across the Table Wipe Tray with Sponge

=
[ AN

BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning (Jang et al. CoRL 2021)
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Vision-Language Models in Imitation

Instruction

Encoded Instruction

{ 2"‘*53@"“@“" =N OI111] Action
— Current Image i

) a4 = A : )
E3 and Recent History base

B @]

- @ | | @

—~ e 0
B 8 @ arm

= O

O 5

FiLM Efficient Net Token Learner Transformer

IMI Open-World Object Manipulation using Pre-Trained Vision-Language Models (Robotics@Google 2023)
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Vision-Language Models in Imitation

Generalize to “Unseen Objects”

pickcatiptoy @ move pepsi can near blue plastic bottle & place green can upright @ pick small blue plate ®

I'/F'MKT Open-World Object Manipulation using Pre-Trained Vision-Language Models (Robotics@Google 2023)


https://docs.google.com/file/d/16C9EcQQT1YQe-EXKgEb48f4sSLcC-DGk/preview
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Robot Planning with Language Models

Instruction Relevance with LLMs Combined
-6 Find an apple
-30 Find a coke
-30 Find a sponge
How would you put _
an app'e on the -4 Pick up the apple
table? -30 Pick up the coke
| would: 1.
-5 Place the apple
\|’
-30 Place the coke
-10 Go to the table
LLM -20 Go to the counter

0.6
0.6
0.6
0.2
0.2

0.1
0.1
0.8
0.8

Skill Affordances with Value Functions

Value
Functions

| would: 1. Find an apple, 2.

;M@

IMI Do As | Can, Not As | Say: Grounding Language in Robotic Affordances (CoRL 2022)

l..
e
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Robot Planning with Language Models

e Trainlanguage-conditioned BC -> “Policy”
e Trainlanguage-conditioned RL -> “Value Function”
e Chain policies using LLM + Value

LA,

Human: | spilled
my coke, can you
bring me
something to clean
it up?

find a sponge pick up the sponge bring it to you done

Robot: | would
1. Find a sponge
2. Pick up the

1.00 1.00 1.00 1.00

go to the table put down the sponge put down the sponge go to the table

Sponge - 0:08 o o1 0.47 ' 0.01
b " find a coke can bring it to you go to the table find a coke can

3. Bring it to you

4 Done 008 004 0.21 0.00

go to the trash can go to the table go to the trash can find a sponge

005 0.00 0.00 0.00
Language x Affordance find a water bottle go to the trash can done go to the trash can
Combined Score
001 0.00 0.00 0.00

Do As | Can, Not As | Say: Grounding Language in Robotic Affordances (CoRL 2022)
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Robot Planning with Language Models

M Do As | Can, Not As | Say: Grounding Language in Robotic Affordances (CoRL 2022)


https://docs.google.com/file/d/1VSyj8D4E9gBNU3nkP6RGr3HvBF4XO9WI/preview

DR

Summary

Sense, plan, act framework

Policies with algorithms

Policies with neural networks

Long horizon planning

Language conditioned policies and planning
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Thank you!



