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DeepRob

[Student] Lecture 21

Tactile Perception for Robot Grasping and Manipulation
University of Michigan and University of Minnesota

Gelsight grasp demo


https://docs.google.com/file/d/1ZrovmQyx6kZSPa6l6JgPyzptaejZyTOx/preview
https://docs.google.com/file/d/1ZrovmQyx6kZSPa6l6JgPyzptaejZyTOx/preview
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Agenda

Tactile perception
Signal categories

Types of sensors

Haptic vs Tactile sensing
Gelsight

Tac2Pose

Tacto

Tactile sensing for Deep
Learning
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DR
What is Tactile Perception?

« Key sensor modality for robots
* Provide arich and diverse set
of data signals about...
— Contact

— Objects
— Actions

A Review of Tactile Information: Perception and Action Through Touch, Li et al. , 2020

VN
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Sensor-Level Signals

Normal and tangential
force

Vibration

Thermal

Pretouch proximity
Sensor coverage

Three-axis Proximity Normal Force ~ Temperature

° Accelerometer Sensors Sensor

A Review of Tactile Information: Perception and Action Through Touch, Li et al. , 2020

LED

Flexible
Connectors
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Contact geometry
Force and torque
Contact events
Material properties

VN

Contact-Level Signals
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Object-Level Signals

Object localization
Shape

Mass and dynamics
Contents of containers

!
l Action: Pressure

Action: Static Contact Action: Unsupported Holding Object Properties: Internal States
Object Properties: Localization Object Properties: Mass (collapsible)

G Lo=

Action: Lateral Movement

i . Object Properties:
; ’ Action: Unsupported Holding » : g
Act;on: Contou.r Following _ Object Properties: Center of Mass Slips between object & environment
Object Properties: Shape, Volume, Size Internal State (moveable)

A Review of Tactile Information: Perception and Action Through Touch, Li et al. , 2020



Action-Level Signals

Initialization Contact Termination

Action selection and 1 i
initialization Provus e e
Tactile feedback for : : :

low-level control S
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M A Review of Tactile Information: Perception and Action Through Touch, Li et al. , 2020
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Facebook Al Digit

TRI Punyo SoftBubble

Sensors

Visuotactile

GelSight Mini

Tactile

SynTouch BioTac

Xela Robotics uSkin
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Tactile Sensing Timeline

| GelSight Mini | [ oigt | 202

2016 ‘ 2020 ‘

2008 i
‘ 2017 ‘ 2020 [ GelSlim 3.0 ] ‘ [B-FingerGelsight}

[SoftBubee ]

https://arxiv.org/abs/2111.09354
https://arxiv.org/abs/2103. 12269

https:, //news ITII d /2023/ obotic-hand-c
dentify-objects-just e-grasp-| 0403
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Haptic vs. Tactile Sensing

a

<

Haptic |

e Overall sensory

experiences:
o Tactile
o Proprioception
o Kinesthesia

-

\_

Tactile |

Detection of physical
sensations:

o Pressure

o Temperature

o Texture

o\

/

IR,
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What is Visuotactile Sensing?

Normal
Force

Souu] object

[ ) A % | clastomer

[ ]
Aon plate
LEDs LEDs

(2)
camera

GelSight Fin Ray: Incorporating Tactile Sensing into a Soft Compliant Robotic Gripper, Liu et al. , 2022 (b)
GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force, Yuan et al., 2017

In-plane !
Torque

Tilt
Torque
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Exploring Gelsight Evolution

Camera \

Area
Without
Sensing

Tactile
Sensing
Pad

\ Camera
LED

GelSight Fin Ray: Incorporating Tactile Sensing into a Soft Compliant Robotic Gripper, Liu et al. , 2022
GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force, Yuan et al., 2017

.\
-

Replaceable Fingertip Mount

Shaping Lens
J omer wiReflective Skin

%\

ing Bearing
Ilumination Controller



TacZ2Pose: Tactile Object Pose
Estimation from the First Touch.

Maria Bauza,
Antonia Bronars, and
Alberto Rodriguez

CORL 2022
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Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022


http://export.arxiv.org/abs/2204.11701v2

DR | |
Motivation

« Close the loop sl [
— Know the pose of the
object
— React to uncertainty S
* |ndustry needs Precision
— Often Specialized
Solutions
* General solutions often

lack Precision

GelSight Fin Ray: Incorporating Tactile Sensing into a Soft Compliant Robotic G ripper, Liu et al. , 2022
Tac2Pose: Tactile Object Pos E tm t n from the F st Touch, Bauza et al. , 2022
PhD Thesis Defense - Maria Bauza - Visuo-Tactile Perception for De; xterous Man ulation



https://www.youtube.com/watch?v=T7ZO_cxgHlo
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Methods

ESTIMATED

TACTILE IMAGE CONTACT SHAPE  _ MATCHING POSE DISTRIBUTION
.- ~
— —> |NN|— . 0.34 ﬂ
— 0.32

u & — -u 0.15
1 | Hr
SIMULATE
CONTACT POSES SIMULATED

CONTACT SHAPES

--NA i
|
fam—

|
e00 [rmm>

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Methods

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Methods

P
e oese

SIMULATE
CONTACT POSES

LA,

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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8

IR,

Methods

H

ﬁ &
SIMULATE
CONTACT POSES SIMULATED

CONTACT SHAPES

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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IR,

Methods

H

ﬂ &
SIMULATE
CONTACT POSES SIMULATED

CONTACT SHAPES

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Methods

TACTILE IMAGE

< 0

ﬂ

& &
(i —
E &
SIMULATE
CONTACT POSES SIMULATED

CONTACT SHAPES

24,

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Methods

TACTILE IMAGE ESTIMATED

CONTACT SHAPE
- . - -
—_— h —p -l
. B
SIMULATE
CONTACT POSES SIMULATED

CONTACT SHAPES

<«
|

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Methods

ESTIMATED
CONTACT SHAPE -

- N

TACTILE IMAGE

MATCHING

0.34

— 0.32

0.15

— n —p -l
1 | Hr

SIMULATE
CONTACT POSES SIMULATED

CONTACT SHAPES

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Methods

ESTIMATED

TACTILE IMAGE CONTACT SHAPE _ MATCHING POSE DISTRIBUTION
o ~
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Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Contact Shape Network

ESTIMATED

TACTILE IMAGE CONTACT SHAPE - MATCHING POSE DISTRIBUTION
. ~
— —> | NN | — ; 0.34 ﬁ
— 0.32 -

= S -u 0.15
n —-l
ﬁ & 3
SIMHLATE SIMULATED
CONTACT POSE
CT POSES CONTACT SHAPES

M Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Contact Shape Network

Known GelSight Pose - - B S
e Real image 8= o o B o [

e Simulated Binary Contact Shape 2 @I<F<D> g
o 0. = ¢ © N,

lGEOMETRIC CONTACT
RENDERING

VIRTUAL
/
camera [0 2

General Enough to work across sensors

TRAINING DATA ‘

Based on: Image-to-Image '
Translation with Conditional
Adversarial Networks

M Image-to-Image Translation with Conditional Adversarial Networks, Isola et at. , 2018

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022

TACTILE IMAGE SIMULATED CONTACT SHAPE


https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf

DR
Image-to-lmage Translation

e |nput: Real image

e Output: Estimated Contact
Shape

Trained with ground truth data.

Encoder-decoder U-Net output

A=t il

5 ,:\): “ o :)" ‘
x X
Image-to-Image Translation with Conditional Adversarial Networks, Isola et at. , 2018

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022

!
=
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Image-to-lmage Translation

Generator: Creates contact mask
Discriminator: Identifies fake images H HI
H fataliliesridriy
oy g B et
?c G G(z) Y
TACTILE IMAGE SIMULATED CONTACT sHAPE = = |l rake

P ;-);L, ) fi;;l‘:" P
x X
Image-to-Image Translation with Conditional Adversarial Networks, Isola et at. , 2018

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Pose Matching

ESTIMATED
TACTILE IMAGE CONTACT SHAPE . MATCHING POSE DISTRIBUTION

— . —> | NN | — - 0.34
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SIMULATE i - °
CONTACT POSES SIMULATED

CONTACT SHAPES

IR,

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Pose Matching

CLOSEST POSE SIMILARITY FUNCTION
| 1 _J" |] PREDICTED LIKELIHOOD
st o - ResNet-50 —L 0.03,0.77,0.01, 0.12, ... ,0.01
s [ e I [ -
ENCODINGS
LABEL 0 1 0 0 0

Normalized
Pose Errors:

0.05 0.10 0.16 0.32 0.84 1.00

Normalized Pose Error: Original pose error divided by the average
M error obtained from predicting a random contact pose.

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Pose Matching

CLOSEST POSE

DENSE SET OF
CONTACT SHAPES

LABEL

.
»
L3
-
o
-
"

M Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Pose Matching

CLOSEST POSE SIMILARITY FUNCTION Encoder Network:
Pre-Trained ResNet 50
ResNet-50

. oee m I Removed Linear Layers
0 0 0

DENSE SET OF
CONTACT SHAPES

— Trained with: MoCo
stage 2 stage 3 stage 4 stage 5
input
L ) —’I—*I—’IHI—*IE
PAD

M Deep Residual Learning for Image Recognition, He et al. , 2015
Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022


https://arxiv.org/pdf/1911.05722.pdf

DR
Pose Matching

It could never be that easy.

CLOSEST POSE SIMILARITY FUNCTION

The designers this put in an
AveragePool!

- ResNet-50
DENSE SET OF e |“ ) _
CONTACT SHAPES oo The AveragePool is removing
critical spatial information.
0

LABEL 0 1

stage 2 stage 3 stage 4 stage 5

[TLI

M Deep Residual Learning for Image Recognition, He et al. , 2015
Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022

input
—, |ZERO
PAD
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Pose Matching

It could never be that easy.

CLOSEST POSE SIMILARITY FUNCTION

The designers this put in an
AveragePool!

1 ResNet-50
DENSE SET OF e |" ) _
CONTACT SHAPES oo The AveragePool is removing
critical spatial information.
0 0 0

LABEL 0 1

stage 2 stage 3 stage 4 stage 5

Much
e e - — —— |Faten | Better

M Deep Residual Learning for Image Recognition, He et al. , 2015
Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022

input
—, |ZERO
PAD
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Pose Matching

CLOSEST POSE SIMILARITY FUNCTION
PREDICTED LIKELIHOOD
= ResNet-50 ’— 0.03,0.77,0.01,0.12, ... ,0.01
DENSE SET OF
ENCODINGS
LABEL 0 1
Number of Contact Shapes: N
Encoding Size: S
Take Largest Probability from Encoded GelSight mask: 1xS
SoftMax to get the inferred pose! Encoded simulation mask:  NxS
Dot product distances: 1xN

Probability = SoftMax(Dot product
distances)

M Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022



Look! A pencil, how Fun!

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022 It is the best image | could find give me some slack.
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Is not allowed

Fun

1.0

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022



DR . . .
Pose Distributions

| gelsight min

These sensors can be small!
Only a few cm? of perception per sensor.

e Unique contact patterns are needed to
disambiguate non-unique contact
mappings.

e Better to know that you don’t know, than
to know nothing at all.

o Regrasp on ambiguous pose
distributions.
o Combine with other modes of

M‘ sensing (Eg, Visual, Sound, Smell?).
Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Comparisons to Other Methods

Tac2Pose: Method Described above. =
Pixel: No encoder, direct pixel to pixel _ 0.8
matching between input contact mask g
and all simulated contact masks. 4 0.6
2 0.
Classification: Resnet-50, trained to E
One-Hot classify each discrete pose. g 0
(@)
=
Pose: Resnet-50, trained to regress 0.2 -
each pose. l
. N
(PJ): Parallel Jaws, two images. — = ———

mmm Pixel mmm Classification J

mmm Tac2Pose
M Tac2Pose (P)) Pixel (P)) mmm Pose

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022
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Comparisons to Other Methods

Tac2Pose Pixel Classification Pose
SC PJ SC PJ SC SC

mm (norm) mm (norm) mm (norm) mm (norm) mm (norm) mm (norm)

Long Grease ED:) 26.6 (0.76)  3.3(0.09) 32.8(0.93) 6.0(0.17)  33.3(0.95)  25.3(0.72)
Snap Ring . u 1.5 (0.10) 1.4 (0.10) 5.6 (0.39) 2.210.15) 6.0 (0.42) 5.9 (0.41)
Big Head a=Ede | 7.8 (0.20) 6.1 (0.16) 27.6(0.70) 11.7 (0.30) 35.0 (0.89) 33.8 (0.86)
Cotter W‘7C< 19.0(0.49) 19.6(0.51) 31.5(0.81) 36.7(0.95) 35.8 (0.93) 38.1 (0.99)
Hanger C ommm | 6.6 (0.19) 2.6 (0.07) 31.3(0.90) 20.5(0.59) 34.2 (0.98) 18.3 (0.53)

LA,

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022




PR TACTO: A Fast, Flexible, and Open-source Simulator
for High-Resolution Vision-based Tactile Sensors

Wang, Shaoxiong, Mike Lambeta, Po-Wei Chou, and Roberto Calandra. IEEE Robotics and Automation Letters 7, 2022

LA,
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Motivation

Simulator for vision based tactile sensors
Small Sim2Real gap

Implements OmniTact and DIGIT sensors
Value for different communities:

— Hardware designers

— Robotics

— Machine learning

VN
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Methods

Python " Sensors configuration
Physics . [ pIGH J
Simulator  |<e=>| TACTO Pyrender < ;

(e.q., Pybullet) — (_OmniTact ]

Wang, Shaoxiong, et al. TACTO: A Fast, Flexible, and Open-Source Simulator for High-Resolution Vision-Based Tactile
Sensors. 2020.

24,
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PyBullet

Pyrender

Software Architecture

Initialize

connect

create renderer

create camera,
lights, gel
surface

Create Scene

loadURDF

parse urdf;
add mesh in
renderer

add object
mesh

Step Simulation

stepSimulation

sync object
poses in
renderer

render

5

Wang, Shaoxiong, et al. TACTO: A Fast, Flexible, and Open-Source Simulator for

High-Resolution Vision-Based Tactile Sensors. 2020.
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Sim vs Real

Sim Real

Pose estimation results
Sim2Sim
Sim + Real (128 real datapoints)

Wang, Shaoxiong, et al. TACTO: A Fast, Flexible, and Open-Source Simulator for High-Resolution Vision-Based Tactile
Sensors. 2020.
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Results

Grasping Lifting Holding 160

ki fd fa

<=1
o

w2
c
g X
9] >
= g e
5 —
] =
T 70 Q .
! < @ . == Vision
;? = %1 =@= Touch (Left only)
;._‘: 60 £} == Touch (Both)
A & e Vision + Touch (Left only)
S mwhe= Vision + Touch (Both)
> >0 10K 100K M
Time Number of samples

Wang, Shaoxiong, et al. TACTO: A Fast, Flexible, and Open-Source Simulator for High-Resolution

Vision-Based Tactile Sensors. 2020.
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Questions?



Learning Self-Supervised Representations from Vision and Touch for Active
Sliding Perception of Deformable Surfaces

e Align visual and tactile data

o Train encoders to embed
into a shared latent
feature space.

o Uses cross-modal
contrastive loss

o Object agnostic o
representation. \T/ \T/

(c) Vision-Guided Search

| Shared Latent Space Z |
Kerr et al. (ICRA 2023) : _ —
(a) Self-Supervised Learning (d) Tactile Servoing
Learning Self-Supervised Representations from Vision and Touch for Active Sliding Perception of Deformable Surfaces, Kerr et al. , 2022



DR See, Hear, and Feel: Smart Sensory Fusion for
Robotic Manipulation

* Explore using multi \
sensory data for u%, S |- 3
e rfo r m i n '. %—g Tactile data / %
p g m ) nn E ;: . Dense pa;:king.;;g;n
Tasks bR
« Combines vision, - x VL
ta Ct i I e ) . . Acoustic data‘ lﬁ L o Pouring action ’
(a) Multisenso'ry data capture (b) Our' model (c) T'asks

and audio data

Li, Hao, et al. See, Hear, and Feel: Smart Sensory Fusion for Robotic Manipulation..
DOl.org (Datacite), https://doi.org/10.48550/ARXIV.2212.03858.

M Li et al. (Corl 2022)



Visuo-Tactile Transformers for Manipulation (VTT)

Image-Tactile

Modality Patches
Self and Cross-Modal
Attention
Learned embeddings:
— Contact
— Alignment
— Position/Modality
Compressed B
Representation Head D come i

([ 1mage embedding

CO m b i n e d 8 Tactile Embedding

Reinforcement
Learning

https://arxiv.org/abs/2210.00121

EVTT = BCElogits(MLP(Alhead))> Algt) T BCElogits (MLP(Chead)a Cgt)

M Chen et al., CoRL 2022
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Hierarchical Graph Neural Networks for Proprioceptive

6D Pose Estimation of In-hand objects

Touch Graph  Vision Graph

« HGNN combines vision and
touch

 Geometrically informed 6D
object pose estimation =~ |

« Multimodal graph message T " Repesentation:
passing |

* Proprioceptive information
for in-hand object
representation

| : e’ "
https://drive.google.com/file/d/1UoOAbM3704ylzQxXaQae2rK8-ijnWz4n/view
Rezazadeh et al. ICRA 2023
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Observation

Proprioception

Point Coordinates
XV € R3*Ny

Point Features

FV € [RMVXNV —|

Point Coordinates
XT € R3><Nt

Point Features
FT € RM:XN,

1

—

Architecture

~Multimodal Graph Representation \ HGNN
Vision Graph Updated Vision Graph
Gv =W, &) Gv

mpy ey
~i 3 &

nVEH @ ‘

; ﬁkE

' ~1a L B ¢

13 0yd | \

i L imppeor \ ¢

mfl wll,

&

Mprer
Sensor Coordinates
Xs € RN Touch Graph Updated Touch Graph
Sensor Features Gr=r,&r) Gr
Fs € RMSXNS : X L rounds
(a) Graph Encoder (b) Graph Processor

Node-wise pose estimation loss

p:

[(Rgtzp + tge) — (Rixp +&)|] — L
1...P

Graph Readout

Node-wise features

6d Pose Estimation

V
\Pose Estimator

Node-wise Pose Estimation

Rotation Translation Confidence

argmax(c;) = [R, {]

R} (&} {¢i} 4
(c) Pose Decoder
Total loss
1 % A
= — Z (L7é; — Alog(é;))
i=1...K
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Tactile perception
Signal categories

Types of sensors

Haptic vs Tactile sensing
Gelsight

Tac2Pose

Tacto

Tactile sensing for Deep
Learning

LA,



https://docs.google.com/file/d/1-_MxDItsD1w__RrdvWDtPfFAQK0wjH2R/preview

DR

Questions?



