

DeepRob

[Student] Lecture 21 By Miles Priebe, Nirmal Raj, and Adam Imdieke Tactile Perception for Robot Grasping and Manipulation University of Michigan and University of Minnesota

Gelsight grasp demo

Agenda

- Tactile perception
- Signal categories
- Types of sensors
- Haptic vs Tactile sensing
- Gelsight
- Tac2Pose
- Tacto
- Tactile sensing for Deep Learning

What is Tactile Perception?

- Key sensor modality for robots
- Provide a rich and diverse set of data signals about...
 - Contact
 - Objects
 - Actions

A Review of Tactile Information: Perception and Action Through Touch, Li et al. , 2020

Sensor-Level Signals

- Normal and tangential force
- Vibration
- Thermal
- Pretouch proximity
- Sensor coverage

Contact-Level Signals

- Contact geometry
- Force and torque
- Contact events
- Material properties

Object-Level Signals

- Object localization
- Shape
- Mass and dynamics
- Contents of containers

Action: Contour Following Object Properties: Shape, Volume, Size

Action: Unsupported Holding **Object Properties: Center of Mass**

Action: Pressure **Object Properties: Internal States** (collapsible)

Action: Lateral Movement **Object Properties:** Slips between object & environment Internal State (moveable)

Action-Level Signals

- Action selection and initialization
- Tactile feedback for low-level control
- Action termination
- Action outcome detection
- Action outcome verification

Sensors

Facebook AI Digit

TRI Punyo SoftBubble

GelSight Mini

SynTouch BioTac

Xela Robotics uSkin

https://git.ml/ https://www.mg/abs/2004.03891 https://witerwoldra.com/ren/infagrations https://witerwoldra.com/ren/infagrations %20math/20pameth/20ther/2020ws/%20mathren/s/20ouch.capabilites/20ourh/20ther/20th https://www.nicourhides/abs/20ther/2020ef

Tactile Sensing Timeline

Haptic vs. Tactile Sensing

- Overall sensory experiences:
 - Tactile
 - Proprioception
 - o Kinesthesia

Tactile

- Detection of physical sensations:
 - Pressure
 - Temperature
 - Texture

What is Visuotactile Sensing?

(a)

GelSight Fin Ray: Incorporating Tactile Sensing into a Soft Compliant Robotic Gripper, Liu et al., 2022 GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force, Yuan et al., 2017

Exploring Gelsight Evolution

9 Integrated Illumination Controller

10 Finger-Back

GelSight Fin Ray: Incorporating Tactile Sensing into a Soft Compliant Robotic Gripper, Liu et al. , 2022 GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force, Yuan et al. , 2017

Camera I FD

Pad

Tac2Pose: Tactile Object Pose Estimation from the First Touch.

Maria Bauza, Antonia Bronars, and Alberto Rodriguez

CORL 2022

Motivation

- Close the loop
 - Know the pose of the object
 - React to uncertainty
- Industry needs Precision
 - Often Specialized
 Solutions
- General solutions often
 lack Precision

GelSight Fin Ray: Incorporating Tactile Sensing into a Soft Compliant Robotic Gripper, Liu et al. , 2022 Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022 PhD Thesis Defense - Maria Bauza - Visuo-Tactile Perception for Dexterous Manipulation

Precision / skillfulness

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022

Contact Shape Network

Contact Shape Network

Known GelSight Pose

- Real image
- Simulated Binary Contact Shape

General Enough to work across sensors

Based on: <u>Image-to-Image</u> <u>Translation with Conditional</u> <u>Adversarial Networks</u>

Image-to-Image Translation

- Input: Real image
- Output: Estimated Contact Shape

Trained with ground truth data.

Example: Satellite to Map

Example: Fake shoe to convincing fake shoe

Image-to-Image Translation

Generator: Creates contact mask Discriminator: Identifies fake images

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022

Deep Residual Learning for Image Recognition, He et al. , 2015 Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022

Deep Residual Learning for Image Recognition, He et al. , 2015 Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022

Deep Residual Learning for Image Recognition, He et al. , 2015 Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al. , 2022

Take Largest Probability from SoftMax to get the inferred pose! Number of Contact Shapes:NEncoding Size:SEncoded GelSight mask:1xSEncoded simulation mask:NxSDot product distances:1xN

Probability = SoftMax(Dot product distances)

Look! A pencil, how Fun!

Tac2Pose: Tactile Object Pose Estimation from the First Touch, Bauza et al., 2022

It is the best image I could find, give me some slack.

Fun is not allowed

Pose Distributions

These sensors can be small! Only a few cm² of perception per sensor.

- Unique contact patterns are needed to • disambiguate non-unique contact mappings.
- Better to know that you don't know, than • to know nothing at all.
 - Regrasp on ambiguous pose Ο distributions.
 - Combine with other modes of 0 sensing (Eg, Visual, Sound, Smell?).

Comparisons to Other Methods

Tac2Pose: Method Described above.

Pixel: No encoder, direct pixel to pixel matching between input contact mask and all simulated contact masks.

Classification: Resnet-50, trained to One-Hot classify each discrete pose.

Pose: Resnet-50, trained to regress each pose.

(PJ): Parallel Jaws, two images.

Comparisons to Other Methods

		Tac2Pose		Pixel		Classification	Pose
		SC	PJ	SC	PJ	SC	SC
		mm (norm)	mm (norm)				
Long Grease		26.6 (0.76)	3.3 (0.09)	32.8 (0.93)	6.0 (0.17)	33.3 (0.95)	25.3 (0.72)
Snap Ring	1	1.5 (0.10)	1.4 (0.10)	5.6 (0.39)	2.2 (0.15)	6.0 (0.42)	5.9 (0.41)
Big Head		7.8 (0.20)	6.1 (0.16)	27.6 (0.70)	11.7 (0.30)	35.0 (0.89)	33.8 (0.86)
Cotter		19.0 (0.49)	19.6 (0.51)	31.5 (0.81)	36.7 (0.95)	35.8 (0.93)	38.1 (0.99)
Hanger		6.6 (0.19)	2.6 (0.07)	31.3 (0.90)	20.5 (0.59)	34.2 (0.98)	18.3 (0.53)

DR TACTO: A Fast, Flexible, and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

Wang, Shaoxiong, Mike Lambeta, Po-Wei Chou, and Roberto Calandra. IEEE Robotics and Automation Letters 7, 2022

Motivation

- Simulator for vision based tactile sensors
- Small Sim2Real gap
- Implements OmniTact and DIGIT sensors
- Value for different communities:
 - Hardware designers
 - Robotics
 - Machine learning

Wang, Shaoxiong, et al. TACTO: A Fast, Flexible, and Open-Source Simulator for High-Resolution Vision-Based Tactile Sensors. 2020.

Software Architecture

Wang, Shaoxiong, et al. TACTO: A Fast, Flexible, and Open-Source Simulator for High-Resolution Vision-Based Tactile Sensors. 2020.

Sim vs Real

Wang, Shaoxiong, et al. TACTO: A Fast, Flexible, and Open-Source Simulator for High-Resolution Vision-Based Tactile Sensors. 2020.

Results

Wang, Shaoxiong, et al. TACTO: A Fast, Flexible, and Open-Source Simulator for High-Resolution Vision-Based Tactile Sensors. 2020.

DR Learning Self-Supervised Representations from Vision and Touch for Active Sliding Perception of Deformable Surfaces

- Align visual and tactile data
 - Train encoders to embed into a shared latent feature space.
 - Uses cross-modal contrastive loss
 - Object agnostic representation.

Kerr et al. (ICRA 2023)

(b) Anomaly Detection

Deploy

(c) Vision-Guided Search

(d) Tactile Servoing

Learning Self-Supervised Representations from Vision and Touch for Active Sliding Perception of Deformable Surfaces, Kerr et al., 2022

DR See, Hear, and Feel: Smart Sensory Fusion for Robotic Manipulation

- Explore using multi sensory data for performing Tasks
- Combines vision, tactile, and audio data

Li et al. (*Corl* 2022)

Li, Hao, et al. See, Hear, and Feel: Smart Sensory Fusion for Robotic Manipulation.. DOI.org (Datacite), https://doi.org/10.48550/ARXIV.2212.03858.

Visuo-Tactile Transformers for Manipulation (VTT)

- Modality Patches
- Self and Cross-Modal Attention
- Learned embeddings:
 - Contact
 - Alignment
 - Position/Modality
- Compressed Representation Head
- Combined Reinforcement Learning

https://arxiv.org/abs/2210.00121

 $\ell_{VTT} = BCE_{logits}(MLP(Al_{head})), Al_{gt}) + BCE_{logits}(MLP(C_{head}), C_{gt})$

Chen et al., CoRL 2022

Hierarchical Graph Neural Networks for Proprioceptive 6D Pose Estimation of In-hand objects

- HGNN combines vision and touch
- Geometrically informed 6D object pose estimation
- Multimodal graph message passing
- Proprioceptive information for in-hand object representation

DR

Architecture

Recap

- Tactile perception
- Signal categories
- Types of sensors
- Haptic vs Tactile sensing
- Gelsight
- Tac2Pose
- Tacto
- Tactile sensing for Deep Learning

