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Localization

Estimating an object or robot's
position in a known environment.

e Essential for navigation, mapping,
and perception tasks

e Keycomponent in robotics,
autonomous vehicles, and
augmented reality

e (Oftenrequires combining multiple
techniques to enhance accuracy
and robustness

VN

Source: Pure Visual Localization for Boston Dynamics Spot For Airlab



https://www.youtube.com/watch?v=oBLkMKFFdWQ

DR
Types of Localization

"""" i _-'.
1. Dead Reckoning (Position Tracking) @‘
o Initial position known odometry-based

o  Blindly update pose based on differential movements

2. Global Localization
o Initial position can be unknown ' .
i. Map-Based (with landmarks) l =W
ii. Beacon-Based (with active infrastructure) /
map-based

3. Global Localization and Position Tracking Combined
o  Combines the strengths of dead reckoning and global
localization
o  Offersimproved accuracy and robustness

IFJMRL.I beacon-based

Source: Mobile Robot Systems Course - Amanda Prorok, University of Cambridge
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Pre-DL Methods with LIDAR/Range Data

LiDAR (Light Detection and Ranging) uses lasers to measure distances

Range data represents distances between sensors and objects in the environment
Common types of range sensors: ultrasonic, infrared, time-of-flight cameras

Limitations

e  Susceptible to interference from
environmental factors (e.g., rain, fog,
dust)

e Limited field of view compared to
cameras

e Higher cost and power consumption
than some alternative sensors

e Limited semantic information, Source: Turtlebot 3 350 Lidar Sensor LDS-01
primarily provides geometric data



https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/

DR

Localization in Robotics

Robotics often deals with uncertainty in localization. A robot's true
state cannot be measured directly; it must be inferred

Key components of probabilistic localization

Robot's belief about its state:
Estimate of the robot's position and orientation within the environment

VN
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Localization in Robotics

Robotics often deals with uncertainty in localization. A robot's true
state cannot be measured directly; it must be inferred

Key components of probabilistic localization

Robot's belief about its state:
Estimate of the robot's position and orientation within the environment

Robot motion model:
Describes how the robot's state changes over time due to its motion

VN
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Localization in Robotics

Robotics often deals with uncertainty in localization. A robot's true
state cannot be measured directly; it must be inferred

Key components of probabilistic localization

Robot's belief about its state:
Estimate of the robot's position and orientation within the environment

Robot motion model:
Describes how the robot's state changes over time due to its motion

Robot sensor (observation) model:
Defines the relationship between the robot's state and sensor measurements

apply sensor model belief at time ¢

Xe41 X

VN

Source: Mobile Robot Systems Course - Amanda Prorok, University of Cambridge
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Bayes' Rule in Robotics

Generative model:
o Let's assume Xx is the robot state and z is the measurement data
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Bayes' Rule in Robotics

Generative model:
o Let's assume x is the robot state and z is the measurement data
o Describes how a state variable causes sensor measurements: p(z|x)
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Bayes' Rule in Robotics

Generative model:
o Let's assume x is the robot state and z is the measurement data
o Describes how a state variable causes sensor measurements: p(z|x)
o Helps to estimate the robot's state based on the relationship between the
state and the sensor measurements
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Bayes' Rule in Robotics

Generative model:
o Let's assume x is the robot state and z is the measurement data
o Describes how a state variable causes sensor measurements: p(z|x)
o Helps to estimate the robot's state based on the relationship between the
state and the sensor measurements

Bayes' Rule
o Updates arobot's state estimate based on sensor measurements and prior
belief

sensor model ; .
- normalizes density

p(z |;) px) _ PG |x) p(x)
p(2) 2, p|x) px)

M theorem of ;c;fgil.probability denominator does not depend on x

Source: Mobile Robot Systems Course - Amanda Prorok, University of Cambridge

px|2) = px]2) = 1 p]x) p)
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Kalman Filter (KF)

Assumes Gaussian distributions and linear
dynamics

Efficient and optimal for linear, Gaussian
systems

Easy to implement and suitable for
real-time applications

Extended Kalman Filter (EKF): An extension of
the Kalman Filter for non-linear systems

Optimal state estimate

Predicted state

estimate
Measurement

£ Y

Source: Mathwork, Understanding Kalman Filter

KF
‘|' 1960
1960 l

EKF

VN


https://www.mathworks.com/videos/series/understanding-kalman-filters.html
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Particle Filter (PF)

A "particle" refers to a hypothetical representation of the robot's state
at a specific point in time.

Represents the posterior distribution using a set of weighted particles.

Well-suited for non-linear, non-Gaussian systems.

Adapts to changing dynamics in the environment.

Can represent multimodal distributions.

t ; T

90 | TSaefae” TTTTTTTTTTTTmTmTmmmmEmEmEITOT

State Space
1960 l 1996
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Visual Localization

Estimating the position and orientation of a robot or camera within its
environment using visual data

Provides rich information from the environment
Can work in environments where other sensors may fail or be less accurate
Complements other localization methods (e.g., LIDAR/range-based)

Visual data can be more descriptive and versatile

VN
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SLAM with Active Vision

This work by Andrew Davison was the first to
implement visual SLAM

Focused measurement capability and wide field of
view

Exploits naturally occurring, automatically
detected features for long-term localization

Uncertainty-based measurement selection

KF PF
T 1960 T 2002
1960 l 1996 l

M EKF First Visual SLAM

Reference:

h

ttps://ieeexplore.ieee.org/document/101761

)


https://ieeexplore.ieee.org/document/1017615

DR

MonoSLAM: Real-time single camera SLAM

First real-time monocular SLAM approach,
achieving drift-free performance

Online creation of a sparse, persistent map of
natural landmarks within a probabilistic
framework

Active approach to mapping and measurement

General motion model for smooth camera

movement A
KF PF MonoSLAM
T 1960 T 2002 T
1960 l 1996 l 2007
EKF First Visual SLAM

VN

Reference: https://ieeexplore.ieee.org/document/4160954
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Dense SLAM

Estimates camera or robot's position in
real-time

Captures detailed environmental structure
Contrasts with sparse SLAM methods

Utilizes more environmental data points

KF PF
T 1960 T 2002
1960 l 1996 l
EKF Visual SLAM ElasticFusion

LA\

Reference: https://www.roboticsproceedings.org/rss11/p01.pdf
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Questions?
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Visual Odometry
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Visual Odometry

Process to estimate self-motion of an agent using input from one or more cameras attached to it.

Input

z(m)

500

400

300

—100

Output

----- Ground Truth
SfMLedrner
Depth-VO-Feat

——€C
SC-SfM-Learner
ORB-SLAM2(w/ LC)

—— ORB-SLAM2(w/o LC)
Ours

=100 [0} 100 200 300
x (m)

Zhao, W., Liu, S., Shu, Y., & Liu, Y. J. (2020).
Towards better generalization: Joint depth-pose
learning without posenet. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 9151-9161)



https://docs.google.com/file/d/1qLibwA3uxjb-ma0LlPKCHPLYhrHv7AmT/preview

< Problem Formulation

e The main task in VO is to compute the relative transformations T, from the images |,_and
|, & then to concatenate the transformations to recover the full trajectory C,  of the

camera.

C =C_.T

lgs 145145 1, - Image Sequence

CO, C1.. Cn: Camera Poses

T1, Tn: Transformations

M m — poses windowed bundle adjustment
Slides are referenced from Davide Scaramuzzas Tutorial on Visual Odometry


https://rpg.ifi.uzh.ch/visual_odometry_tutorial.html

< Problem Formulation

e The main task in VO is to compute the relative transformations T, from the images |,_and
|, & then to concatenate the transformations to recover the full trajectory C,  of the
camera.

e This means that VO recovers the path incrementally, pose after pose.

lgs 145145 1, - Image Sequence

CO, C1.. Cn: Camera Poses

T1, Tn: Transformations

M m — poses windowed bundle adjustment
Slides are referenced from Davide Scaramuzzas Tutorial on Visual Odometry


https://rpg.ifi.uzh.ch/visual_odometry_tutorial.html
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Problem Formulation

e The main task in VO is to compute the relative transformations T, from the images |,_and
|, & then to concatenate the transformations to recover the full trajectory C,  of the
camera.

e This means that VO recovers the path incrementally, pose after pose.

e An iterative refinement over last m poses can be performed after this step to obtain a
more accurate estimate of the local trajectory.

C =C_.T

lgs 145145 1, - Image Sequence

CO, C1.. Cn: Camera Poses

T1, Tn: Transformations

M m — poses windowed bundle adjustment

Slides are referenced from Davide Scaramuzzas Tutorial on Visual Odometry



https://rpg.ifi.uzh.ch/visual_odometry_tutorial.html
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Steps Involved

Image Sequence

s 2

Feature Detection

. 2

Feature Matching (or Tracking)

<~

Motion Estimation

2-D-to-2-D

3-D-to-3-D

3-D-to-2-D

<z

Local Optimization (Bundle Adjustment)

Image from Scaramuzza and Fraundorfer, 2011




< Feature Detection

Detections Algorithms:
SIFT, SURF, ORB, etc

IFJIM-R}_'I Schonberger and Frahm: Structure-from-Motion Revisited. CVPR, 2016.



— Feature Matching

M Source: GaTech


https://faculty.cc.gatech.edu/~hays/compvision2018/proj2/

< Motion Estimation

Core step in VO computation
Computes the camera motion T, between previous and current frame

By concatenating all these single movements, full trajectory of the camera
can be recovered

k
M’ Slides are referenced from Davide Scaramuzzas Tutorial on Visual Odometry



https://rpg.ifi.uzh.ch/visual_odometry_tutorial.html
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Appearance or Feature Based?

Appearance Based Feature Based

Feature based is faster and more accurate so most
Makadia et al. «Correspondence-free structure from motion», IJCV'07 VO techni ques use that

IMI Slides are referenced from Davide Scaramuzzas Tutorial on Visual Odometry


https://rpg.ifi.uzh.ch/visual_odometry_tutorial.html

< Motion Estimation

Depending on whether the feature correspondences f, , and f, are specified in 2D or 3D,
there are 3 different cases:

e 2Dto2D:bothf, ,andf, arespecifiedin 2D image coordinates

e 3Dto2D:f ,arespecifiedin 3D andf, areits corresponding 2D reprojections on
Image |,

e 3Dto3D:bothf,  andf, are specifiedin 3D. For this, you need to triangulate the 3D
points at each time instance

IMI Slides are referenced from Davide Scaramuzzas Tutorial on Visual Odometry


https://rpg.ifi.uzh.ch/visual_odometry_tutorial.html

D

" 2D to 2D

e Bothf,  andf arespecifiedin 2D
e (an be solved by recovering the Fundamental Matrix through the 8
Point Algorithm

M Slides are referenced from Davide Scaramuzzas Tutorial on Visual Odometry


https://rpg.ifi.uzh.ch/visual_odometry_tutorial.html

D

" 2D to 2D

We have the correspondences between two images (Through feature detection and matching
we did earlier)

So how do we relate those correspondences between the two images?

And how do we recover the relative pose between the cameras from it?

VN
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" 2D to 2D

There is a way to relate the correspondences:

e Epipolar Geometry: Study of the relationship between two camera views of the same scene

e Fundamental Matrix: Transformation that maps a feature in one image to its corresponding
feature in another image

e 8 Point Algorithm: Algorithm used to estimate the Fundamental Matrix

VN



» Epipolar Geometry

» Let R and t denote the relative pose
between two perspective cameras

\'\ Baseline /

[R]t]

IFJMRL'I Slides are referenced from Dr.-Ing Andreas Geiger’s L ecture Series on Computer Vision



https://drive.google.com/file/d/1GbJo42swzQA7vE4J5xtaLYM2Rs6m1E5l/view

- Epipolar Geometry

» Let R and t denote the relative pose
between two perspective cameras A

» A 3D point x is projected to pixel x; in
image 1 and to pixel x2 in image 2

\ Baseline /

[R]t]




- Epipolar Geometry

» Let R and t denote the relative pose
between two perspective cameras

» A 3D point x is projected to pixel x5 in
image 1 and to pixel x2 in image 2

» The 3D point x and the two camera
centers span the epipolar plane

\ Baseline /

[R]t]

VN



- Epipolar Geometry

» Let R and t denote the relative pose
between two perspective cameras

» A 3D point x is projected to pixel x; in
image 1 and to pixel x2 in image 2

» The 3D point x and the two camera
centers span the epipolar plane

» The correspondence of pixel x; inimage 2

must lie on the epipolar line 1, in image 2 Bl s Y

[R]t]




- Epipolar Geometry

» Let R and t denote the relative pose
between two perspective cameras

» A 3D point x is projected to pixel x; in
image 1 and to pixel x2 in image 2

» The 3D point x and the two camera
centers span the epipolar plane

» The correspondence of pixel x; inimage 2

must lie on the epipolar line 1, in image 2 T

» All epipolar lines pass through the epipole [R]t]

VN
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Epipolar Geometry

2D search space reduced to 1D search space

We don't know the essential/fundamental matrix which can project one
point on its corresponding epipolar line on the 2nd image.

Use feature matching to find corresponding points, which in turn are used
to find the fundamental matrix

VN
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8 Point Algorithm

Fundamental Matrix, F (3x3) has 8 unknowns (instead of 9
because we define it upto a scale, hence removing one

unknown)
At least 8 pairs ( \1 Fundamental Rotation,
of corresponding g 8PA " Matrix translation
points L J

Based on linear Algebra and uses ﬂ

Singular value Decomposition (SVD)

X,TFX,=0

LA\
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Triangulation

e Triangulation: Process of determining the 3D location of a point in space by measuring its
projections in at least two different 2D views.

e Projection matrix: A mathematical matrix that transforms 3D points into 2D points in an
image plane.

7

Given a set of (noisy) matched points on image plane: x
and projection matrix: P, we can find the 3D coordinate X
as

X = Px

Use multiple points to triangulate for the exact 3D point



— Visual Odometry Vs Localization

Localization: We need pre-existing knowledge of
the environment such as the map

Visual Odometry: We estimate camera motion from
camera images

VN
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Methods for Visual Odometry

VN
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Methods for Visual Odometry

Initial Years

Stanford Cart (with sliding cam)

https://web.stanford.edu/~learnest/sail/oldc

art.html

VN

Moravec, “Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover”, Ph. D thesis, Stanford University, 1980

Introduced the motion estimation pipeline + corner detector

Major initial research in VO was driven by NASA/JPL for the 2004 Mars Exploration
Rover mission

A long time ago, at a university far far away...

\—'Opportunity Sols 188-191

Rover 0 Wheel Odometry
Rover 1 Visodom Corrected



https://web.stanford.edu/~learnest/sail/oldcart.html
https://web.stanford.edu/~learnest/sail/oldcart.html
https://robotics.jpl.nasa.gov/media/documents/vo_ras.pdf

DR
Now, back to the present day

Indirect Direct

Input images Input images

BExtract and match
keypoints (SIFT.BRIEF,..)

~ h 4
4 : 2 ~
Track: min. reprojection Track min. photometric/

error (point distances) geometric error pixel-wise

Map: estimate keypoint
parameters (fe. 3D

coordinates) L
\ —— .

Slide credits: Jorg Stiickler
M : : e (slide from Prof. Andreas Geiger’s Self-Driving cars course at TUM)

Map: estimate per-pixel
depth from
photoconsistency




°% Methods for Visual Odometry - Pre-DL

ORB-SLAMZ - Mur-Artal et al., IEEE Trans. On
Robotics, 2017

Tracking
: Pose g New
New Frame »| Extract ORB [—®| estimation or [~ LOI;‘I"“I:M —> keyframe
- Relocalisation ap decision
R B R e S P e RS e S s i """""""

Core Idea: The traditional feature-based pipeline with several optimizations

VN



°% Methods for Visual Odometry - Pre-DL

ORB-SLAMZ - Mur-Artal et al., IEEE Trans. On
Robotics, 2017

Tracking .
: Pose s New
New Frame »| Extract ORB [—>| estimation or [ Loc;jaf\ll —>| keyframe
: Relocalisation e decision
o Local Bundle Keyframe v
| Keyframes [¢&— Adjustment |e—— Management | ___ Keyframe  |g- Keyframe
Culling Levenberg-Marquardt and Points Insertion :
! Optimization Creation
R r """ tocaMapping

VN



°% Methods for Visual Odometry - Pre-DL

ORB-SLAMZ - Mur-Artal et al., IEEE Trans. On
Robotics, 2017

TraCKING .
Pose = New
New Frame »| Extract ORB [—®| estimation or [~ Loc;“fw —>|  keyframe
5 Relocalisation o decision 5
Lozl Local Bundle Keyframe ‘
Keyframes [¢— Adjustment |- Management | Keyframe  |q- Keyframe
Culling Levenberg-Marquardt and Points Insertion ;
v Optimization Creation
'"""" iLocaIMapplng
Loop Correctionl 5 =
S ull Bundle —
Deliggt‘i)on . Optimization | ! Adjustment Place recognition and map modules
Essential Graph | !




°% Methods for Visual Odometry - Pre-DL

Direct Sparse Odometry (DSO) - Engel et al., IEEE TAPMI 2018

Track on current

Keyframe
Image alignment

New KeyFrame?

Keyframe Creation
Candidate points Selection
Tracking on next frames

Add Keyframe

in the optimization window

of active keyframes

New Frame

active keyframes

old keyframes and points

Multi-scale image pyramid b
Constant motion model Activation

- Marginalize Joint Optimization

Refine g Optimization of the

photometric error

X

Source: https://doi.org/10.3390/robotics11010024

VN

Photometric error = weighted sum of
squared distances over a
neighborhood of pixels,

where weights = f(inv. depth, camera
intrinsics, pose, brightness transfer)



https://doi.org/10.3390/robotics11010024

DR

Now, let's look at Deep Learning
based nlethods



" Methods for Visual Odometry - using Deep Learning

PoseNet: A Convolutional Network for Real-Time 6-DOF Camera
Relocalization - Kendall et al., ICCV 2015

Softmax classifiers replaced with regressors - Fully connected layers output 7D vector (3D
position + 4D quaternion) instead of softmax.

Extra 2048-d fully connected layer before final regressor.

Convolutional
Neural Network

Input RGB 6-DOF

(GoogLeNet) Camera Pose

Image

VN



" Methods for Visual Odometry - using Deep Learning

DeepVO - Wang et al., ICRA 2017

leages SequenceH ConvNet H RNN with LSTM H Camera Pose }

Core ldea: CNNs + RNNSs for end-to-end supervised learning of VO

LA\




" Methods for Visual Odometry - using Deep Learning

DeepVO - Wang et al., ICRA 2017
Essentially - extract features using CNN, track features using RNN

---------------------------------------------------------------------------------------------

Video (Image Sequence) : Convolutional Neural Network i Recurrent Neural Network Pose
m '_/ ?,:-?:ggg. Convl Conv2 Conv3 Conv3_1 Conv4 Conv4_1 Conv5 Conv5_1 Conv6é E E LSTM1 LSTM2
H @ o o o o~ <
1241 x 376 x 3 ‘3‘3 : 3; - g & % 5 5 5 8
g BIBLL sl el el elslX *
g éé—?:em%v%:—»cﬁ%a%g»g—»o
! x
X o o o o
f,- gl 18] 18] (8] |g] [8] || [g] s
1241x376 x 3\ i i Tt R e
Q
~ > |—- = —= — - s — —
Time e o | bl | e ) ) ) e |, WE W@
Q

\Y
M QQQQ Q949 QQ9Q 24949
Architecture
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Methods for Visual Odometry - using Deep Learning

SfMLearner: Unsupervised Learning of Depth and Ego-Motion from

Video = Zhou etal.,, CVPR 2017

Core Idea: Compute depth and pose using CNNs, use outputs to warp input images for
loss

Depth CNN

| - -
_.q

Target view

Nearby views Pose CNN

baa LI,
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Methods for Visual Odometry - using Deep Learning

SfMLearner: Unsupervised Learning of Depth and Ego-Motion from

Video - Zhouetal.,, CVPR 2017

Depth CNN

Architecture

M Most recent works in VO have similar architecture !
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Questions?
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Towards Better Generalization:
Joint Depth-Pose Learning
without PoseNet

Published at;: CVPR 2020

Authors:

Wang Zhao, Shaohui Liu, Yezhi Shu, Yong-Jin Liu
(Tsinghua University)

Towards Better Generalization: Joint Depth-Pose Learning without PoseNet

Wang Zhao

Shaohui Liu  Yezhi Shu

Yong-Jin Liu*

Department of Computer Science and Technology, Tsinghua University, Beijing, China

zhao-wl9@mails.tsinghua.edu.cn, blueber2y@gmail.com,

shuyzl9@mails.tsinghua.edu.cn,

Abstract

In this work, we tackle the essential problem of scale in-
consistency for self-supervised joint depth-pose learning.
Most existing methods assume that a consistent scale of
depth and pose can be learned across all input samples,
which makes the learning problem harder, resulting in de-
graded performance and limited generalization in indoor
environments and long-sequence visual odometry applica-
tion. To address this issue, we propose a novel system that
explicitly disentangles scale from the network estimation.
Instead of relying on PoseNet architecture, our method re-
covers relative pose by directly solving fundamental matrix
from dense optical flow correspondence and makes use of
a two-view triangulation module to recover an up-to-scale
3D structure. Then, we align the scale of the depth pre-
diction with the triangulated point cloud and use the trans-
formed depth map for depth error computation and dense
reprojection check. Our whole system can be jointly trained
end-to-end. Extensive experiments show that our system not
only reaches state-of-the-art performance on KITTI depth
and flow estimation, but also significantly improves the
generalization ability of existing self-supervised depth-pose
learning methods under a variety of challenging scenarios,
and achieves state-of-the-art results among self-supervised
learning-based methods on KITTI Odometry and NYUv2
dataset. Furthermore, we present some interesting findings
on the limitation of PoseNet-based relative pose estimation
methods in terms of generalization ability. Code is avail-
able at https://github.com/Blueber2y/TrianFlow.

liuyongjin@tsinghua.edu.cn

500

z(m)

-0 0 100 200 300
x(m)

Figure 1. Visual odomeltry results on sampled sequence 09 and 10
from KITTI Odometry dataset. We sample the original sequences
with large stride (stride=3) to simulate fast camera ego-motion
that is unseen during training. Surprisingly, all tested PoseNet-
based methods get similar failure on trajectory estimation under
this challenging scenario. Our system significantly improves the
generalization ability and robustness and still works reasonably
well on both sequences. See more discussions in Sec 4.4.

0 50100150200
x (m)

on the golden rule of feature correspondence and multi-view
geomeltry, a recent trend of deep learning based methods
[42, 15, 66] try to jointly learn the prediction of monocular
depth and ego-motion in a self-supervised manner, aiming
to make use of the great learning ability of deep networks to
learn geometric priors from large amount of training data.
The key to those self-supervised learning methods is to
build a task consistency for training separated CNN net-
works, where depth and pose predictions are jointly con-
strained by depth reprojection and image reconstruction
error. While achieving fairly eood results. most exist-
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The big question - What ?

Let’s break it down first:

Depth of every Pioneered 6DOF camera
pixelin the scene regression using ConvNets [1]
] —
L -
Joint Depth-Pose Learning without PoseNet
7 I~
L 1
Learning both networks Relative pose of
together (self-supervised) camera for each image

Distilled version:
Learning Monocular Depth Estimation and Camera Pose together,
in a self-supervised fashion, without using a PoseNet-style network

M [1] PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization, Kendall et al., ICCV 2015
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Overview

Sequence of
Monocular
Images

VN

Image T+1

Image T

Network

Relative Pose Matrix: [R, t]

Depth Map
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Overview

Scale Sparse Triangulated Depth

Alignment

DepthNet

Sample &
7 Triangulation

il M Normalized F[l 1 0] ﬁ%

. » —»
1 8-Point * -

FlowNet [L

Sampled Correspondences Inlier Mask
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R
DepthNet

e ConvLSTM-based architecture

e Depth prediction from video ' , :
sequences
e Captures spatio-temporal

information

Nx3x3x256
Nx3x3x512
3x3x512
3x3 %512
3Ix3x256
3x3 %256
3x3x128
3x3x128

e Preserves spatial correlations
better than traditional LSTM

Nx7x7x32
Nx5x5x64
Nx5x5x64
Nx3x3x128
Nx3x3x128
Nx3x3x256

3x3x64
3x3x64

Ix3x32

3x3x32

e Effective in extrapolating
depth maps for future or
unseen image frames

VN

N decoding layers

[ veconviayer [ conv layer Depth

Note: The Depthnet that is used in this paper is not the actual depthnet https://arxiv.org/abs/1806.01260
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FlowNet

Displacement of Pixels from one frame to the next

I

Wy — FlowNET — L

Occlusion
Mask

Backward-

Forward
M’ Score
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Network

DepthNet

FlowNet

)
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Network

FlowNet
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Network

Sampled Correspondences Inlier Mask
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Recap - 8 Point Algorithm

Correspondences come from Optical Flow (FlowNet)!

Fundamental Matrix, F (3x3) has 8 unknowns (instead of 9
because we define it upto a scale, hence removing one

unknown)
e A R VO,
points J Matrix translation

Based on linear Algebra and uses
Singular value Decomposition (SVD)

LA\
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Fundamental Matrix

FlowNet L

Sampled Correspondences

VN

ﬂ W Normalized
LIELELEY —>

8-Point
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Recap - Triangulation

e Triangulation: Process of determining the 3D location of a point in space by measuring its
projections in at least two different 2D views.

e Projection matrix: A mathematical matrix that transforms 3D points into 2D points in an
image plane.

7

Given a set of (noisy) matched points on image plane: x
and projection matrix: P, we can find the 3D coordinate X
as

X = Px

Use multiple points to triangulate for the exact 3D point
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Triangulation

But how do we choose which points to triangulate with?
Ans: Inlier Scores Map
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Triangulation

But how do we choose which points to triangulate with?
Ans: Inlier Scores Map

Inlier Scores Map: Fundamental Matrix is used to find
correspondences for triangulation

< -.??*
R

Inlier Mask




DR

Recap - Epipolar Geometry

e 1D Search Space! X

3 @..
-~ T
L....o """"""""
O ::'....:.. ..................... o ..........................................................
L eL

M}, Left view Right view



— Recap - Epipolar Geometry

e 1D Search Space! X
X ®
1o
e Findthe best match X2 =
for the given point X . .
3.". .....
e e
le | e

M}, Left view Right view



— Recap - Epipolar Geometry

e 1D Search Space! X

1,
e Find the best match X2 e
for the given point X .

.
A

o Getalistof X
Correspondences in L P
the form of aninlier
mask

M Left view Right view
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Explain Paper - Fundamental Matrix estimation

Inlier Mask

Sparse Triangulated Depth

Mask Triangulation

Backward-
Forward
Score
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Overview

Sparse Triangulated Depth

DepthNet

Sample &
7 Triangulation

FlowNet HL
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Overview

Scale Sparse Triangulated Depth

Alignment

DepthNet

Sample &
7 Triangulation

il M Normalized F[l 1 0] ﬁ%

. » —»
1 8-Point * -

FlowNet [L

Sampled Correspondences Inlier Mask



— Scale Alignment

So why are we doing all this?
— To find a Depth Map with a good scale

VN



— Scale Alignment

So why are we doing all this?
— To find a Depth Map with a good scale

We can now obtain the depth from the 3D reconstruction
— D, . (Pseudo-Ground truth Depth)

VN



— Scale Alignment

We align the Predicted Depth Map with the triangulated 3D
structure

We align it by multiplying the Depth Map with a scale s

Dt=sD

VN
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Scale Alignment

Training and Finding 's":

o Minimize the error between Transformed Depth and Pseudo Ground
Truth Depth

Where, Dt =sD
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Loss Functions

wz Ld

Depth




DR

Questions?
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KITTI dataset

e TheKITTI Odometry dataset is a widely-used benchmark for evaluating visual

odometry.

e 22 sequences of stereo image pairs of which 11 ground truth sequences of image
pairs.
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TUM RGBD DATASET

e (onsists of several sequences
recorded in different indoor
environments - offices, hallways,
labs, etc.

various indoor environments with
large textureless surfaces

e Usefulfor more complex camera
ego-motions.

VN

Dataset: https://cve.cit.tum.de/data/datasets/rgbd-dataset



Summary

Localization: Determining a robot's position and orientation within its
environment

e Pre-DL methods with LiDAR/range data: PF, KF, EKF

e \/isual Localization and Pre-DL methods. \We looked at pioneer

works by Andrew Davison's in SLAM

Visual Odometry: Estimating a robot's motion using visual input from
cameras

e Pre-DL methods with visual data

e Difference between odometry and localization

e DL Methods used in Visual Odometry

Our paper: Mainly focus on Joint Depth-Pose Learning without PoseNet

VN
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Thank You!



