

DeepRob

[Student] Lecture 19 by Naga Hemachand Chinta, Sai Tarun Inaganti, Shashank Sharma Visual Pretraining and Robot Manipulation University of Michigan and University of Minnesota

Contents

- Pre-Training in NLP:
 - BERT
 - GPT
 - ChatGPT
- Pre-Training in CV:
 - MAE
 - CLIP
 - DALL-E
- Pre-Training in Robotics:
 - R3M
 - MVP
 - SORNet
 - DALL-E Bot

Pretraining???

Image Source:

https://dreme.stanford.edu/news/expand-mathematical-thinking-during-block-and-p retend-play

Image Source: https://lovevery.eu/community/blog/child-development/when-should-my-child-be-able-to-stack-6-building-blocks/

Foundation Models???

- Models trained on broad data.
- Using self-supervision
- Can be adapted to a wide range of downstream tasks.
- Eg: BERT, ChatGPT, GPT-3, DALL-E

Image Source : <u>https://hai.stanford.edu/news/reflections-foundation-models#:~:text=We%20define%20found</u> <u>ation%20models%20as,wide%20range%20of%20downstream%20tasks</u>.

Pre-Training

Foundation Model

DR

Examples of pre-training in NLP

General timeline:

- Encoder-Decoder
- Attention and transformers
- Beginning of pre-trained models and transfer learning

BERT: Bidirectional Encoder Representations from Transformers.

Gif Sources: <u>https://medium.com/mlearning-ai/getting-contextualized-word-embeddings-with-bert-20798d8b43a4</u> https://giphy.com/explore/google-bert

Image Source: https://bh.linkedin.com/posts/ingliguori_gpt1-gpt2-gpt3-activity-7028774382193774592-xdoj

GPT 1 vs GPT 2 vs GPT 3 vs GPT 4:

Image Source: https://towardsdatascience.com/gpt-3-the-new-mighty-language-model-from-openai-a74ff35346fc

GPT 1 vs GPT 2 vs GPT 3 vs GPT 4:

Image Source: https://towardsdatascience.com/gpt-3-the-new-mighty-language-model-from-openai-a74ff35346fc https://ai.plainenglish.io/embracing-language-model-evolution-gpt-2-gpt-3-and-gpt-4-in-the-ai-landscape-e3e340dc5693

General Timeline:

Pre-Training in CV???

Task-specific training using pre-trained model

Let us look into some pre-training models

We will look into:

- MAE
- CLIP

and their training objectives

MAE

Image Source: https://arxiv.org/pdf/2111.06377.pdf

Image Source: https://arxiv.org/pdf/2111.06377.pdf

Image Source: https://arxiv.org/pdf/2111.06377.pdf

MAE has challenging task at hand!

Image Source: https://arxiv.org/pdf/2111.06377.pdf

Contrastive Language-Image Pretraining (CLIP)

Turns the input (image or text) into embeddings/features (fixed length unit vector)

The angle between the unit vectors represents how different the inputs are.

CLIP

Training:

- $I_1...I_N$ Image embeddings
- $T_1...T_N$ Text embeddings

Embeddings are features vectors of fixed length and magnitude 1.

 $I_x T_y$ - correlation score

(Source - Learning Transferable Visual Models From Natural Language Supervision, Radford et al., 2021)

Correlation score:

The degree of alignment between two vectors

AKA cosine similarity

 $\cos \theta = (\boldsymbol{v_1} \cdot \boldsymbol{v_2}) / \|\boldsymbol{v_1}\| \|\boldsymbol{v_2}\| = \boldsymbol{v_1} \cdot \boldsymbol{v_2}$

 v_1 and v_2 are unit vectors which are feature embeddings corresponding to two images.

CLIP

Applications:

- 1. zero-shot image classification
- 2. Providing image and language representations for downstream tasks

Pre-trained CLIP made DALL-E possible!

Pre-trained CLIP made DALL-E possible!

DALL-E 2 architecture:

Testing:

DALL-E 1 vs DALL-E 2:

Fox in a farm

DALL-E 1

Image source: https://openai.com/product/dall-e-2

DALL-E 1 vs DALL-E 2:

DALL-E 1 vs DALL-E 2:

- More accurate caption matching
- More photorealism

Fox in a farm

DALL-E 1

DALL-E 2

Image source: https://openai.com/product/dall-e-2

What made DALL-E 2 better than DALL-E 1:

• DALL-E 1 uses discrete variational autoencoder (dVAE), next token prediction and CLIP model re-ranking.

What made DALL-E 2 better than DALL-E 1:

- DALL-E 1 uses discrete variational autoencoder (dVAE), next token prediction and CLIP model re-ranking.
- DALL-E 2 uses **CLIP embedding directly** and decodes image via **diffusion** similar to GLIDE (a text guided diffusion model).

DALL-E 2 additional:

• Text based image editing

General timeline:

R3M

R3M: Reusable Representation for Robotic Manipulation.

Universal Visual Representation: A universal visual representation refers to a visual encoding of data that can be used across multiple tasks or domains.

Manipulation: Ability of a robot to interact and physically manipulate objects in its environment. For example: grasping, picking up, moving, and placing objects.

Application: Anything that needs manipulation

Data Set

Ego 4D

Ego 4D

Gif Source: https://www.seas.upenn.edu/~shzhou2/projects/eos_dataset/

Simulation Environments

Adroit

MetaWorld

Assembly, Bin Picking, Button Pressing, Drawer Opening, Hammering

Franka Kitchen

Sliding Door, Turning Light On, Opening Door, Turning Knob, Opening Microwave

Network architecture:

Pre-training:

Network architecture:

Fine-tuning:

Network architecture:

Testing:

Objective 1:

Capture the temporal dynamics

Closer frames must be more similar

Objective 1:

Similarity = $(-1) \times (L2 \text{ norm})$

$$\mathcal{L}_{tcn} = -\sum_{b \in B} \log \frac{e^{\mathcal{S}(z_i^b, z_j^b)}}{e^{\mathcal{S}(z_i^b, z_j^b)} + e^{\mathcal{S}(z_i^b, z_k^b)} + e^{\mathcal{S}(z_i^b, z_i^{\neq b})}}$$

- z_i^b image representation
- S similarity score between two frames
- I, j... are randomly sampled for each video sequence

Objective 2:

Capture semantically relevant features

AKA video-language alignment (similar to CLIP)

Objective 2: Video alignment

$$\mathcal{L}_{language} = -\sum_{b \in B} \log \frac{e^{\mathcal{G}_{\theta}(z_0^b, z_{j>i}^b, l^b)}}{e^{\mathcal{G}_{\theta}(z_0^b, z_{j>i}^b, l^b)} + e^{\mathcal{G}_{\theta}(z_0^b, z_i^b, l^b)} + e^{\mathcal{G}_{\theta}(z_0^{\neq b}, z_{j>i}^{\neq b}, l^b)}}$$

 z_i^{b} - image representation for the jth frame in the bth frame sequence (video)

I^b - language representation for the text description corresponding to the bth video

G_A - Transition score correlating the initial and final frames to the text label (Nair et al.)

I, j... are randomly sampled for each video sequence (NCE)

Objective 3:

Representations must be compact/sparse

L1 + L2 Regularization

Overall objective - minimize the following loss function

$$\mathcal{L}(\phi,\theta) = \mathbb{E}_{I_{0,i,j,k}^{1:B} \sim \mathcal{D}} [\lambda_1 \mathcal{L}_{tcn} + \lambda_2 \mathcal{L}_{language} + \lambda_3 ||\mathcal{F}_{\phi}(I_i)||_1 + \lambda_4 ||\mathcal{F}_{\phi}(I_i)||_2]$$

- 1. L_{tcn} Time contrastive network loss
- 2. L_{language} Video-language alignment loss
- 3. $\|F_{\phi}\|_{1}$ L1 regularization loss
- 4. $\|F_{\phi}\|_2$ L2 regularization loss
- I, j and k are randomly sampled, then the mean loss is calculated over the samples.

Success out of 10 trials	R3M	CLIP
Closing Drawer	80%	70%
Putting Mask in Dresser	30%	10%
Putting Lettuce in Pan	60%	0%
Pushing Mug to Goal	70%	40%
Folding Towel	40%	0%
Average	56%	24%

Experiment derived from Parisi et al.

(additional details go here)

MVP (Masked Visual Pretraining)

(a) masked visual pretraining

Remember MAE!

Image Source: https://tetexiao.com/projects/mvp

MVP (Masked Visual Pretraining)

(a) masked visual pretraining

Imagine replacing R3M above with MAE

MVP (Masked Visual Pretraining)

MVP - Data Set

Egocentric Epic Kitchens dataset +

the YouTube 100 Days of Hands dataset +

the crowd-sourced Something-Something dataset =

Human-Object Interaction dataset (HOI) (~700k Images)

MAE Reconstructions

Franka

MVP (Manipulation tasks)

Kuka

Video Source: https://tetexiao.com/projects/mvp

SORNet: Spatial Object-centric Representation Netowork

SORNET

SORNET

SORNET

SORNET - Readout Networks

SORNET - DATA SET

DALL-E Bot:

This model is a robotic imaginative engine where it creates the image of the goal state which the robot will try to achieve.

DALL-E Bot architecture:

DALL-E Bot demonstration:

Gif source: https://www.robot-learning.uk/dall-e-bot

Examples of pre-training in Robotics

DALL-E Bot limitations :

- What are pre-trained models and foundation models
- Difference between pre-trained models and foundation models
- Pre-Training examples in NLP
 - BERT
 - GPT
 - Chat GPT

- What are pre-trained models and foundation models
- Difference between pre-trained models and foundation models
- Pre-Training examples in NLP
- Pre-Training examples in CV
 - MAE (Masked Auto-encoders)
 - CLIP
 - DALL-E 1 and DALL-E 2

- What are pre-trained models and foundation models
- Difference between pre-trained models and foundation models
- Pre-Training in NLP
- Pre-Training in CV
- Pre-Training in Robotics
 - R3M
 - MVP
 - SORNET
 - DALL-E Bot

