

DeepRob

[Student] Lecture 17 by Michael Andrev, Chen Hu, Sean Coffey Implicit Surfaces, Geometry, NeRF University of Michigan and University of Minnesota

Video credits - Nirmal Raj

Let's go over the basics!

Data Structures of 3D Geometry

1. Pointclouds

https://commons.wikimedia.org/wiki/File:Point_cloud_torus.gif

1. Meshes

https://en.wikipedia.org/wiki/Polygon_mesh

1. Voxels

https://en.wikipedia.org/wiki/Voxel

Pointclouds

A measurement unit that is represented using x, y, and z coordinates.

An aggregation of many small units of something.

A set of points in a space that represent some 3D shape or object

https://commons.wikimedia.org/wiki/File:Point _cloud_torus.gif

https://geo-matching.com/content/how-to-get-the-b est-precision-and-improve-pointcloud-accuracy

Meshes

Meshes (or polygon meshes) are a 3D object that is composed of 1+ polygons

What does polygon mean?

The word polygon comes from two Greek words.

The word **poly** means "many": **polymorph** = many forms **polymath** = someone with lots of different skills

The word **gon** means "angle": **hexagon** = six angles

The word **polygon** means "many angles".

<u>A more helpful definition</u>: A polygon is a closed 2D shape made of straight lines (e.g. not a circle, shapes with curves or an open loop!).

Voxels

Voxels are 3D pixels represented as cubes.

https://www.google.com/url?sa=i&url=https%3A%2F%2Fdon_backos.artsta tion.com%2Fprojects%2FrR5Y83&psig=AOvVaw1miitlbCKz2tjcvKOX7XW_& ust=1680288200369000&source=images&cd=vfe&ved=0CA8QjRxqFwoTC Nicib_ChP4CFQAAAAAdAAAAABAD

https://blog.spatial.com/the-main-benefits-and-disadvantages-of-voxel-m odeling

Summary of Data Structures of 3D Geometry

http://graphics.stanford.edu/courses/cs348n-22-winter/

Questions?

PointNet and PointNet++

PointNet

1. End-to-end learning for irregular point data

2. Unified framework for various tasks

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

PointNet

- **1. End-to-end learning** for irregular point data
- 2. Unified framework for various tasks

PointNet has to respect key characteristics for points clouds:

- 1. Point Permutation Invariance
- 2. Spatial Transformation Invariance
- 3. Sampling Invariance

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Qi, Charles R./et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Encode Spatial Transformation Invariance

Qi, Charles R./et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Qi, Charles R. et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Encode Spatial Transformation Invariance

Regularization loss:

Transform matrix close to orthogonal: $L_{reg} = ||I - AA^T||_F^2$

Qi, Charle's R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Qi, Charles R. et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Qi, Charles R. et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

PointNet Segmentation Network

Qi Charles R, et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

PointNet++

Limitation of PointNet - Global feather learning

- 1. No local context
- 2. Limited local invariance

PointNet++

Limitation of PointNet - Global feather learning

- 1. No local context
- 2. Limited local invariance

PointNet++: recursively apply pointnet at local regions:

- 1. Hierarchical feature learning
- 2. Local translational invariance
- 3. Permutation invariance

Hierarchical Point Feature Learning

Hierarchical Point Feature Learning

Hierarchical Point Feature Learning

PointNet++

PointNet and PointNet++ Comparison

Density Variation

Questions?

3D Reconstruction before NeRF

Reconstruction of 3D scenes and Geometries

The process of capturing the shape and appearance of real objects¹

Active Methods

 Actively interfere with the reconstructed object, either mechanically or radiometrically (ex laser range finder, 3D ultrasound)²

Passive Methods

 Measure the radiance reflected or emitted by the object's surface to infer its 3D structure through image understanding³

¹Moons, Theo, Luc Van Gool, and Maarten Vergauwen. "3D reconstruction from multiple images part 1: Principles."

²Mahmoudzadeh, Ahmadreza; Golroo, Amir; Jahanshahi, Mohammad R.; Firoozi Yeganeh, Sayna (January 2019). "Estimating Pavement Roughness by Fusing Color and Depth Data Obtained from an Inexpensive RGB-D Sensor"

³Buelthoff, Heinrich H., and Alan L. Yuille. "Shape-from-X: Psychophysics and computation Archived 2011-01-07 at the Wayback Machine."

Triangulation

The process of determining a point in 3D space given its projections onto two, or more, images.

In order to solve this problem it is necessary to know the parameters of the camera projection function from 3D to 2D for the cameras involved, in the simplest case represented by the camera matrices.¹

¹Richard Hartley and Andrew Zisserman (2003). "Multiple View Geometry in computer vision"

Structure from Motion (SfM)

Structure from motion (SfM) is the process of estimating the 3-D structure of a scene from a set of 2-D images. SfM is used in many applications, such as 3-D scanning , augmented reality, and visual simultaneous localization and mapping (vSLAM)

Structure from Motion from Two Views

Structure from Motion from Multiple Views

Simultaneous Localization and Mapping (SLAM)

The computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.

Open Monkey Studio

¹Yuan Yao, Yasamin Jafarian, & Hyun Soo Park. (2019). "MONET: Multiview Semi-supervised Keypoint Detection via Epipolar Divergence."

An implicit surface is the set of zeros of a function of three variables. Implicit means that the equation is not solved for x or y or z.

F(x, y, z) = 0.

 $(x^2+y^2+z^2+R^2-a^2)^2-4R^2(x^2+y^2)=0.$

 $2y(y^2-3x^2)(1-z^2)+(x^2+y^2)^2-(9z^2-1)(1-z^2)=0$

 $(z^2 + y^2 - (\ln(z + 3.2))^2 - 0.02) =$

https://en.wikipedia.org/wiki/Implicit_surface

Radial Basis Function

A radial basis function (RBF) is a real-valued function whose value depends only on the distance between the input and some fixed point

Images from: https://www.cs.jhu.edu/~misha/Fall05/Papers/carr01.pdf

Marching Cubes Algorithm

Marching cubes is a computer graphics algorithm, published in the 1987 SIGGRAPH proceedings by Lorensen and Cline, for extracting a polygonal mesh of an isosurface from a three-dimensional discrete scalar field (the elements of which are sometimes called voxels)

Signed Distance Function

The signed distance function is a mathematical function that is used to define implicit surfaces.

Questions?
Finally, NeRF... Well... Almost!

Computer Graphic concepts

1. Rendering

- 2. Volume Rendering
- **3**. Volume Synthesis

Rendering

Generating an image (render) from a 2D/3D model.

https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-ray-tracing/implementing-the-raytracing-algorithm.html

Volume Rendering

Create a 2D projection of 3D voxel data

3D objects -> 2D images

https://www.heavy.ai/technical-glossary/volume-rendering#:~:text=Volume%20rendering%20represents%20a%20collection,MicroCT%20scanner%202D%20slice%20images.

https://www.heavy.ai/technical-glossary/volume-rendering#:~:text=Volume%20rendering%20represents%20a%20collection,MicroCT%20scanner%202D%20slice%20images.

Create a 3D view from a 2D scale

2D images —> 3D objects

Questions?

Finally, NeRF... For Real!

NeRF: <u>Representing Scenes</u> as <u>Neural Radiance Fields</u> for <u>View Synthesis</u>

Paper Authors: Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng

https://www.matthewtancik.com/nerf

What is a NeRF?

<u>Technical Definition:</u> Fully-connected neural network that can generate new views of 3D scenes based on a set of 2D images.

* Think of NeRF as volume rendering + coordinate-based network!

Q. What are we trying to do?

A. We are trying to generate a new picture/view of an object by existing sparse image inputs

Q. How do we do that?

A. Training a neural network which representing the 3D scene

NeRF View-Dependent Appearance

https://www.matthewtancik.com/nerf

Geometry Visualization

https://www.matthewtancik.com/nerf

Let's dive into the concepts surrounding NeRF!

Brief Overview of NeRF

https://www.youtube.com/watch?v=WSfEfZ0ilw4

We overfit our MLP to this scene (this is VERY unusual in classical deep learning)!

https://arxiv.org/pdf/2003.08934.pdf

Volume Rendering with Radiance Fields

View-Dependent Emitted Radiance

https://arxiv.org/pdf/2003.08934.pdf

Optimizing a Neural Radiance Field

1. Positional Encoding

2. Hierarchical Volume Sampling

Why do we use Positional Encoding?

Ground truth image

Neural network output **without** high frequency mapping

Neural network output **with** high frequency mapping

Positional Encoding

$$F_\Theta = F'_\Theta \circ \gamma$$

Compositions of a regular MLP and the mapping to a high-dimensional space

Mapping from R to to R^2L

https://arxiv.org/pdf/ 2003.08934.pdf

Hierarchical Volume Sampling

$$\hat{C}_c(\mathbf{r}) = \sum_{i=1}^{N_c} w_i c_i, \quad w_i = T_i (1 - \exp(-\sigma_i \delta_i))$$

https://arxiv.org/pdf/2003.08934.pdf

https://www.youtube.com/watch?v=WSfEfZ0ilw4

Phew!!! Let's put everything together!

Questions?

It's DATA TIME!!!

Datasets

Diffuse Synthetic 360° - 1.54 GB

• 8 Objects

https://www.matthewtancik.com/nerf

Realistic Synthetic 360° - 1.56 GB

- Pinecone Images
- Flower Vase Images

Dataset	Real or Synthetic Objects	Image Size	Training Images	Testing Images
LLFF	Real	1008 × 756	20 - 62	¼ of Training Images
Diffuse Synthetic 360	Synthetic	512 × 512	479	1000
Realistic Synthetic 360	Synthetic	512 × 512	479	1000
DeepVoxels	Synthetic	512 × 512	479	1000

NeRF Computation/Memory Requirements

- <u>Memory Requirements for Network Weights:</u> 5 MB
- <u>Training Computation Time:</u> ~15 hours (after 200k iterations)
- Testing Computation Time: between 30 sec and 1 minute
- Training computation time can vary depending on the resolution

Let's talk training!

Training Generate random seed [if not provided]

if args.random_seed is not None:

print('Fixing random seed', args.random seed)

np.random.seed(args.random_seed)

tf.compat.v1.set_random_seed(args.random_seed)

https://github.com/bmild/nerf

Training

def load_blender_data(basedir, half_res=False, testskip=1):
 splits = ['train', 'val', 'test']

metas[s] = json.load(fp)

with open(os.path.join(basedir, 'transforms_{).json'.format(s)), 'r') as fp:

metas = {}

for s in splits:

43

88

Split data into sets ("Train", "Validation", "Testing")

	47	
	48	all_imgs = []
	49	all_poses = []
	50	counts = [0]
11 args.dataset_type == 11ff':	51	for s in splits:
	52	meta = metas[s]
<pre>images, poses, bds, render_poses, i_test =load_llff_data(args.datadir, args.factor,</pre>	53	imgs = []
	54	poses = []
recenter=True)	55	if s=-'train' or testskip==0:
	56	skip - 1
elif args.dataset type == blender':	57	else:
	58	skip = testskip
	59	for from to experite second 11 and all
	60	for trane in metal transfit (issue)
else:	61	<pre>trame = os.path.join(dasedir, trame[tile_path] + .png) imgr_appond(imgrade_imgrade(frame))</pre>
	63	angs.append.anggav.an.eou((inner))
	64	imes = (nn.array(imes) / 255.).astyne(nn.float32) # keen all 4 channels (RGR4)
	65	noses = nn.array(noses).astrope(no.float32)
	66	counts.append(counts[-1] + imgs.shape[0])
	67	all_imgs.append(imgs)
i train, i val. i test= i split	68	all_poses.append(poses)
	69	
	70	<pre>i_split = [np.arange(counts[i], counts[i+1]) for i in range(3)]</pre>
	71	
	72	<pre>imgs = np.concatenate(all_imgs, 0)</pre>
	73	<pre>poses = np.concatenate(all_poses, 0)</pre>
	74	
	75	H, W = imgs[0].shape[:2]
	76	<pre>camera_angle_x = float(meta['camera_angle_x'])</pre>
	77	focal = .5 * W / np.tan(.5 * camera_angle_x)
	78	
	79	render_poses = tf.stack([pose_spherical(angle, -30.0, 4.0) for angle in np.linspace(-180,180,40+1)[:-1]],0)
	80	
	81	1+ nait_res:
	82	<pre>imgs = tf.image.resize_area(imgs, [400, 400]).numpy() H = N(/2</pre>
	84	n = n/2
	85	n = w//2 focal = focal/2
https://github.com/bmild/porf	86	ICCUL - ICCULTAT
https://github.com/binild/nen	87	return imgs, poses, render poses, [H, W, focal], i split
	01	

Training

Create Adam Optimizer Object

Initial Learning rate: 5×10^{-4} {exponentially decays to 5×10^{-5} } Other hyperparameters set to Adam default ($\beta_1 = 0.9$, $\beta_2 = 0.999$, and $\epsilon = 10-7$)

Create optimizer

lrate = args.lrate

if args.lrate_decay > 0:

lrate =

tf.keras.optimizers.schedules.ExponentialDecay(lrate,

```
decay_steps=args.lrate_decay * 1000, decay_rate=0.1)
    optimizer = tf.keras.optimizers.Adam(lrate)
    models['optimizer'] = optimizer
```

https://github.com/bmild/nerf

Training

Conduct training for N iterations. At each step:

- a. Sample random data
- b. Make predictions for parameters
- c. Computer loss (MSE)
- d. Add in the loss for the coarse grained model
- e. Apply the gradients

https://github.com/bmild/nerf

```
N_iters = 100000
for i in range(start, N_iters):
    # Random from one image
    img_i = np.random.choice(i_train)
    target = images[img i]
```

Make predictions for color, disparity, accumulated opacity. rgb, disp, acc, extras = render(

H, W, focal, chunk=args.chunk, rays=batch_rays)
Compute MSE loss between predicted and true RGB
img_loss = img2mse(rgb, target_s)
loss = img_loss
psnr = mse2psnr(img_loss)

Add MSE loss for coarse-grained model

if 'rgb0' in extras: img_loss0 = img2mse(extras['rgb0'], target_s) loss += img_loss0 psnr0 = mse2psnr(img loss0)

optimizer.apply_gradients(zip(gradients, grad_vars))

Loss Function

The total squared error between the rendered and true pixel colors for both the coarse and fine renderings:

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

def img2mse(x, y): return tf.reduce_mean(tf.square(x - y))

https://arxiv.org/pdf/ 2003.08934.pdf

http://graphics.stanfor d.edu/courses/cs348n -22-winter/

Visual Results

 Cube
 MABOLER
 MABOLER

https://arxiv.org/pdf/ 2003.08934.pdf

Comparative Results

	Diffuse Synthetic 360° [41]			Realistic Synthetic 360°			Real Forward-Facing [28]		
Method	PSNR ↑	$SSIM\uparrow$	LPIPS↓	PSNR ↑	$SSIM\uparrow$	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
SRN [42]	33.20	0.963	0.073	22.26	0.846	0.170	22.84	0.668	0.378
NV [24]	29.62	0.929	0.099	26.05	0.893	0.160	-	-	-
LLFF [28]	34.38	0.985	0.048	24.88	0.911	0.114	24.13	0.798	0.212
Ours	40.15	0.991	0.023	31.01	0.947	0.081	26.50	0.811	0.250

$$ext{SSIM}(x,y) = rac{(2\mu_x\mu_y+c_1)(2\sigma_{xy}+c_2)}{(\mu_x^2+\mu_y^2+c_1)(\sigma_x^2+\sigma_y^2+c_2)}$$

with:

 $MSE = rac{1}{c * i * j} \sum (I_1 - I_2)^2$

$$PSNR = 10 \cdot \log_{10}\left(rac{MAX_I^2}{MSE}
ight)$$

- μ_x the pixel sample mean of x;
- μ_y the pixel sample mean of y;
- σ_x^2 the variance of x;
- σ_y^2 the variance of y;
- σ_{xy} the covariance of x and y;
- $c_1=(k_1L)^2$, $c_2=(k_2L)^2$ two variables to stabilize the division with weak denominator;
- L the dynamic range of the pixel-values (typically this is $2^{\# bits \; per \; pixel} 1$);
- $ullet k_1=0.01$ and $k_2=0.03$ by default.

LPIPS: https://arxiv. org/pdf/1801. 03924.pdf

https://arxiv.org/pdf/ 2003.08934.pdf

Ablation Study Results

	Input	#Im.	L	(N_c, N_f)	PSNR ↑	SSIM↑	LPIPS↓
1) No PE, VD, H	xyz	100	-	(256, -)	26.67	0.906	0.136
2) No Pos. Encoding	$xyz\theta\phi$	100	-	(64, 128)	28.77	0.924	0.108
3) No View Dependence	xyz	100	10	(64, 128)	27.66	0.925	0.117
4) No Hierarchical	$xyz\theta\phi$	100	10	(256, -)	30.06	0.938	0.109
5) Far Fewer Images	$xyz\theta\phi$	25	10	(64, 128)	27.78	0.925	0.107
6) Fewer Images	$xyz\theta\phi$	50	10	(64, 128)	29.79	0.940	0.096
7) Fewer Frequencies	$xyz\theta\phi$	100	5	(64, 128)	30.59	0.944	0.088
8) More Frequencies	$xyz\theta\phi$	100	15	(64, 128)	30.81	0.946	0.096
9) Complete Model	$xyz\theta\phi$	100	10	(64, 128)	31.01	0.947	0.081

Table 2: An ablation study of our model. Metrics are averaged over the 8 scenes from our realistic synthetic dataset. See Sec. 6.4 for detailed descriptions.

Summary

- NeRF = Coordinate Based MLP Network + Volume Rendering
- NeRF Pros:
 - Simple representation
 - > Differentiable Rendering Model
- NeRF Cons:
 - > Dumb Brute force approach
 - ➢ INSANELY SLOW!!!

2			
		Training speed	Rendering speed
	Original NeRF	1-2 days	30 sec
	KiloNeRF, cached voxels	1-2 days	1/60 sec
	Learned voxels	10-15 mins	1/15-1/2 sec
	Learned hash maps (Instant NGP)	5 sec - 5 mins	1/60 sec

Questions?

DeepRob

[Student] Lecture 17 by Michael Andrev, Chen Hu, Sean Coffey Implicit Surfaces, Geometry, NeRF University of Michigan and University of Minnesota

Video credits - Nirmal Raj

Sean References

Moons, Theo, Luc Van Gool, and Maarten Vergauwen. "3D reconstruction from multiple images part 1: Principles." Foundations and Trends in Computer Graphics and Vision 4.4 (2010): 287-404.

Mahmoudzadeh, Ahmadreza; Colroo, Amir; Jahanshahi, Mohammad R.; Firoozi Yeganeh, Sayna (January 2019). "Estimating Pavement Roughness by Fusing Color and Depth Data Obtained from an Inexpensive RGB-D Sensor". Sensors. 19 (7): 1655. Bibcode:2019Senso..19.1655M. doi:10.3390/s19071655. PMC 6479490. PMID 30959936

Buelthoff, Heinrich H., and Alan L. Yuille. "Shape-from-X: Psychophysics and computation Archived 2011-01-07 at the Wayback Machine." Fibers' 91, Boston, MA. International Society for Optics and Photonics, 1991 Richard Hartley and Andrew Zisserman (2003). "Multiple View Geometry in computer vision". Cambridge University Press. ISBN 978-0-521-54051-3

Yuan Yao, Yasamin Jafarian, & Hyun Soo Park. (2019). "MONET: Multiview Semi-supervised Keypoint Detection via Epipolar Divergence."arXiv,1806.00104. https://arxiv.org/pdf/1806.00104.pdf