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Let’s go over the basics!



Data Structures of 3D Geometry

1. Pointclouds

1. Meshes

1. Voxels

https://commons.wikimedia.org/wiki/File:Point_cloud_torus.gif

https://en.wikipedia.org/wiki/Polygon_mesh

https://en.wikipedia.org/wiki/Voxel



Point + Cloud = Pointcloud

Pointclouds

A measurement unit that is 
represented using x, y, and z 

coordinates.
An aggregation of many 
small units of something.

A set of points in a space 
that represent some 3D 

shape or object

https://commons.wikimedia.org/wiki/File:Point
_cloud_torus.gif

https://geo-matching.com/content/how-to-get-the-b
est-precision-and-improve-pointcloud-accuracy



Meshes (or polygon meshes) are a 3D object that is composed of 1+ polygons

Meshes

https://www.youtube.com/watch?v=sMlxmItrjWE https://en.wikipedia.org/wiki/Polygon_mesh



Voxels are 3D pixels represented as cubes.

Voxels

https://www.google.com/url?sa=i&url=https%3A%2F%2Fdon_backos.artsta
tion.com%2Fprojects%2FrR5Y8J&psig=AOvVaw1miitIbCKz2tjcvKOX7XW_&
ust=1680288200369000&source=images&cd=vfe&ved=0CA8QjRxqFwoTC
Nicib_ChP4CFQAAAAAdAAAAABAD

https://blog.spatial.com/the-main-benefits-and-disadvantages-of-voxel-m
odeling



Summary of Data Structures of 3D Geometry

http://graphics.stanford.edu/courses/cs348n-22-winter/



Questions?



PointNet and PointNet++



PointNet

1. End-to-end learning 
for irregular point data

2. Unified framework for 
various tasks

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d 
classification and segmentation." Proceedings of the IEEE conference 
on computer vision and pattern recognition. 2017.



PointNet

1. End-to-end learning 
for irregular point data

2. Unified framework for 
various tasks

PointNet has to respect key 
characteristics for points clouds:

1. Point Permutation Invariance
2. Spatial Transformation 

Invariance
3. Sampling Invariance

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d 
classification and segmentation." Proceedings of the IEEE conference 
on computer vision and pattern recognition. 2017.



PointNet Classification Network

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2017.



PointNet Classification Network

Encode Spatial Transformation Invariance

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2017.



PointNet Classification Network
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PointNet Classification Network

Encode Spatial Transformation Invariance

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision 
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PointNet Classification Network

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2017.



PointNet Classification Network

Encode Permutation Invariance

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2017.



PointNet Segmentation Network

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2017.



PointNet++
Limitation of PointNet - Global 
feather learning

1. No local context
2. Limited local invariance

Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." Advances in neural information processing 
systems 30 (2017).



PointNet++
Limitation of PointNet - Global 
feather learning

1. No local context
2. Limited local invariance

PointNet++: recursively apply pointnet at local regions:

1. Hierarchical feature learning
2. Local translational invariance
3. Permutation invariance

Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." Advances in neural information processing 
systems 30 (2017).



Hierarchical Point Feature Learning

Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." Advances in neural information processing 
systems 30 (2017).



Hierarchical Point Feature Learning
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Hierarchical Point Feature Learning

Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." Advances in neural information processing 
systems 30 (2017).



PointNet++

Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." Advances in neural information processing 
systems 30 (2017).



PointNet and PointNet++ Comparison 

Density Variation

Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." Advances in neural information processing 
systems 30 (2017).



Questions?



3D Reconstruction before 
NeRF



● Actively interfere with the 
reconstructed object, 
either mechanically or 
radiometrically (ex laser 
range finder, 3D 
ultrasound)2

● Measure the radiance 
reflected or emitted by 
the object's surface to 
infer its 3D structure 
through image 
understanding3

Reconstruction of 3D scenes and 
Geometries

Active Methods Passive Methods

1Moons, Theo, Luc Van Gool, and Maarten Vergauwen. "3D reconstruction from multiple images part 1: Principles."
2Mahmoudzadeh, Ahmadreza; Golroo, Amir; Jahanshahi, Mohammad R.; Firoozi Yeganeh, Sayna (January 2019). "Estimating Pavement Roughness by Fusing Color and 
Depth Data Obtained from an Inexpensive RGB-D Sensor"
3Buelthoff, Heinrich H., and Alan L. Yuille. "Shape-from-X: Psychophysics and computation Archived 2011-01-07 at the Wayback Machine." 

The process of capturing the shape and appearance of real objects1



Triangulation
The process of determining a point in 3D space given its 
projections onto two, or more, images. 
In order to solve this problem it is necessary to know the parameters of the camera 
projection function from 3D to 2D for the cameras involved, in the simplest case 
represented by the camera matrices.1

1Richard Hartley and Andrew Zisserman (2003). “Multiple View Geometry in computer vision”



Structure from Motion (SfM)

Structure from Motion from 
Two Views

Structure from Motion from 
Multiple Views

Structure from motion (SfM) is the process of estimating the 3-D 
structure of a scene from a set of 2-D images. SfM is used in 
many applications, such as 3-D scanning , augmented reality, and 
visual simultaneous localization and mapping (vSLAM)

Images from: https://www.mathworks.com/help/vision/ug/structure-from-motion.html 

https://www.mathworks.com/help/vision/ug/structure-from-motion.html


Simultaneous Localization and Mapping (SLAM)

The computational problem of constructing or updating a map 
of an unknown environment while simultaneously keeping track 
of an agent's location within it.

Open Monkey Studio

1Yuan Yao, Yasamin Jafarian, & Hyun Soo Park. (2019). “MONET: Multiview Semi-supervised Keypoint Detection via Epipolar Divergence.”



Implicit Surfaces

An implicit surface is the set of zeros of a function of three 
variables. Implicit means that the equation is not solved for x or y 
or z.

https://en.wikipedia.org/wiki/Implicit_surface



A radial basis function (RBF) is a real-valued function 
whose value depends only on the distance between the input 
and some fixed point

Radial Basis Function

Images from: https://www.cs.jhu.edu/~misha/Fall05/Papers/carr01.pdf 

https://www.cs.jhu.edu/~misha/Fall05/Papers/carr01.pdf


Marching cubes is a computer graphics algorithm, published in 
the 1987 SIGGRAPH proceedings by Lorensen and Cline, for 
extracting a polygonal mesh of an isosurface from a 
three-dimensional discrete scalar field (the elements of which are 
sometimes called voxels)

Marching Cubes Algorithm

Images from: 
https://www.cs.carleton.edu/cs_comps/0405/shape/marching_cubes.html 

https://www.cs.carleton.edu/cs_comps/0405/shape/marching_cubes.html


The signed distance function is a mathematical function that is 
used to define implicit surfaces. 

Signed Distance Function

Images from: 
https://shaderfun.com/2018/03/25/signed-distance-fields-part-2-solid-geometry/ 

https://shaderfun.com/2018/03/25/signed-distance-fields-part-2-solid-geometry/


Questions?



Finally, NeRF… Well… Almost!



Computer Graphic concepts

1. Rendering

2. Volume Rendering

3. Volume Synthesis



Rendering
Generating an image (render) from a 2D/3D model.

https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-ray-tracing/implementing-the-raytracing-algorithm.html



Volume Rendering

Create a 2D projection of 3D voxel data

3D objects —>  2D images

https://www.heavy.ai/technical-glossary/volume-rendering#:~:text=Volume%20renderi
ng%20represents%20a%20collection,MicroCT%20scanner%202D%20slice%20images.

https://www.heavy.ai/technical-glossary/volume-rendering#:~:text=Volume%20renderi
ng%20represents%20a%20collection,MicroCT%20scanner%202D%20slice%20images.



Volume Synthesis

Create a 3D view from a 2D scale

2D images —> 3D objects

http://graphics.stanford.edu/courses/cs348n-22-winter/



Questions?



Finally, NeRF… For Real!



NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

https://www.matthewtancik.com/nerf

Paper Authors: Ben Mildenhall, Pratul P. Srinivasan, 
Matthew Tancik, Jonathan T. Barron, Ravi 
Ramamoorthi, Ren Ng



What is a NeRF?
Technical Definition: Fully-connected neural network that can 
generate new views of 3D scenes based on a set of 2D images.

* Think of NeRF as volume rendering +  coordinate-based 
network!

https://www.matthewtancik.com/nerf



Q. What are we trying to do?
A. We are trying to generate a new picture/view of 

an object by existing sparse image inputs

https://www.matthewtancik.com/nerf

Q. How do we do that?
A. Training a neural network which representing 

the 3D scene



NeRF View-Dependent Appearance

https://www.matthewtancik.com/nerf

https://drive.google.com/file/d/1BPaCTtHeSUpciMvSJc9LIAarz1738eB-/view?usp=sharing
https://docs.google.com/file/d/17Blm9Uzh-Oi1w8xXLUnvA61ox4xu44Ws/preview


Geometry Visualization

https://www.matthewtancik.com/nerf

https://docs.google.com/file/d/1fM7b5XCMycx4nIczLpeC-gPKWN0xYtML/preview
https://docs.google.com/file/d/1WvMS8WKzAVeiEhqrAZPbpN5XsFOjpqHZ/preview


Let’s dive into the concepts 
surrounding NeRF!



Brief Overview of NeRF
(a) (b)            (c)      (d)

https://www.matthewtancik.com/nerf https://www.youtube.com/watch?v=WSfEfZ0ilw4



We overfit our MLP to this 
scene (this is VERY unusual 
in classical deep learning)!



https://arxiv.org/pdf/2003.08934.pdf



Volume Rendering with Radiance Fields

How much light has been 
blocked up to point t?

Density at 
the point 
(in terms of 
occlusion)

Color at point r(t) 
from viewing 
direction d

Expected 
color of 
camera ray

https://arxiv.org/pdf/2003.08934.pdf



View-Dependent Emitted 
Radiance

https://arxiv.org/pdf/2003.08934.pdf



Optimizing a Neural Radiance Field

1. Positional Encoding 2.    Hierarchical Volume Sampling

https://www.youtube.com/watch?v=WSfEfZ0ilw4



Why do we use Positional Encoding?

http://graphics.stanford.edu/courses/cs348n-22-winter/



Positional Encoding

Mapping 
from R to 
to R^2L

Compositions of a 
regular MLP and 
the mapping to a 
high-dimensional 
space http://graphics.stanfor

d.edu/courses/cs348n
-22-winter/

https://arxiv.org/pdf/
2003.08934.pdf



Hierarchical Volume Sampling

https://arxiv.org/pdf/2003.08934.pdf https://www.youtube.com/watch?v=WSfEfZ0ilw4



Phew!!! Let’s put everything 
together!



Putting everything together!

Shoot Camera 
Rays at Scene

Hierarchical 
Sampling and 

Positional Encoding
Fine MLP

Coarse Volume 
RenderingCoarse MLP

Fine Volume 
Rendering

Coarse Total 
Squared Error

Fine Total Squared 
Error



http://graphics.stanfor
d.edu/courses/cs348n
-22-winter/



http://graphics.s
tanford.edu/cou
rses/cs348n-22-
winter/



http://graphics.s
tanford.edu/cou
rses/cs348n-22-
winter/



http://graphics.s
tanford.edu/cou
rses/cs348n-22-
winter/



http://graphics.s
tanford.edu/cou
rses/cs348n-22-
winter/



http://graphics.s
tanford.edu/cou
rses/cs348n-22-
winter/



http://graphics.s
tanford.edu/cou
rses/cs348n-22-
winter/



http://graphics.s
tanford.edu/cou
rses/cs348n-22-
winter/



http://graphics.s
tanford.edu/cou
rses/cs348n-22-
winter/



Questions?



It’s DATA TIME!!!



Datasets

Diffuse Synthetic 360◦ - 1.54 GB

● 8 Objects

Realistic Synthetic 360◦ - 1.56 GB

● Pinecone Images

● Flower Vase Images

https://www.matthewtancik.com/nerf



Data

Dataset Real or 
Synthetic 
Objects

Image Size Training Images Testing Images

LLFF Real 1008 × 756 20 - 62 ⅛ of Training 
Images

Diffuse 
Synthetic 360

Synthetic  512 × 512 479 1000

Realistic 
Synthetic 360

Synthetic  512 × 512 479 1000

DeepVoxels Synthetic  512 × 512 479 1000



NeRF Computation/Memory Requirements

● Memory Requirements for Network Weights: 5 MB

● Training Computation Time: ~15 hours (after 200k iterations)

● Testing Computation Time: between 30 sec and 1 minute

● Training computation time can vary depending on the resolution



Let’s talk training!



if args.random_seed is not None:

       print('Fixing random seed', args.random_seed)

       np.random.seed(args.random_seed)

       tf.compat.v1.set_random_seed(args.random_seed)

Training
Generate random seed [if not provided]

https://github.com/bmild/nerf



Training
Split data into sets (“Train”,”Validation”, “Testing”)

if args.dataset_type == 'llff':

      images, poses, bds, render_poses, i_test = load_llff_data(args.datadir, args.factor,

                                                                 recenter=True)

elif args.dataset_type == 'blender':

      ………..

else:

………..

i_train, i_val, i_test = i_split

https://github.com/bmild/nerf



Initial Learning rate: 5 x 10-4 
{exponentially decays to 5 x 10-5}

Other hyperparameters set to 
Adam default (β1 = 0.9, β2 = 0.999, 

and  ε= 10−7 )

Training
Create Adam Optimizer Object

# Create optimizer

   lrate = args.lrate

   if args.lrate_decay > 0:

       lrate = 

tf.keras.optimizers.schedules.ExponentialDecay(lrate,

                                                              

decay_steps=args.lrate_decay * 1000, decay_rate=0.1)

   optimizer = tf.keras.optimizers.Adam(lrate)

   models['optimizer'] = optimizer

https://github.com/bmild/nerf



a. Sample random data

b. Make predictions for parameters 

c. Computer loss (MSE) 

d. Add in the loss for the coarse grained model

e. Apply the gradients 

Training
Conduct training for N iterations. At each step: N_iters = 1000000

for i in range(start, N_iters):

           # Random from one image

           img_i = np.random.choice(i_train)

           target = images[img_i]

           

 # Make predictions for color, disparity, accumulated opacity.

           rgb, disp, acc, extras = render(

               H, W, focal, chunk=args.chunk, rays=batch_rays)

 # Compute MSE loss between predicted and true RGB

           img_loss = img2mse(rgb, target_s)        

           loss = img_loss

           psnr = mse2psnr(img_loss)

 # Add MSE loss for coarse-grained model

           if 'rgb0' in extras:

               img_loss0 = img2mse(extras['rgb0'], target_s)

               loss += img_loss0

               psnr0 = mse2psnr(img_loss0)

optimizer.apply_gradients(zip(gradients, grad_vars))

https://github.com/bmild/nerf



Loss Function

 The total squared error between the rendered and true pixel 
colors for both the coarse and fine renderings:

def img2mse(x, y): return tf.reduce_mean(tf.square(x - y))

http://graphics.stanfor
d.edu/courses/cs348n
-22-winter/

https://arxiv.org/pdf/
2003.08934.pdf



Visual Results

https://arxiv.org/pdf/
2003.08934.pdf



Comparative Results

LPIPS: 
https://arxiv.
org/pdf/1801.
03924.pdf 

https://arxiv.org/pdf/
2003.08934.pdf

https://arxiv.org/pdf/1801.03924.pdf
https://arxiv.org/pdf/1801.03924.pdf
https://arxiv.org/pdf/1801.03924.pdf


Ablation Study Results

https://arxiv.org/pdf/
2003.08934.pdf



❖ NeRF = Coordinate Based MLP Network + Volume Rendering 
❖ NeRF Pros: 

➢ Simple representation
➢ Differentiable Rendering Model

❖ NeRF Cons:
➢ Dumb Brute force approach
➢ INSANELY SLOW!!!

Summary



http://graphics.stanford.edu/courses/cs348n-22-winter/



Questions?
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