

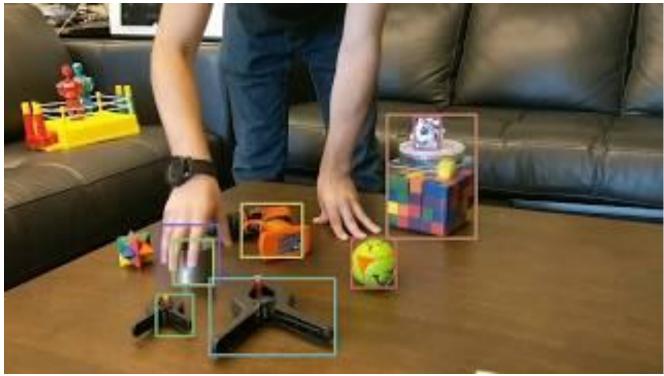
DeepRob

[Student] Lecture 16 by Mohammed Guiga, Danny Langan, Pranav Julakanti Object Tracking, Transformer Architecture University of Michigan and University of Minnesota

Introduction

- What is tracking?
 - Detecting objects and tracking their movements
- Temporal element in addition to classification
- Example of object tracking before the advent of deep learning:
 - Mean-Shift Tracking
 - Template Matching
 - Optical Flow
 - Kalman Filtering
 - Particle Filtering

Introduction



https://danielgordon10.github.io/papers/re3.html

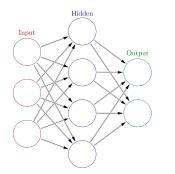
Recurrent Neural Networks (RNN)

- What is a Recurrent Neural Network?
 - A special type of artificial neural network adapted to work for time series data or data involving sequences
- Need to incorporate dependencies between data points
 - RNNs consider the context (hidden state) of previous time steps

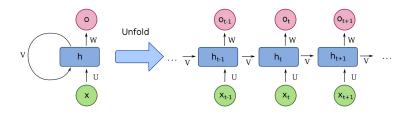
DR

- Feed-forward vs Recurrent neural networks
- Main difference is how the input data is taken in by the model

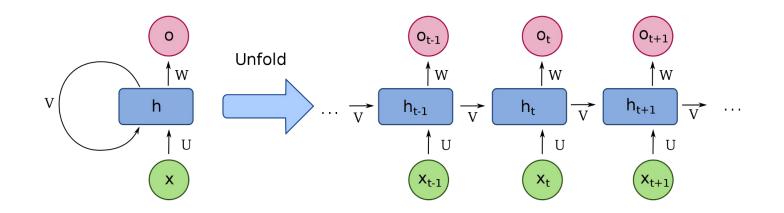
Feed-forward Neural Network



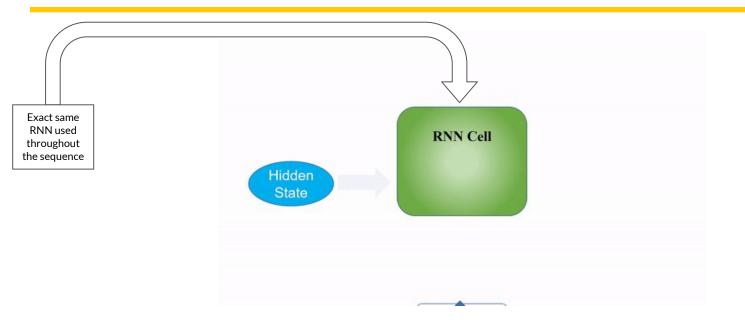
Recurrent Neural Network



By Glosser.ca - Own work, Derivative of File:Artificial neural network.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2 4913461 By fdeloche - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?cu rid=60109157

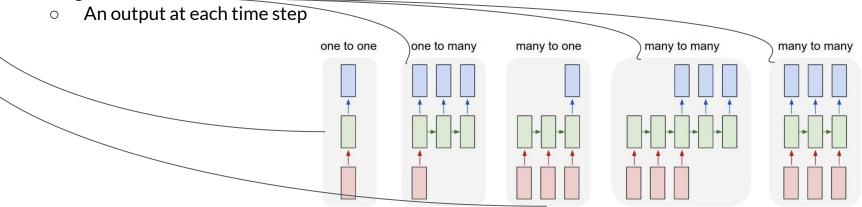


By fdeloche - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=60109157



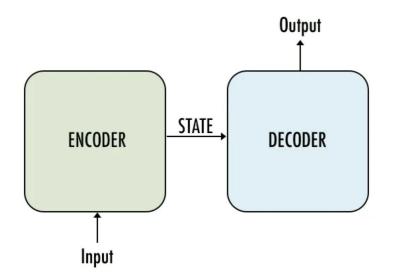
https://blog.floydhub.com/a-beginners-guide-on-recurrent-neural-networks-with-pytorch/

- Traditional feed-forward NN: fixed input -> fixed output
- RNN: (1-N) inputs -> (1-N) outputs
- Classification?
 - $\circ \quad \text{One output at the end} \\$
- Text generation?_



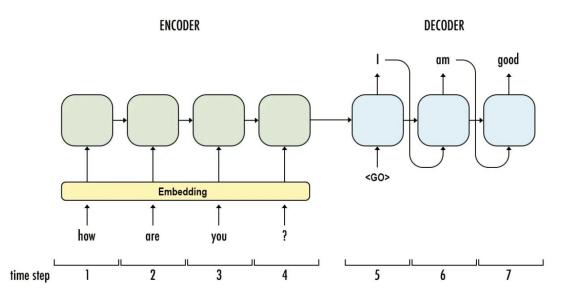
https://blog.floydhub.com/a-beginners-guide-on-recu rrent-neural-networks-with-pytorch/

• Sequence to Sequence models (seq2seq)



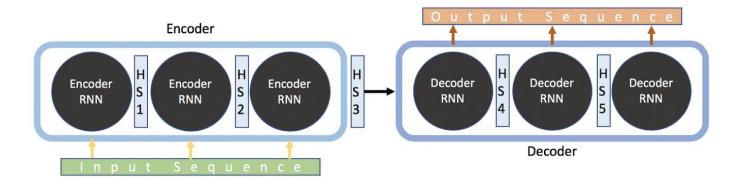
Source: https://towardsdatascience.com/sequence-to-sequence-model-introduction-and-concepts-44d9b41cd42d

• Sequence to Sequence models (seq2seq)

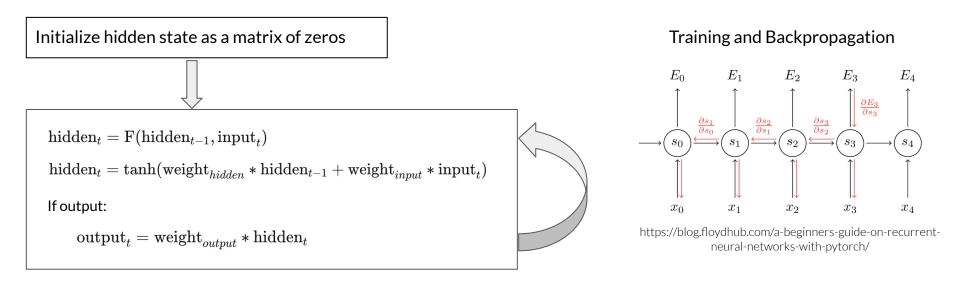


Source: https://towardsdatascience.com/sequence-to-sequence-model-introduction-and-concepts-44d9b41cd42d

• Sequence to Sequence models (seq2seq)



Source: https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263



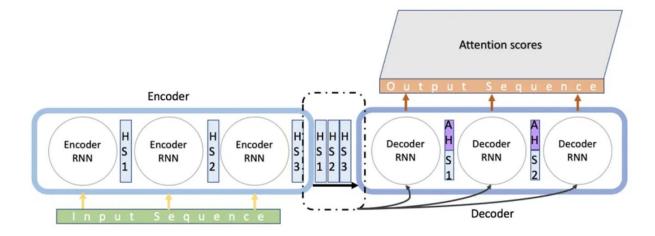
All the weights are exactly the same - weights of the networks are shared temporally

Recurrent Neural Networks (RNN)

- RNNs allow us to carry information through time Cool!
- But what are the downsides?
- Vanishing / exploding gradients
- Arises during back propagation
- Continuous matrix multiplications can cause the gradients to shrink (vanish) or inflate (explode)

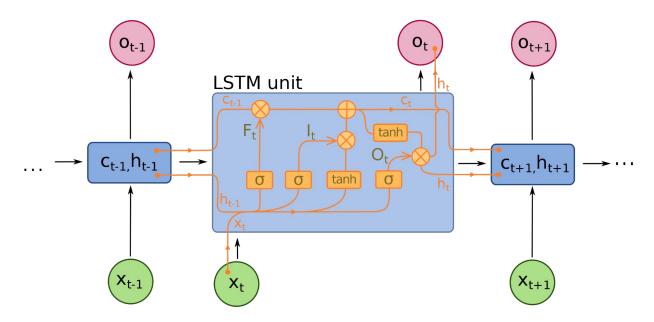
DR

• Sequence to Sequence models (seq2seq)



Source: https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263

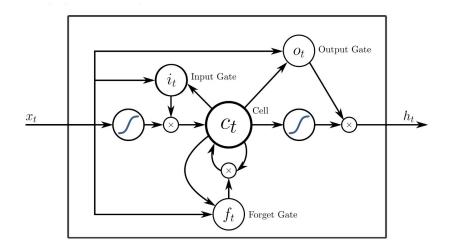
Long Short-Term Memory (LSTM)



By fdeloche - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=60149410

Long Short-Term Memory (LSTM)

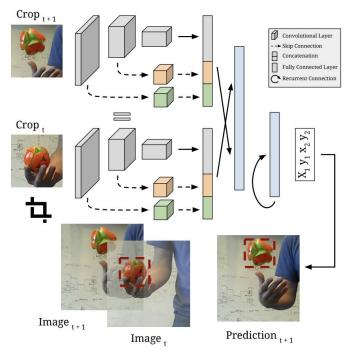
- Input gate: regulates the input into the unit/layer
- **Output gate:** regulates the output from the unit
- Forget gate: regulates what the cell should forget



https://ai.stackexchange.com/questions/18198/wh at-is-the-difference-between-lstm-and-rnn

RNNs and Tracking

- Image crop pairs fed in at each timestep
- Add a skip layer before each pooling stage
 - This is to preserve high-resolution spatial information
- Weights from two images are shared
- Output from convolutional layers fed into a fully-connected layer and LSTM

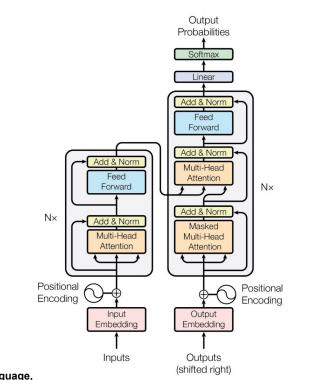


https://danielgordon10.github.io/pdfs/re3.pdf

Transformers

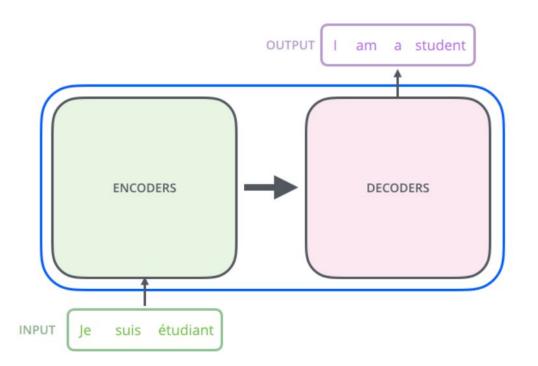
Transformers

Transformer Progression

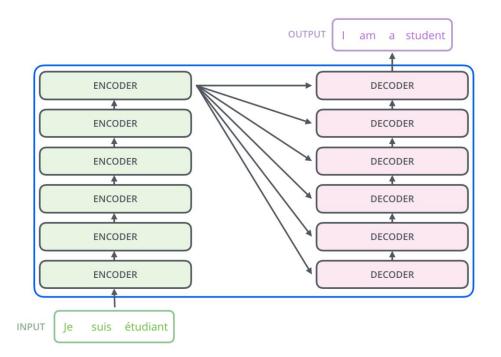


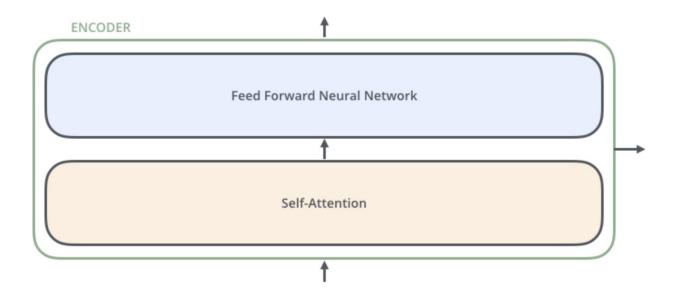
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/assets/slides/acting with perception and language (mohit shridhar).pdf

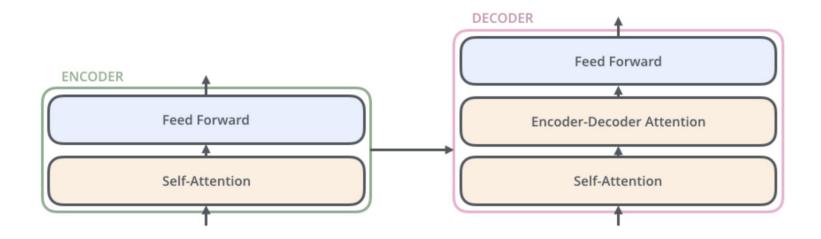
Encoders/Decoders

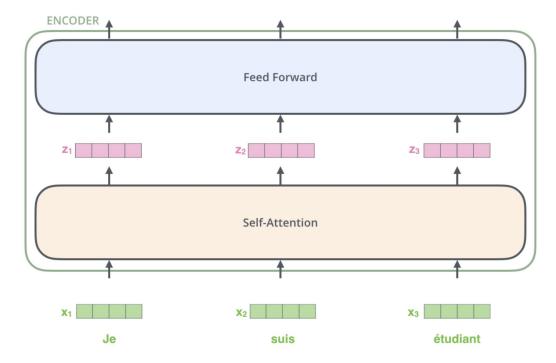


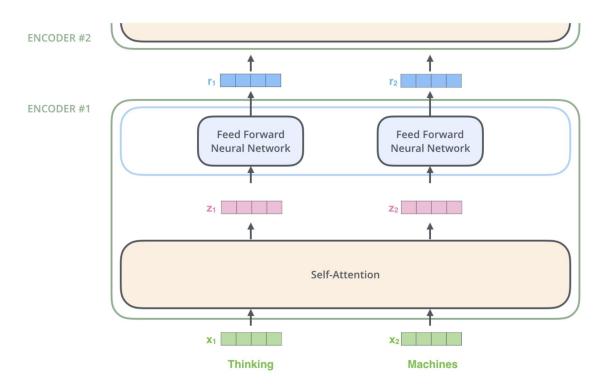
Encoders/Decoders



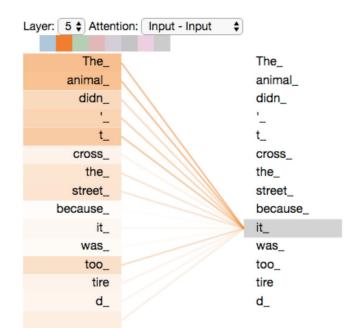


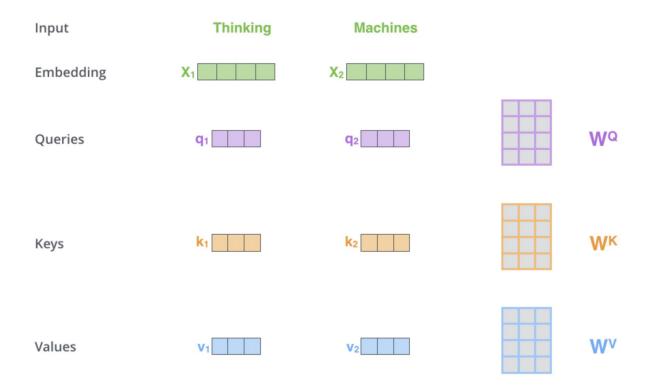


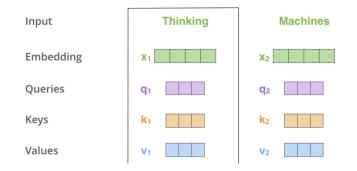


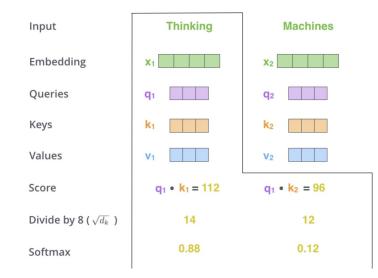


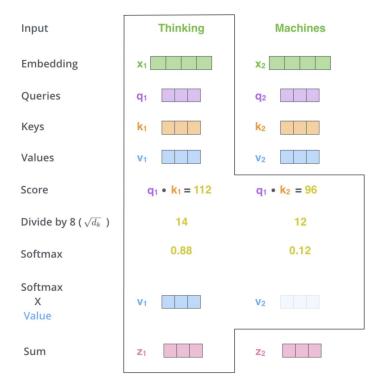
"The animal didn't cross the street because it was too tired"



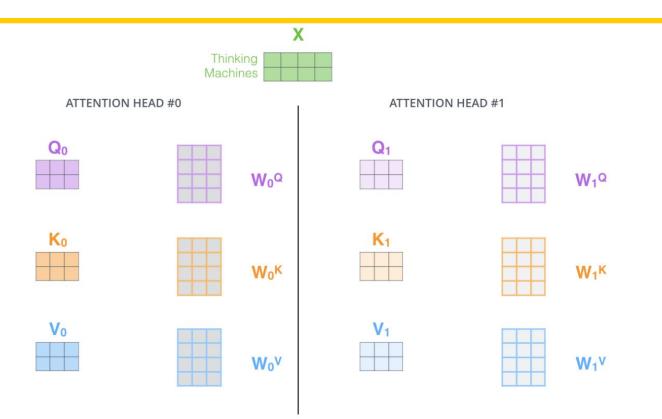




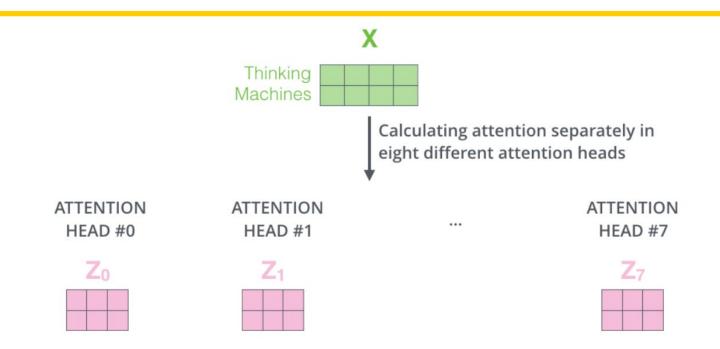




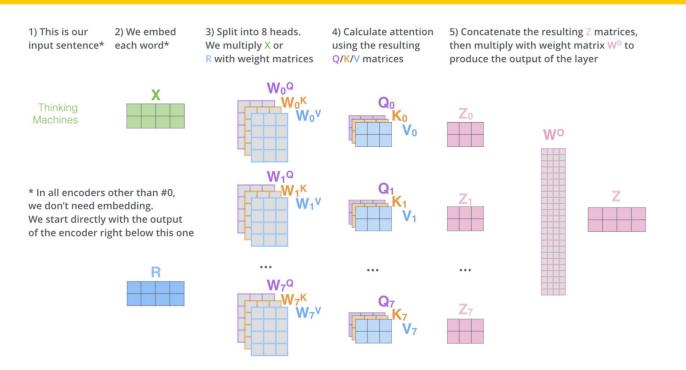
Multi-Head Attention



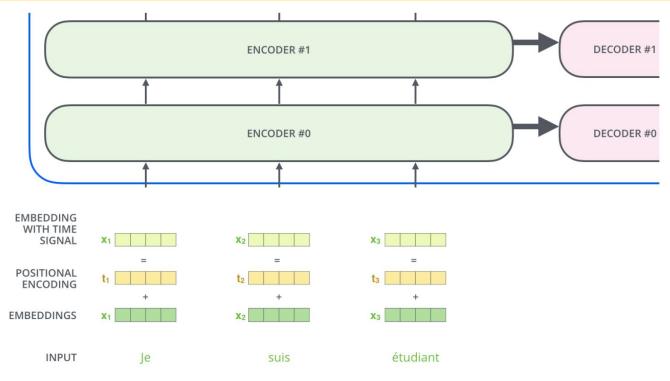
Multi-Head Attention



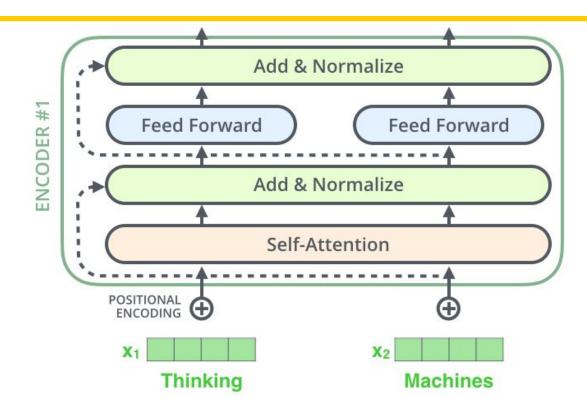
Multi-Head Attention



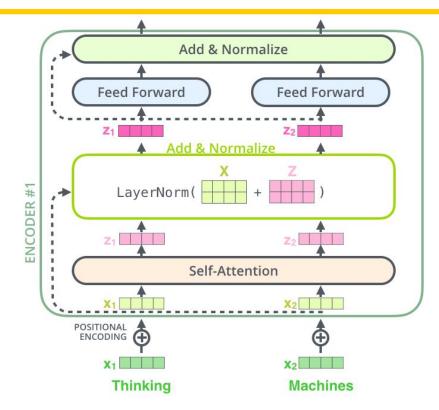
Embedding Inputs



Encoder Structure

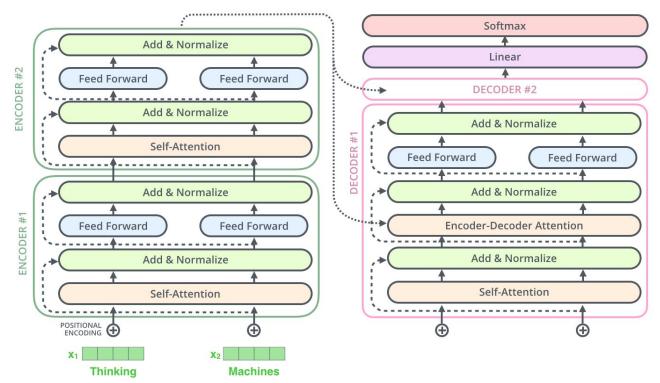


Encoder Structure



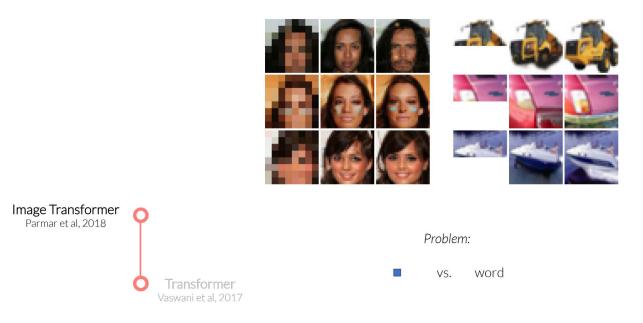
Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Encoder/Decoder Structure



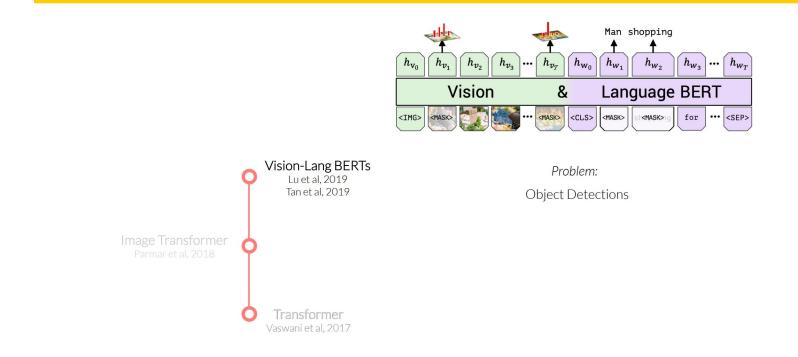
Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Transformer Progression



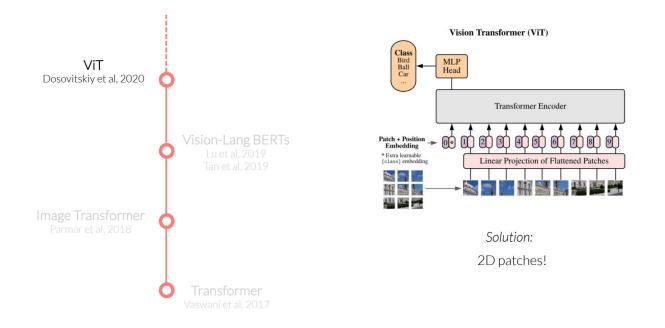
Mohit Shridhar, Acting with Perception and Language, https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/assets/slides/acting_with_perception_and_language_(mohit_shridhar).pdf

Transformer Progression

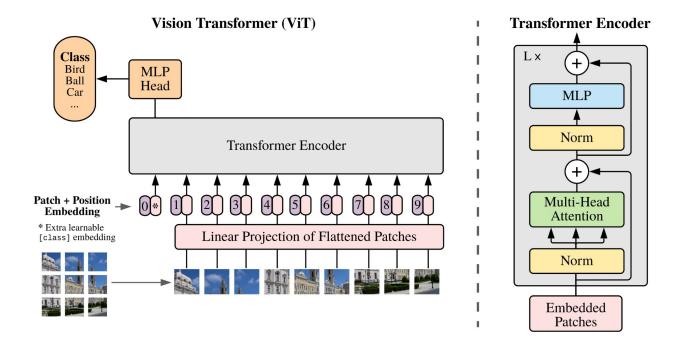


Mohit Shridhar, Acting with Perception and Language, https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/assets/slides/acting with perception and language (mohit shridhar).pdf

Transformer Progression



Mohit Shridhar, Acting with Perception and Language, https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/assets/slides/acting with perception and language (mohit shridhar).pdf

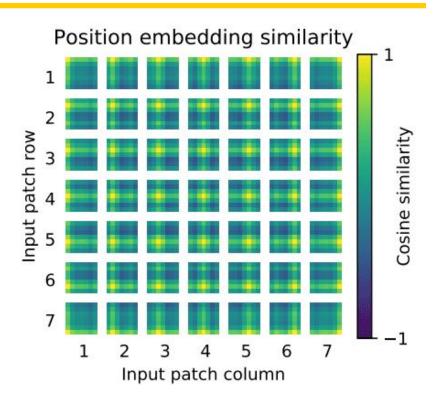


DR

Dosovitskiy et al., AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE, https://arxiv.org/pdf/2010.11929.pdf

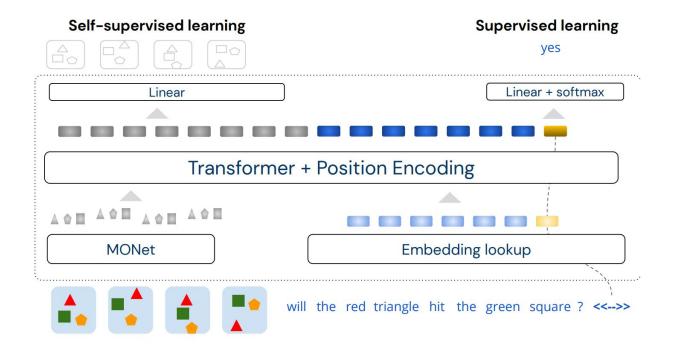
Visual Transformer

- Similarity of position embeddings of ViT-L/32.
- Tiles show the cosine similarity between the position embedding of the patch with the indicated row and column and the position embeddings of all other patches.

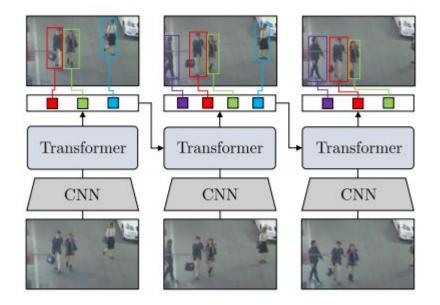


Dosovitskiy et al., AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE, https://arxiv.org/pdf/2010.11929.pdf

DR ALOE - Attention Over Learned Object Embeddings



Trackformer



T. Meinhardt, A. Kirillov, L. Leal-Taixe, and C. Feichtenhofer, "TrackFormer: Multi-Object Tracking with Transformers," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, URL: <u>https://arxiv.org/abs/2101.02702</u>.

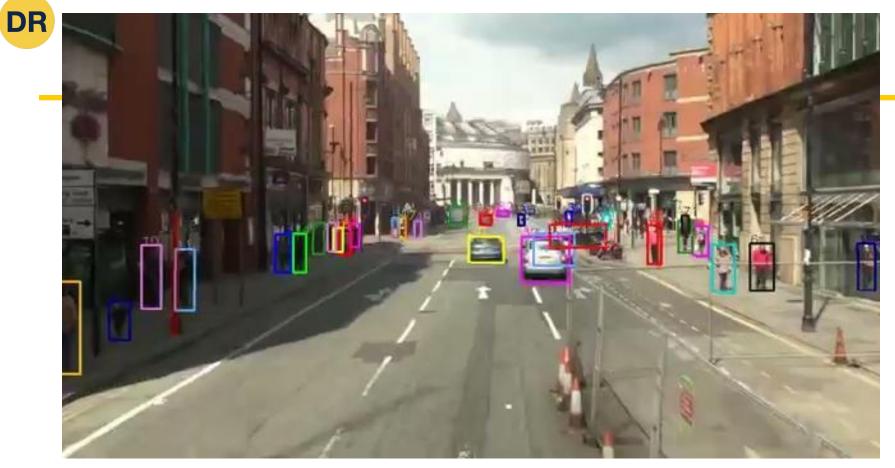
Trackformer Background: Multi Object Tracking (MOT)

- Goal of the paper is to track and discriminate up to K distinct individuals over the course of T frames
- A *track* is a set of bounding boxes for a single individual over many time steps

$$b_t^k = [x_t^k, y_t^k, w_t^k, h_t^k]$$

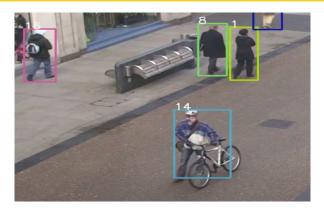
$$V = [f_{1}, ..., f_{T}]$$

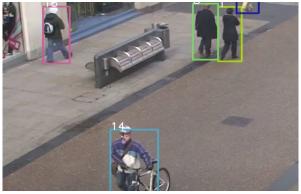
$$T_{k} = [b_{t_{1}}^{k}, ..., b_{t_{n}}^{k}]$$



Trackformer Background: Tracking By Detection

- Given a set of detections how do we associate between frames?
- Paper goes over many approaches:
 - Motion based
 - Feature based
 - Cost minimizing objective functions

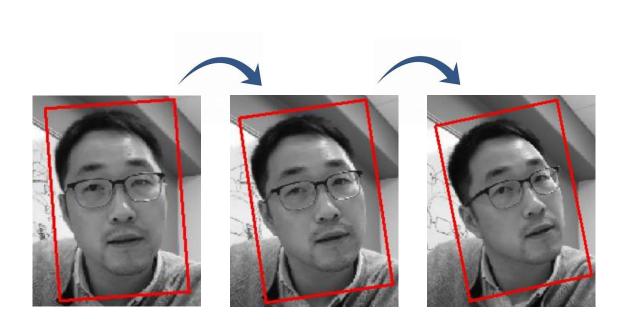




DR

DR

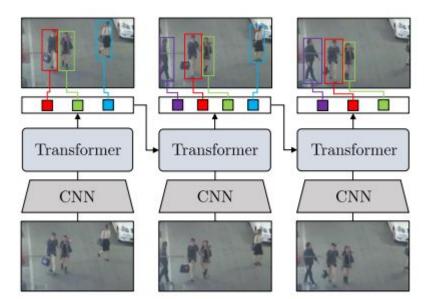
Trackformer Background: Tracking by regression

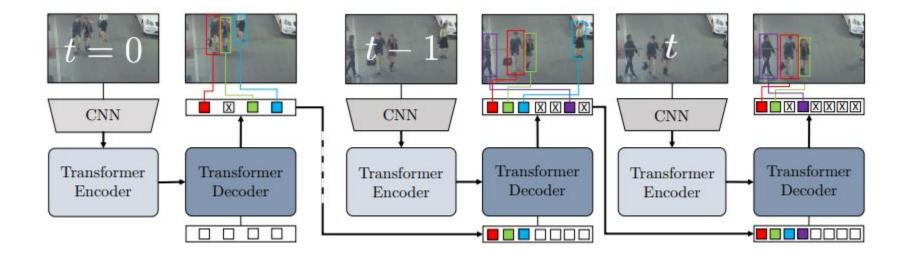


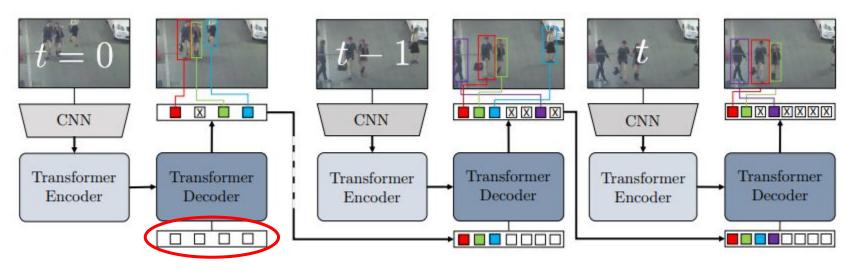
1. Compute Jacobian $\frac{\partial W}{\partial p}$
2. Warp the target image $I(W(x; p))$
3. Compute the error image $T(x) - I(W(x; p))$
4. The gradient image $\nabla T(x)$ 5. Compute steepest descent images $\nabla T \frac{\partial W}{\partial p}$
6. Compute Hessian $H = \sum_{x} \left(\nabla T \frac{\partial W}{\partial p} \right)^{T} \left(\nabla T \frac{\partial W}{\partial p} \right)^{T}$
7. Compute $\Delta p = H^{-1} \sum_{x} \left(\nabla T \frac{\partial W}{\partial p} \right)^{T} (T(x) - I(W(x; p)))$
8. Update $W(x; p) \leftarrow W(x; p) \circ W^{-1}(x; \Delta p)$ 9. Goto 2 unless $\ \Delta p\ < \varepsilon$

Our Project: Trackformers

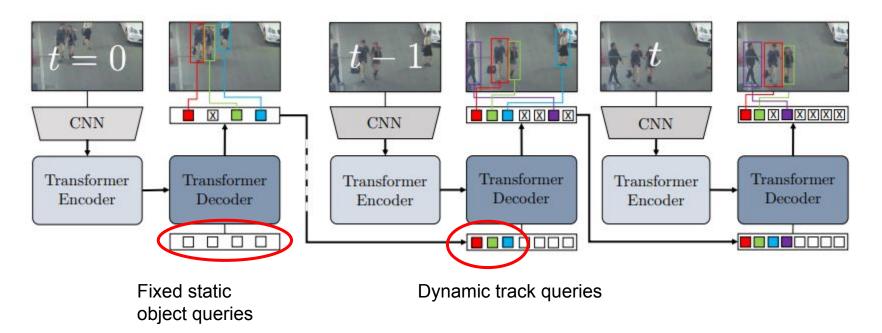
- Uses Transformers to do multi-object tracking
- Extends the Transformer concept from linguistic to the visual domain
- Uses the intuition that humans use attention to track objects
- First to use Transformers for both Detection and frame association

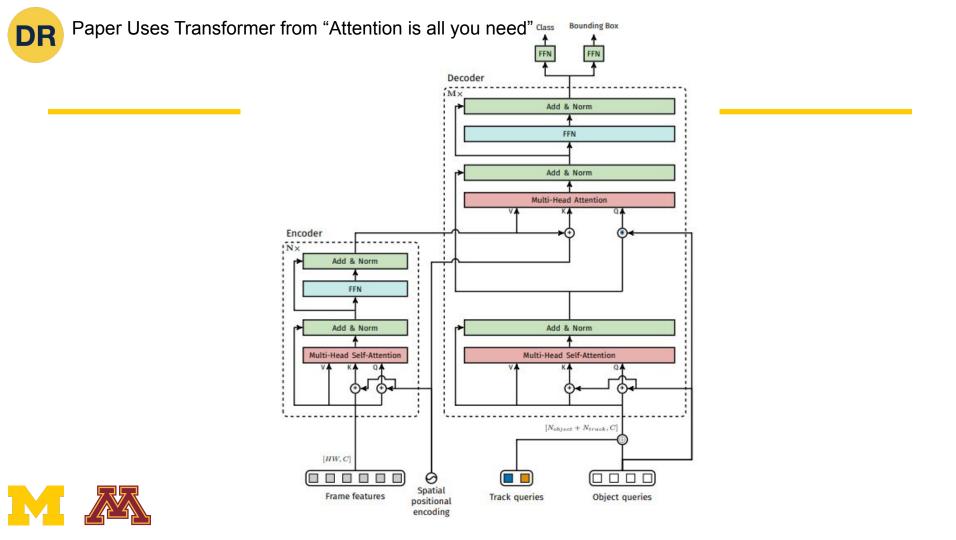


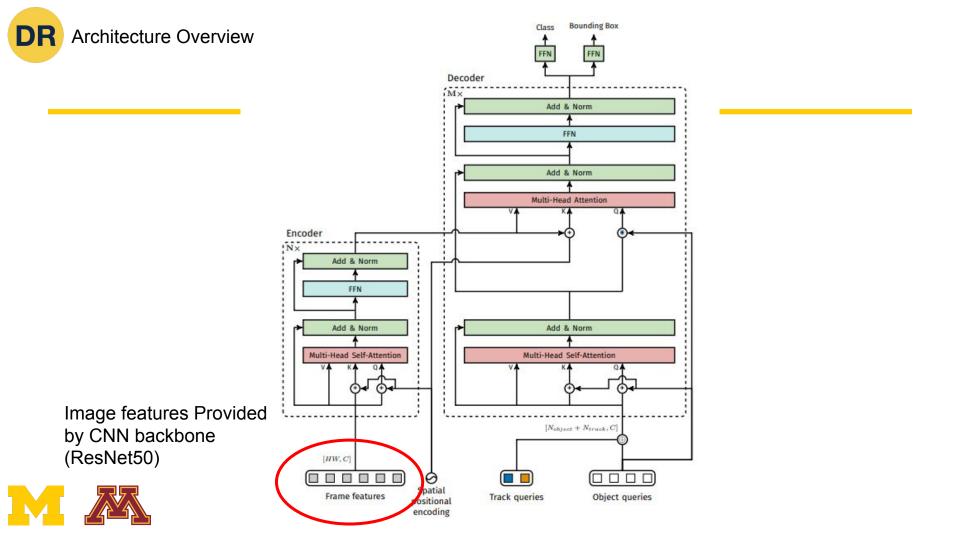


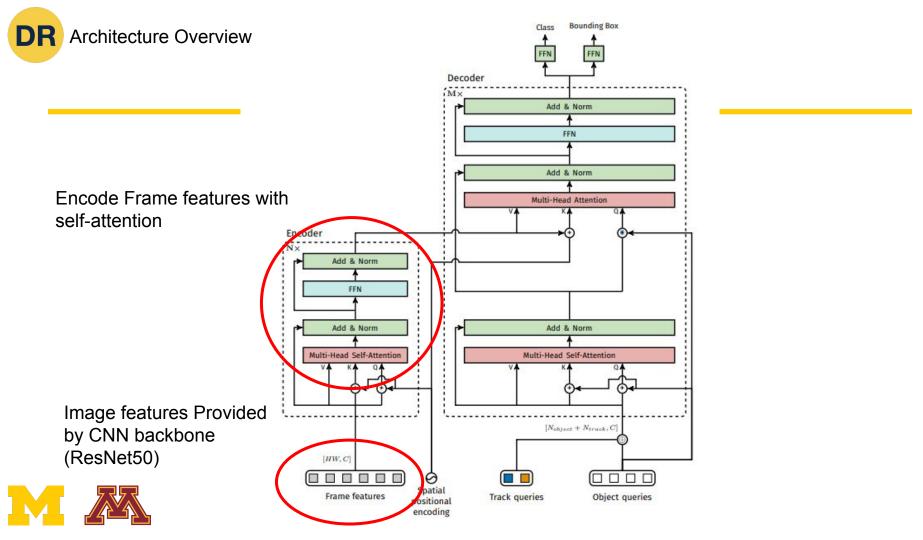


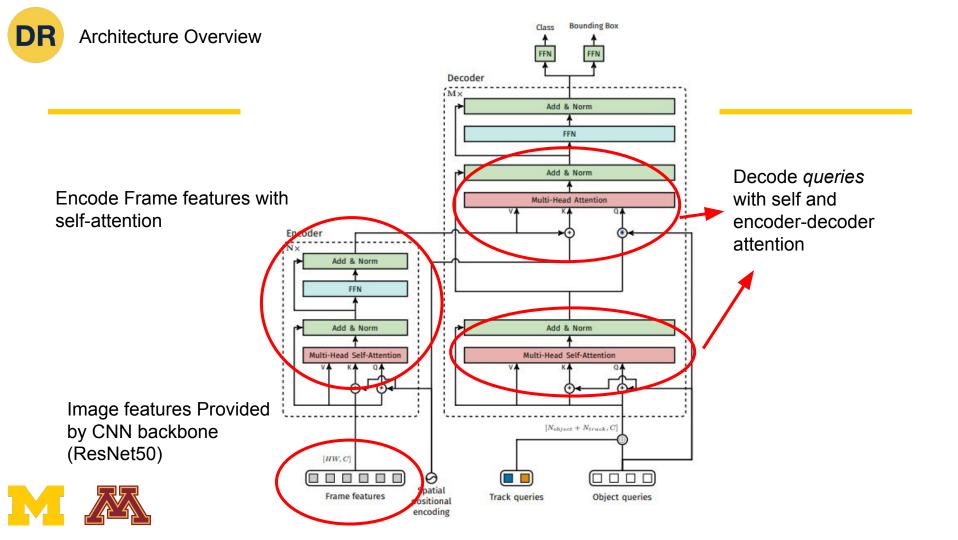
Fixed static object queries

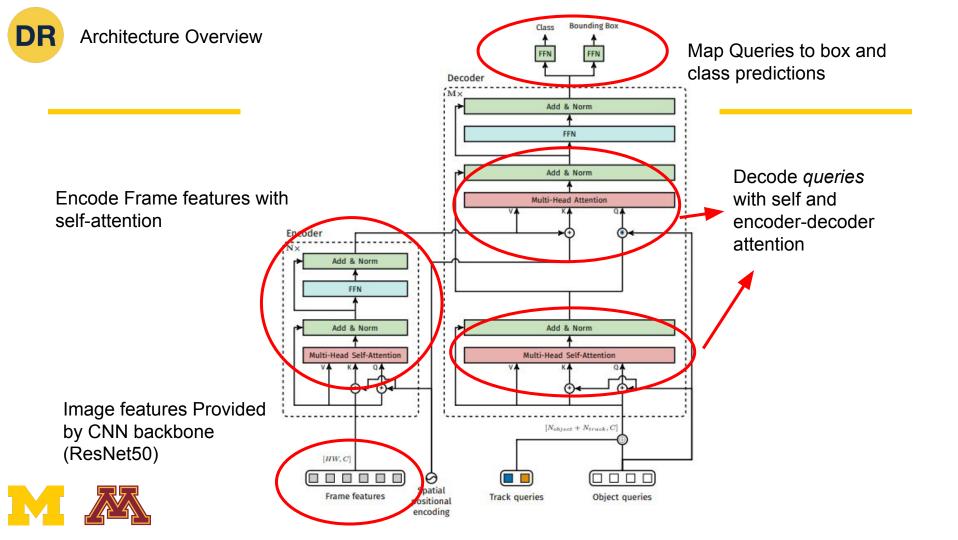


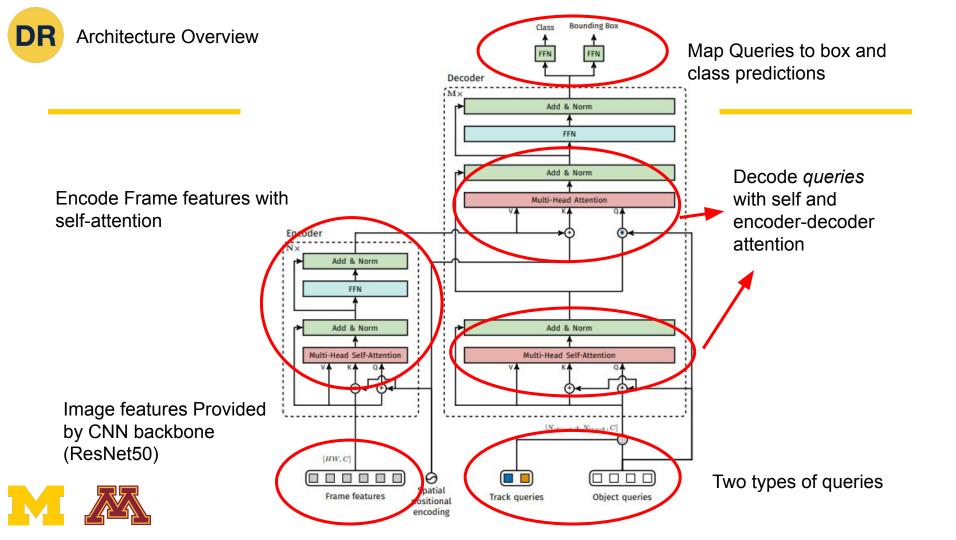






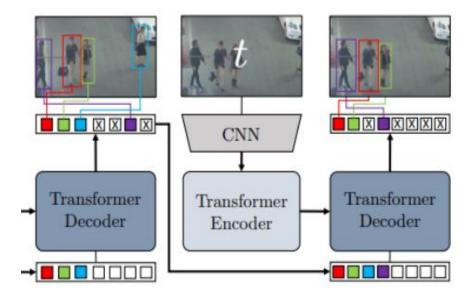




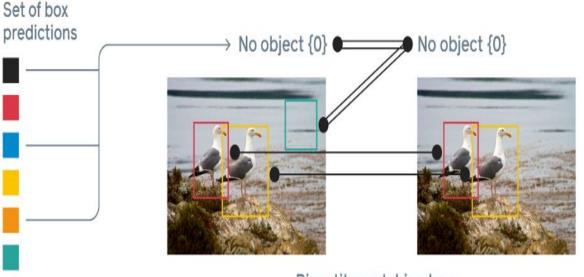


Track ReID

- Inactive tracks are preserved for a set number of frames "patience window"
- Inactive track queries are reactivated if self attention
- No additional training needed
- Bad for long term occlusions



Training: Bipartite Matching



Bipartite matching loss

 $K_t \cap K_{t-1}$: Match by track identity k. $K_{t-1} \setminus K_t$: Match with background class. $K_t \setminus K_{t-1}$: Match by minimum cost mapping.

$$\hat{\sigma} = \arg\min_{\sigma} \sum_{k_i \in K_{object}} \mathcal{C}_{match}(y_i, \hat{y}_{\sigma(i)}),$$

$$\begin{split} \mathcal{C}_{\text{match}} &= -\lambda_{\text{cls}} \hat{p}_{\sigma(i)}(c_i) + \mathcal{C}_{\text{box}}(b_i, \hat{b}_{\sigma(i)}). \\ \\ \mathcal{C}_{\text{box}} &= \lambda_{\ell_1} || b_i - \hat{b}_{\sigma(i)} ||_1 + \lambda_{\text{iou}} \mathcal{C}_{\text{iou}}(b_i, \hat{b}_{\sigma(i)}), \end{split}$$

Nicolas Carion, F. Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-toend object detection with transformers. Eur. Conf. Comput. Vis., 2020.

Training: Set Prediction Cost

$$\mathcal{L}_{\text{MOT}}(y, \hat{y}, \pi) = \sum_{i=1}^{N} \mathcal{L}_{\text{query}}(y, \hat{y}_i, \pi).$$
$$\mathcal{L}_{\text{query}} = \begin{cases} -\lambda_{\text{cls}} \log \hat{p}_i(c_{\pi=i}) + \mathcal{L}_{\text{box}}(b_{\pi=i}, \hat{b}_i), & \text{if } i \in \pi\\ -\lambda_{\text{cls}} \log \hat{p}_i(0), & \text{if } i \notin \pi. \end{cases}$$

DR

Example Performance

Summary

- Object Tracking
 - Object Recognition and understanding of temporal relationships between objects
- Recurrent Neural Networks
 - Neural network designed to relate information between sequential inputs
- Transformers
 - New methods of analyzing and understanding relationships between sequential inputs and outputs.
- Trackformer: Multi-Object Tracking
 - Uses attention to both detect AND track objects through "queries"

DeepRob

[Student] Lecture 16 by Mohammed Guiga, Danny Langan, Pranav Julakanti Object Tracking, Transformer Architecture University of Michigan and University of Minnesota

