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Introduction
● What is tracking?

– Detecting objects and tracking their movements

● Temporal element in addition to classification

● Example of object tracking before the advent of deep learning:
– Mean-Shift Tracking
– Template Matching
– Optical Flow
– Kalman Filtering
– Particle Filtering



Introduction

https://danielgordon10.github.io/papers/re3.html

http://www.youtube.com/watch?v=RByCiOLlxug


Recurrent Neural Networks (RNN)

● What is a Recurrent Neural Network?
– A special type of artificial neural network adapted to 

work for time series data or data involving sequences

● Need to incorporate dependencies between data points
– RNNs consider the context (hidden state) of previous 

time steps



Recurrent Neural Networks

By fdeloche - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?cu

rid=60109157

By Glosser.ca - Own work, Derivative of File:Artificial 
neural network.svg, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=2
4913461

Feed-forward Neural Network Recurrent Neural Network

● Feed-forward vs Recurrent neural networks
● Main difference is how the input data is taken in by the model



Recurrent Neural Networks

By fdeloche - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=60109157



Recurrent Neural Networks

https://blog.floydhub.com/a-beginners-guide-on-recurrent-neural-networks-with-pytorch/

Exact same 
RNN used 

throughout 
the sequence



Recurrent Neural Networks

https://blog.floydhub.com/a-beginners-guide-on-recu
rrent-neural-networks-with-pytorch/

● Traditional feed-forward NN: fixed input -> fixed output
● RNN: (1-N) inputs -> (1-N) outputs
● Classification? 

○ One output at the end
● Text generation? 

○ An output at each time step



Recurrent Neural Networks

● Sequence to Sequence models (seq2seq)

Source: https://towardsdatascience.com/sequence-to-sequence-model-introduction-and-concepts-44d9b41cd42d
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Recurrent Neural Networks

● Sequence to Sequence models (seq2seq)

Source: https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263



Recurrent Neural Networks

All the weights are exactly the same - weights of the networks 
are shared temporally

Initialize hidden state as a matrix of zeros

If output:

Training and Backpropagation

https://blog.floydhub.com/a-beginners-guide-on-recurrent-
neural-networks-with-pytorch/



Recurrent Neural Networks (RNN)

● RNNs allow us to carry information through time - Cool!
● But what are the downsides?
● Vanishing / exploding gradients
● Arises during back propagation
● Continuous matrix multiplications can cause the gradients 

to shrink (vanish) or inflate (explode)



Recurrent Neural Networks

● Sequence to Sequence models (seq2seq)

Source: https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263



Long Short-Term Memory (LSTM)

By fdeloche - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=60149410



Long Short-Term Memory (LSTM)

● Input gate: regulates the input into the 
unit/layer

● Output gate: regulates the output from the 
unit

● Forget gate: regulates what the cell should 
forget

https://ai.stackexchange.com/questions/18198/wh
at-is-the-difference-between-lstm-and-rnn



RNNs and Tracking
● Image crop pairs fed in at each timestep

● Add a skip layer before each pooling stage
● This is to preserve high-resolution 

spatial information

● Weights from two images are shared

● Output from convolutional layers fed into 
a fully-connected layer and LSTM

https://danielgordon10.github.io/pdfs/re3.pdf



Transformers

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
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Transformer Progression

Mohit Shridhar, Acting with Perception and Language, 
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/assets/slides/acting_with_perception_and_language_(mohit_shridhar).pdf

https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/assets/slides/acting_with_perception_and_language_(mohit_shridhar).pdf


Encoders/Decoders

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
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Encoder Block Architecture

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Self-Attention



Self-Attention

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Self-Attention

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Self-Attention

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Self-Attention
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Multi-Head Attention

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/
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Multi-Head Attention
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Multi-Head Attention

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Embedding Inputs

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Encoder Structure

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Encoder Structure

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Encoder/Decoder Structure

Jay Allamar, The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Transformer Progression

Mohit Shridhar, Acting with Perception and Language, 
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Visual Transformer

Dosovitskiy et al., AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE, 
https://arxiv.org/pdf/2010.11929.pdf

https://arxiv.org/pdf/2010.11929.pdf


Visual Transformer

Dosovitskiy et al., AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE, 
https://arxiv.org/pdf/2010.11929.pdf

● Similarity of position embeddings of ViT-L/32. 
● Tiles show the cosine similarity between the 

position embedding of the patch with the 
indicated row and column and the position 
embeddings of all other patches.

https://arxiv.org/pdf/2010.11929.pdf


ALOE - Attention Over Learned Object Embeddings

Ding et al., Attention over learned object embeddings enables complex visual reasoning, https://arxiv.org/pdf/2012.08508.pdf

https://arxiv.org/pdf/2012.08508.pdf


Trackformer

T. Meinhardt, A. Kirillov, L. Leal-Taixe, and C. Feichtenhofer, "TrackFormer: Multi-Object Tracking 
with Transformers," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), 2022, URL: https://arxiv.org/abs/2101.02702.

https://arxiv.org/abs/2101.02702


Trackformer Background: Multi Object Tracking 
(MOT)

● Goal of the paper is to 
track and discriminate up 
to K distinct individuals 
over the course of T frames

● A track is a set of bounding 
boxes for a single 
individual over many time 
steps



MOT17-13-SDP Ground Truth: MOT Challenge - Visualize

https://motchallenge.net/vis/MOT17-13-SDP/gt/
https://docs.google.com/file/d/1CPiyvmJtlWII38HYAT4Xt6GIrWAOkv95/preview


● Given a set of detections how do we 
associate between frames?

● Paper goes over many approaches:

– Motion based

– Feature based

– Cost minimizing objective 
functions

Trackformer Background: Tracking By Detection



Trackformer Background: Tracking by 
regression

Hyun Soo Park Image Alignment Lecture: https://www-users.cse.umn.edu/~hspark/csci5561_S2021/csci5561.html

https://www-users.cse.umn.edu/~hspark/csci5561_S2021/csci5561.html


Our Project: Trackformers

● Uses Transformers to  do 
multi-object tracking

● Extends the Transformer 
concept from linguistic to the 
visual domain

● Uses the intuition that 
humans use attention to track 
objects

● First to use Transformers for 
both Detection and frame 
association





Fixed static 
object queries



Fixed static 
object queries

Dynamic track queries



Paper Uses Transformer from “Attention is all you need” 
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Image features Provided 
by CNN backbone 
(ResNet50)

Encode Frame features with 
self-attention

Decode queries 
with self and 
encoder-decoder 
attention

Map Queries to box and 
class predictions

Architecture Overview

Two types of queries



Track ReID
● Inactive tracks are 

preserved for a set number 
of frames “patience 
window”

● Inactive track queries are 
reactivated if self attention

● No additional training 
needed

● Bad for long term 
occlusions



Training: Bipartite Matching

Nicolas Carion, F. Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-toend object detection with 
transformers. Eur. Conf. Comput. Vis., 2020.



Training: Set Prediction Cost



Example Performance



Summary
● Object Tracking

– Object Recognition and understanding of temporal relationships between 
objects

● Recurrent Neural Networks
– Neural network designed to relate information between sequential inputs 

● Transformers
– New methods of analyzing and understanding relationships between sequential 

inputs and outputs.
● Trackformer: Multi-Object Tracking

– Uses attention to both detect AND track objects through “queries”
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