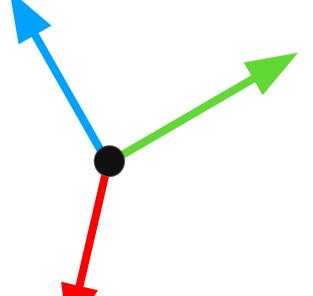


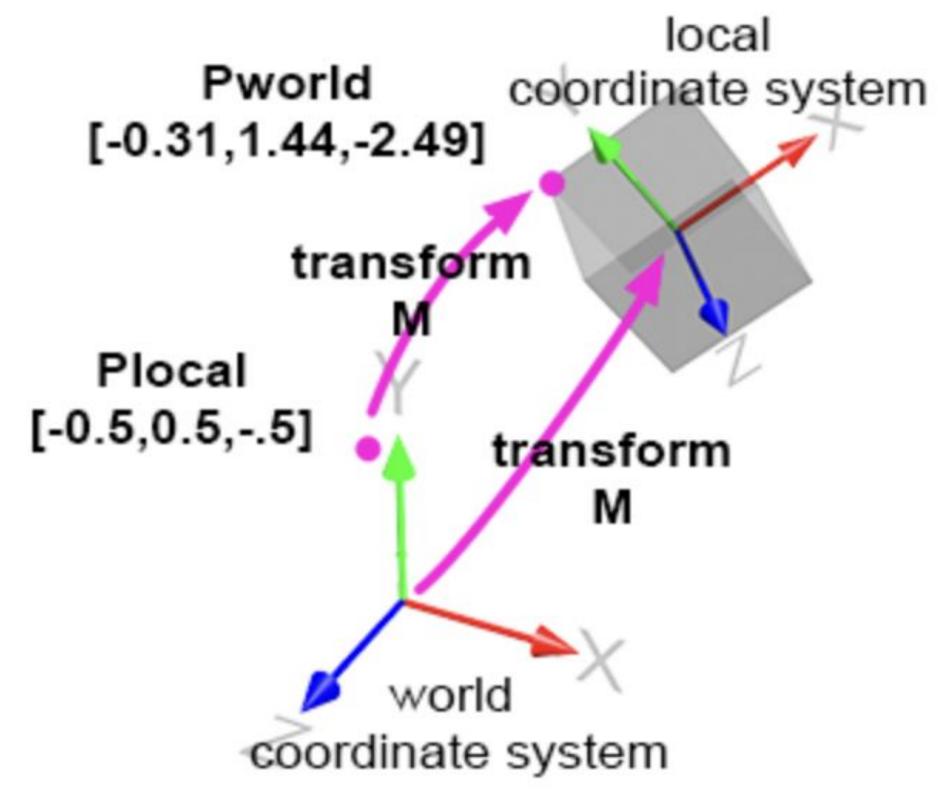
DeepRob

[Student] Lecture 15 by Bharath Sivaram, Sahith Reddy, Prakadeeswaran Manivanan Rigid Object Perception, Dense Descriptors, Category-level Object Pose Estimation University of Michigan and University of Minnesota

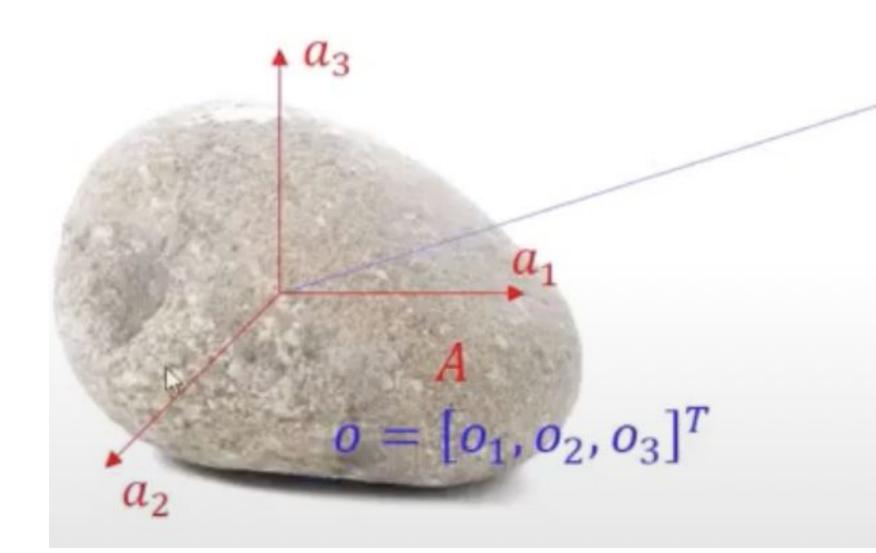


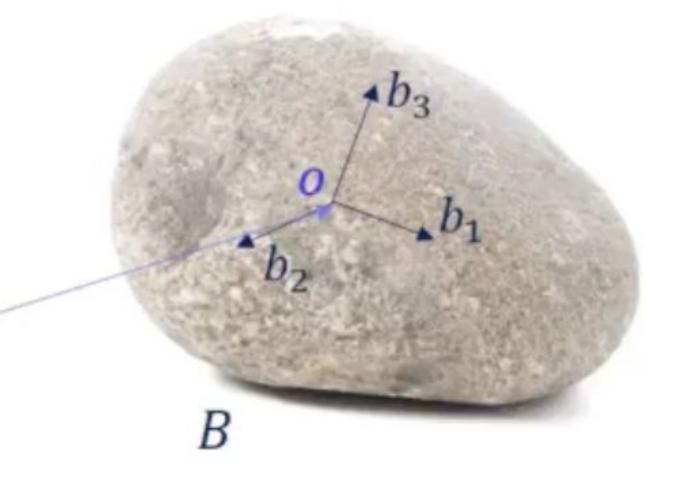
What is a point transform?

- A mathematical operation that changes the position and orientation of a point in space
- Involves rotation and translation



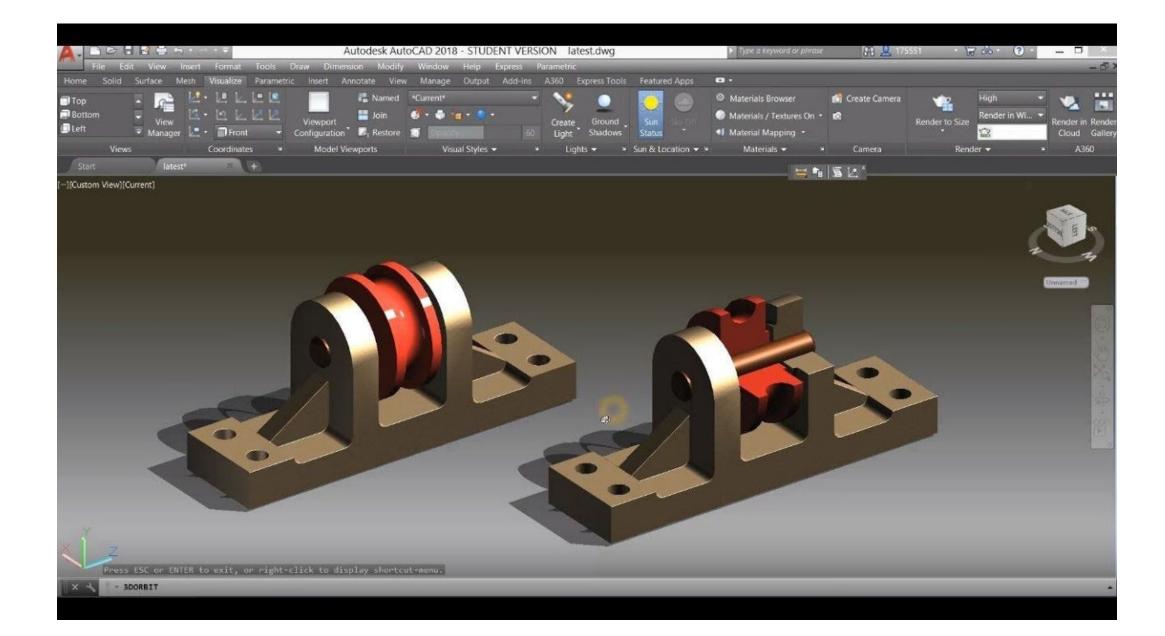
Pose as an Object





 $b_1 = \mathbf{R}_{11}a_1 + \mathbf{R}_{21}a_2 + \mathbf{R}_{31}a_3$ $b_2 = \mathbf{R}_{12}a_1 + \mathbf{R}_{22}a_2 + \mathbf{R}_{32}a_3$ $b_3 = \mathbf{R}_{13}a_1 + \mathbf{R}_{23}a_2 + \mathbf{R}_{33}a_3$

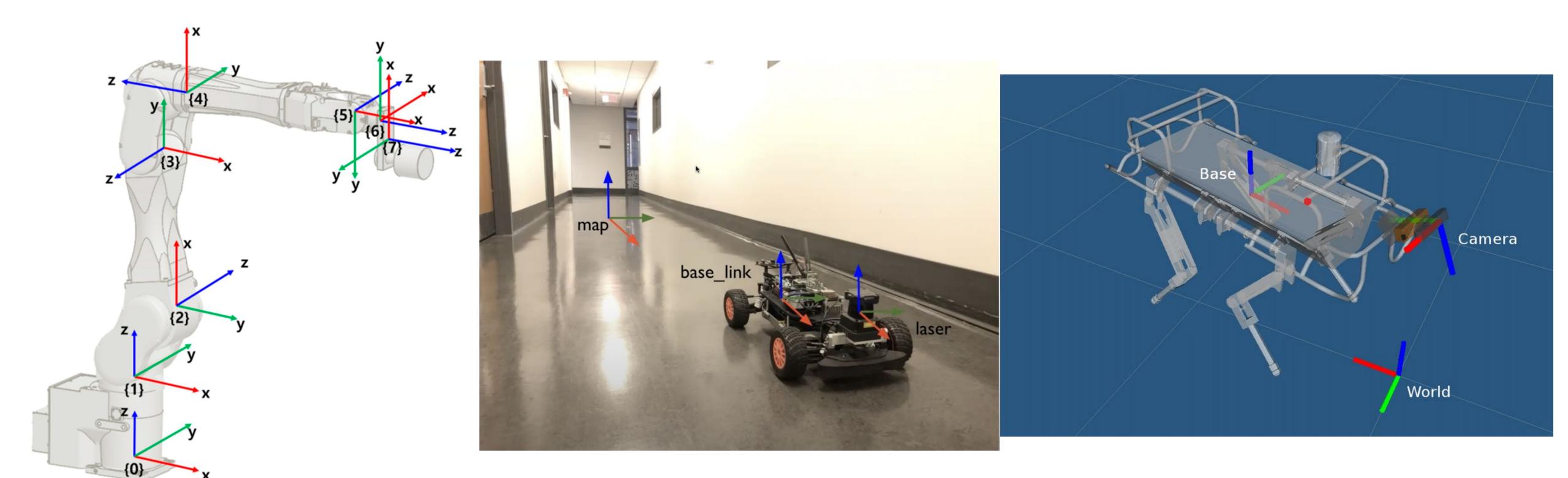
Source: https://www.youtube.com/watch?v=Jc5PlahEfU4



Design and Build of Objects

DR

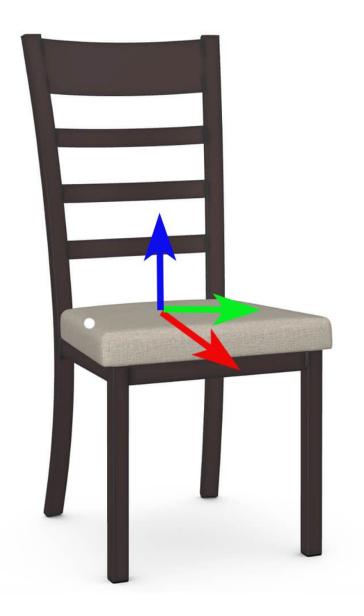
Pose in engineering

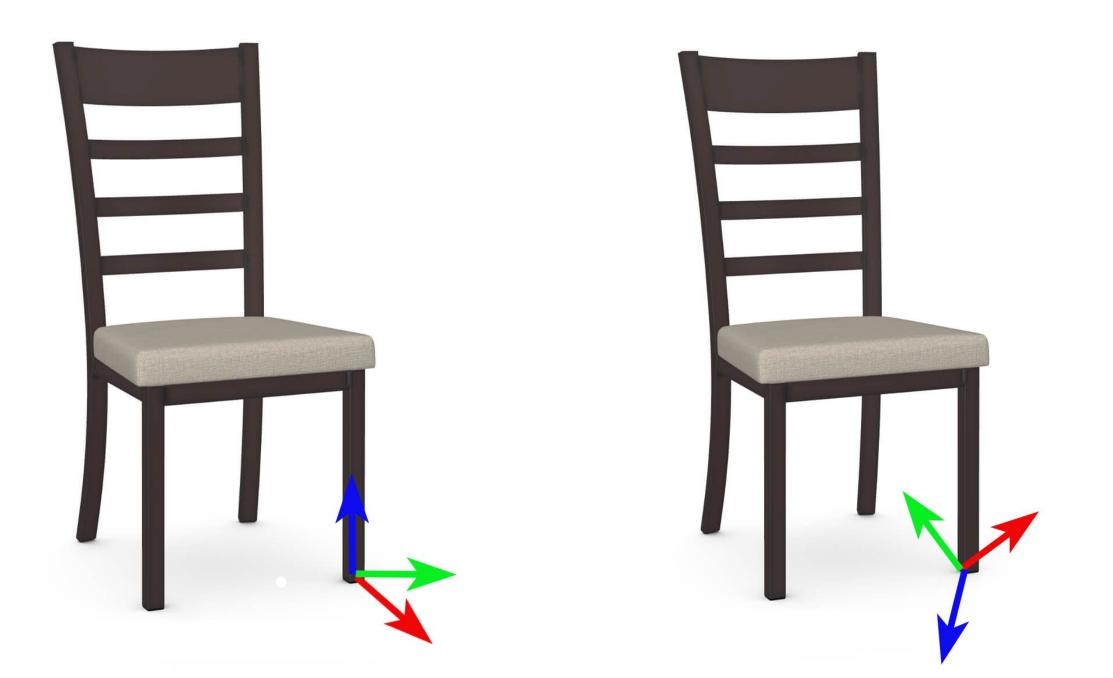


DR

Pose for robotics

How to define a pose for an object?

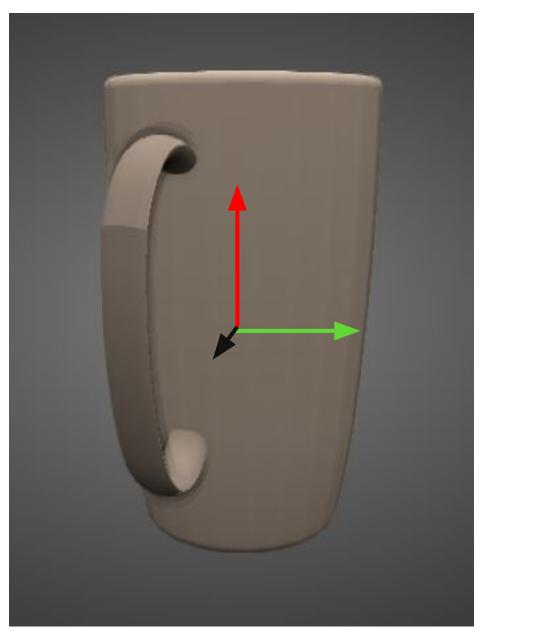


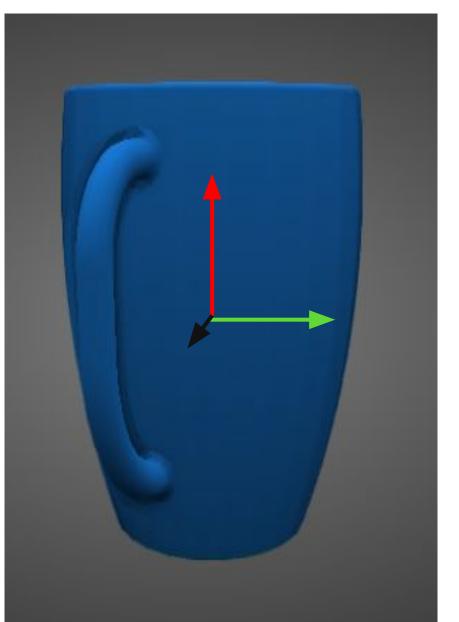


Local Reference Frame for Manipulation

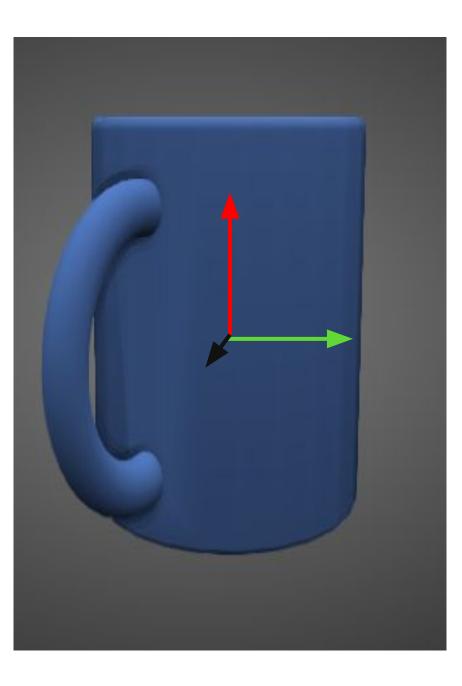
- Local frame of reference is subjective
- Must be assigned carefully by designer
- Common Orientation for object, also showcasing features (handle on mug for ex)

ShapeNetCore





- Upright Orientation, usually from CAD model
- Front orientation which usually aligns with an axis of CAD model

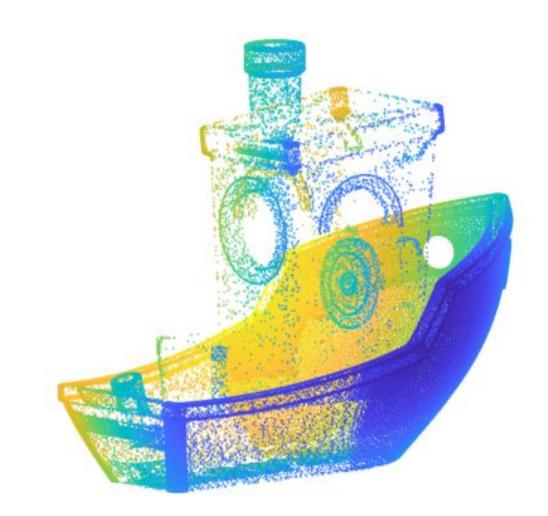


Model Capture and Format

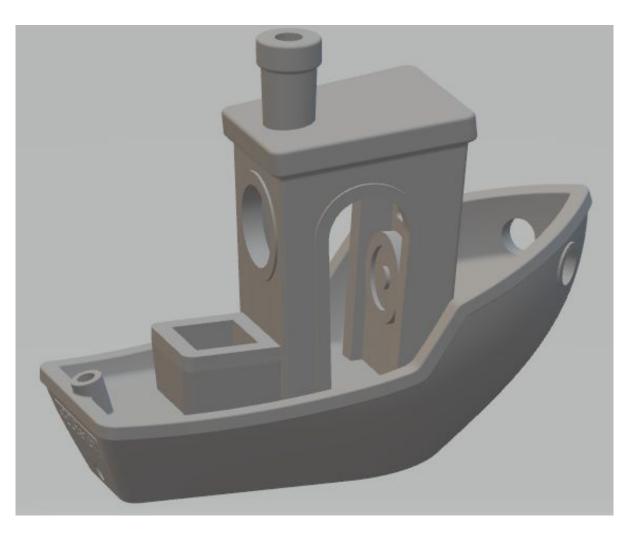
Intel RealSense

Azure Kinect

Structure Sensor



Point Cloud

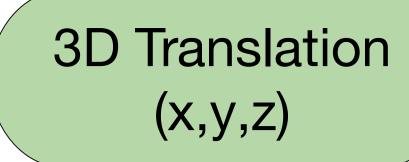


CAD Model

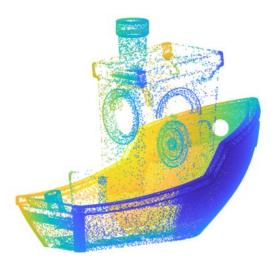
DR

Pose Estimation Problem

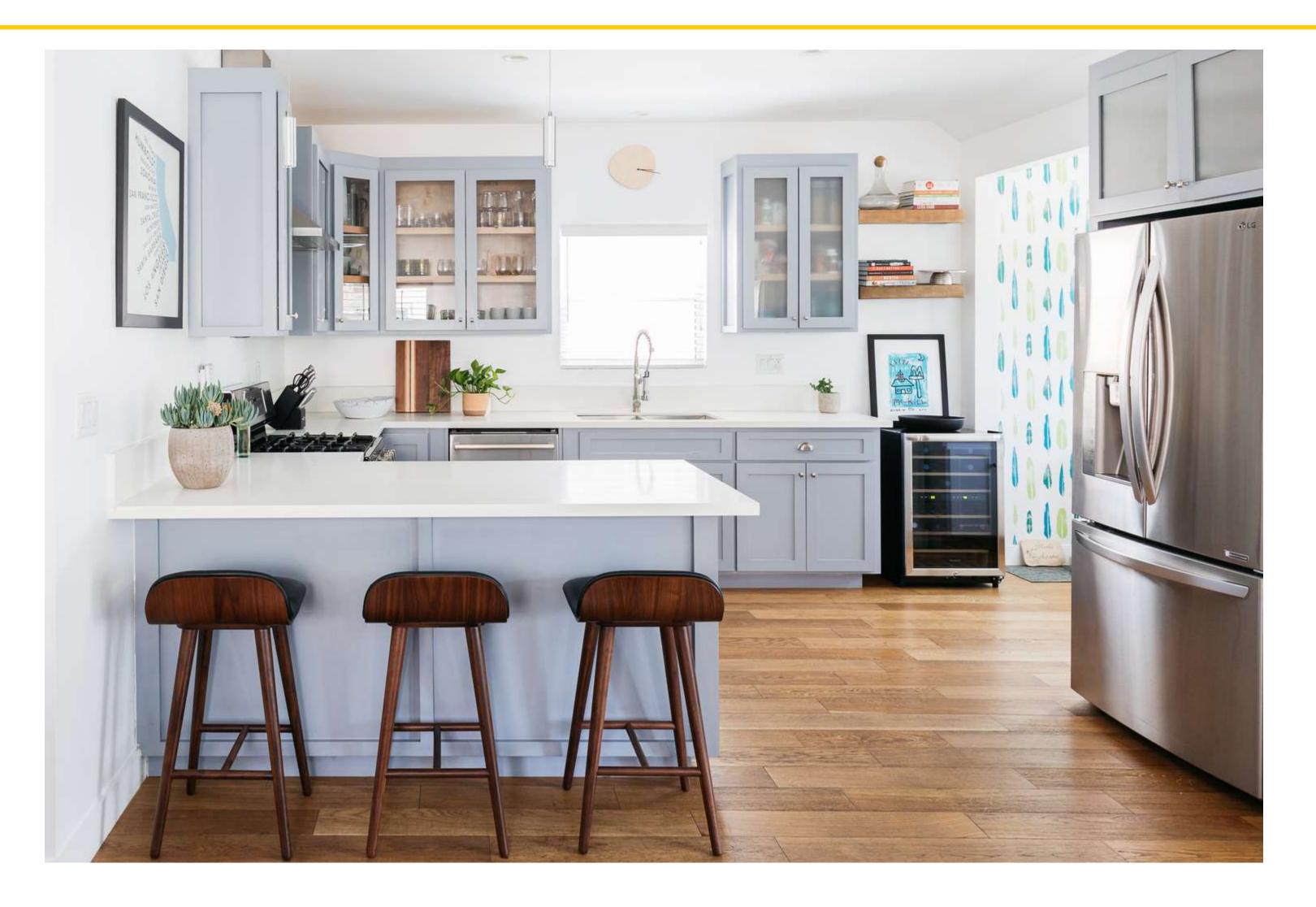
Object Model (CAD etc.)



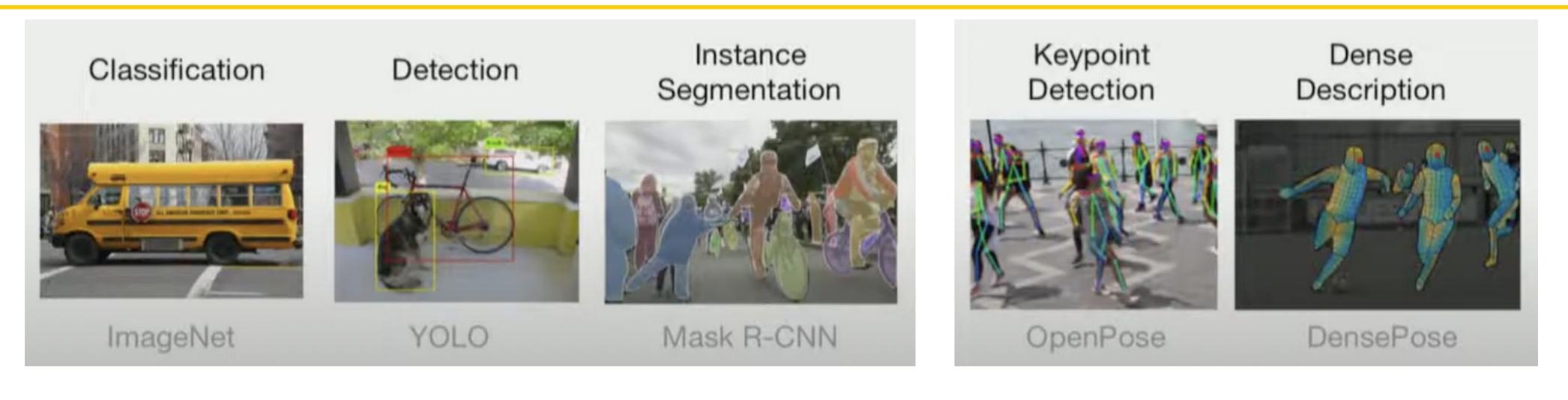
Sensor Data of Object (Point Cloud)



3D Rotation (x,y,z)



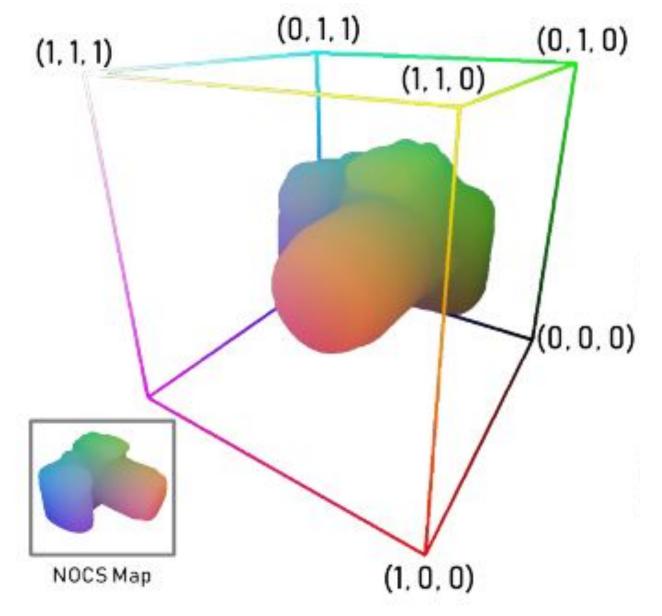
What is a good alternative for the CAD model?



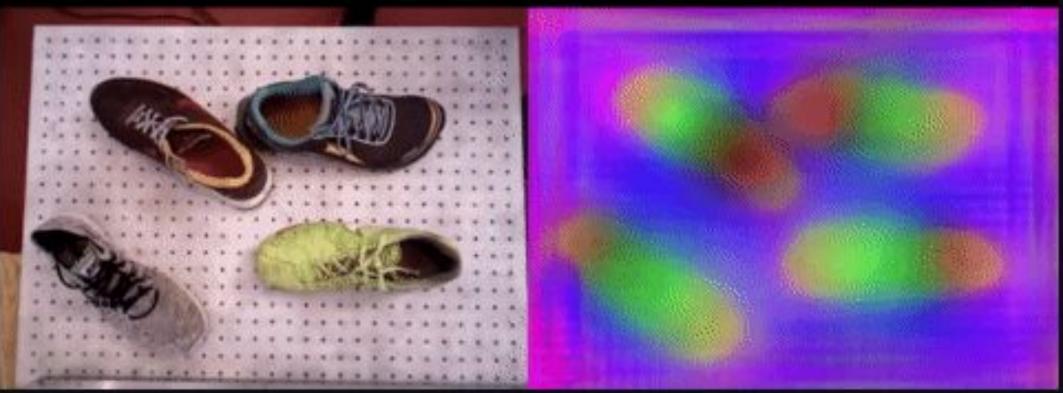
• Dense object descriptors is a normalised way of describing the pose assignment to an object in a category

DR

Object Descriptor



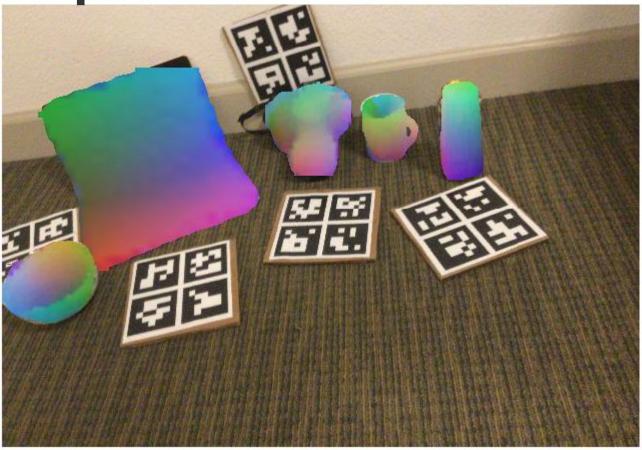
For Grasping



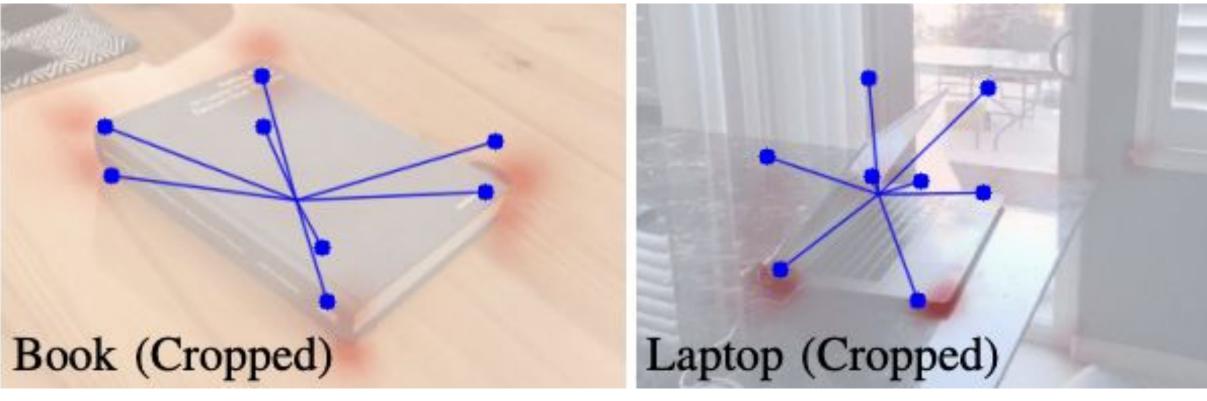
Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation

Object Descriptor

For pose estimation

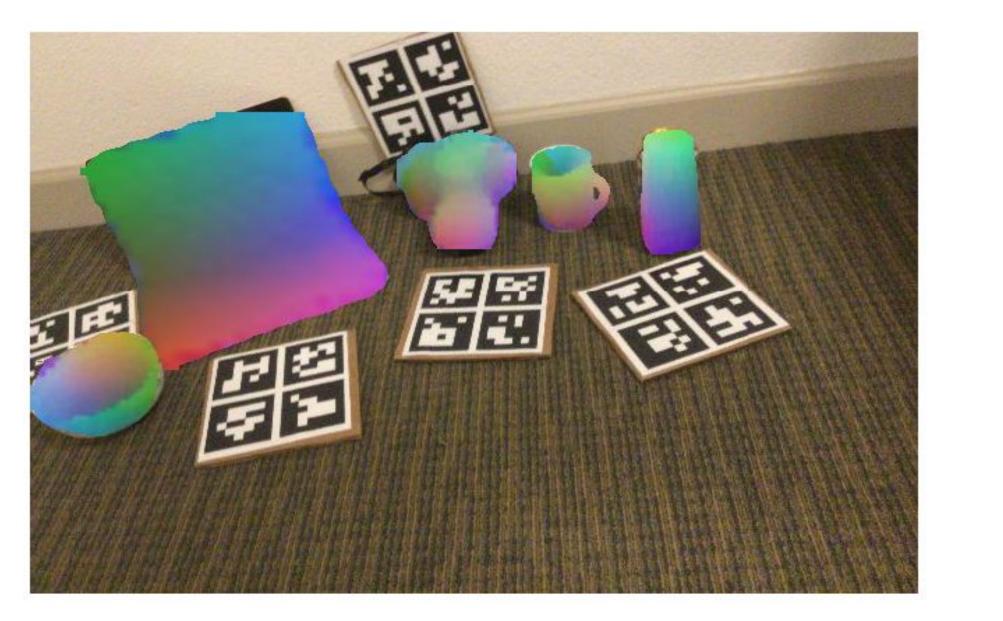


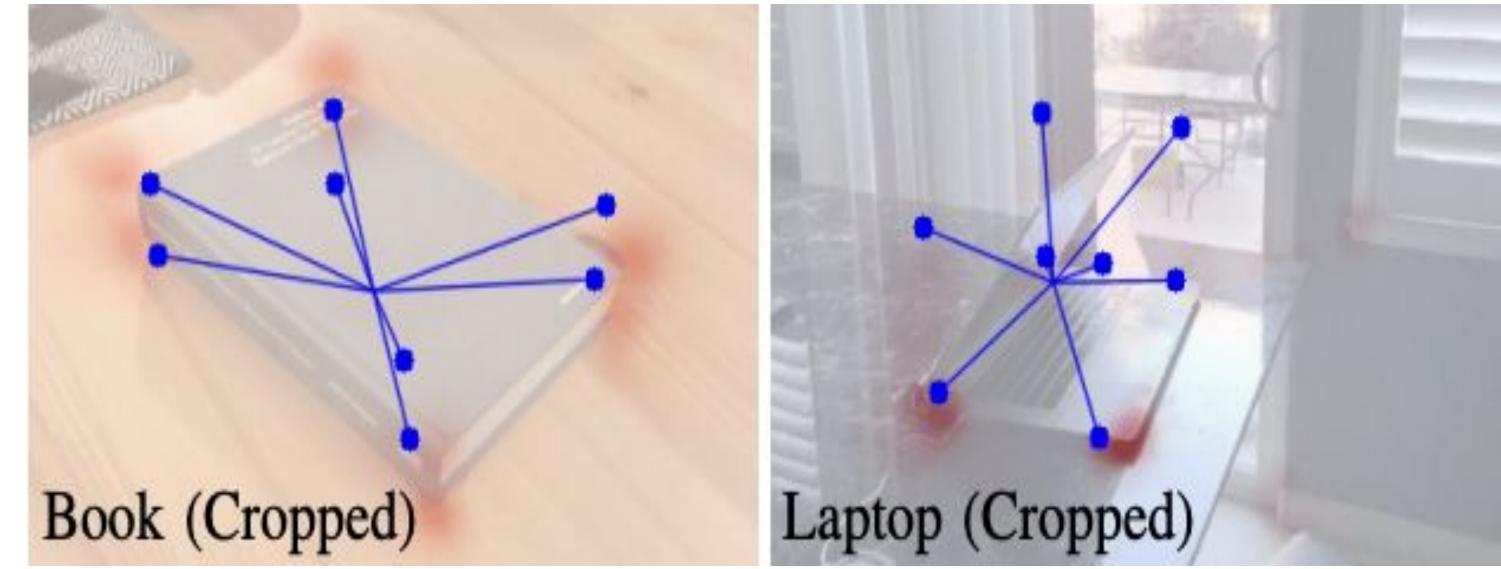
Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation



Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image







Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation

Object Descriptor

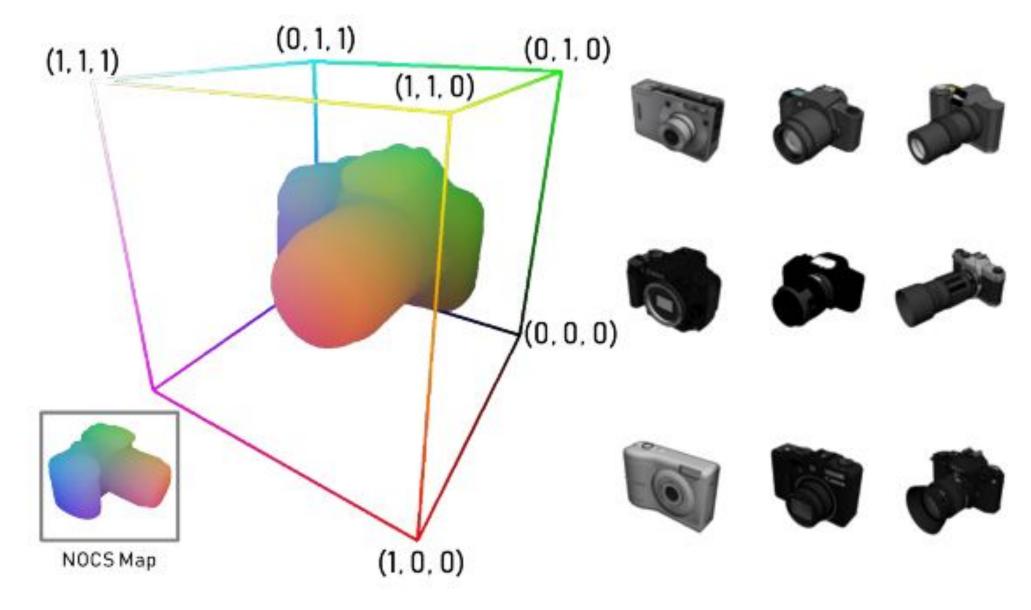
Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image

Constraints for Object Descriptors

- Consistent across viewpoints
- Consistent across Object configurations
- Consistent across the object class.

OpenPose

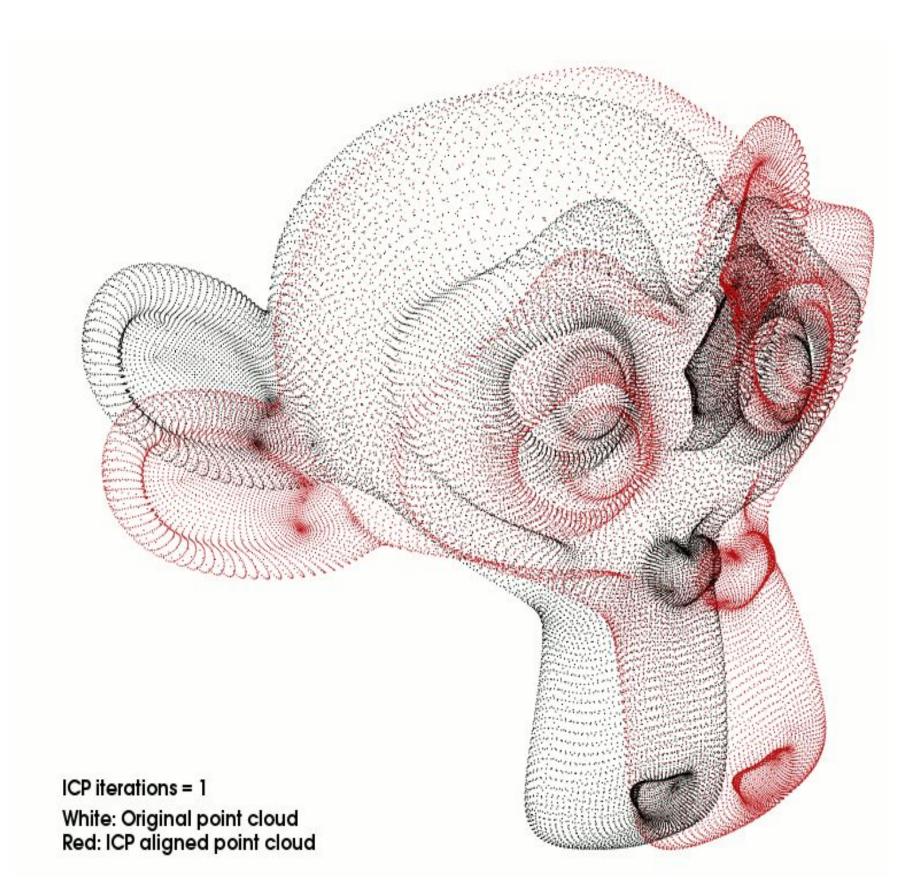
ts onfigurations t class.



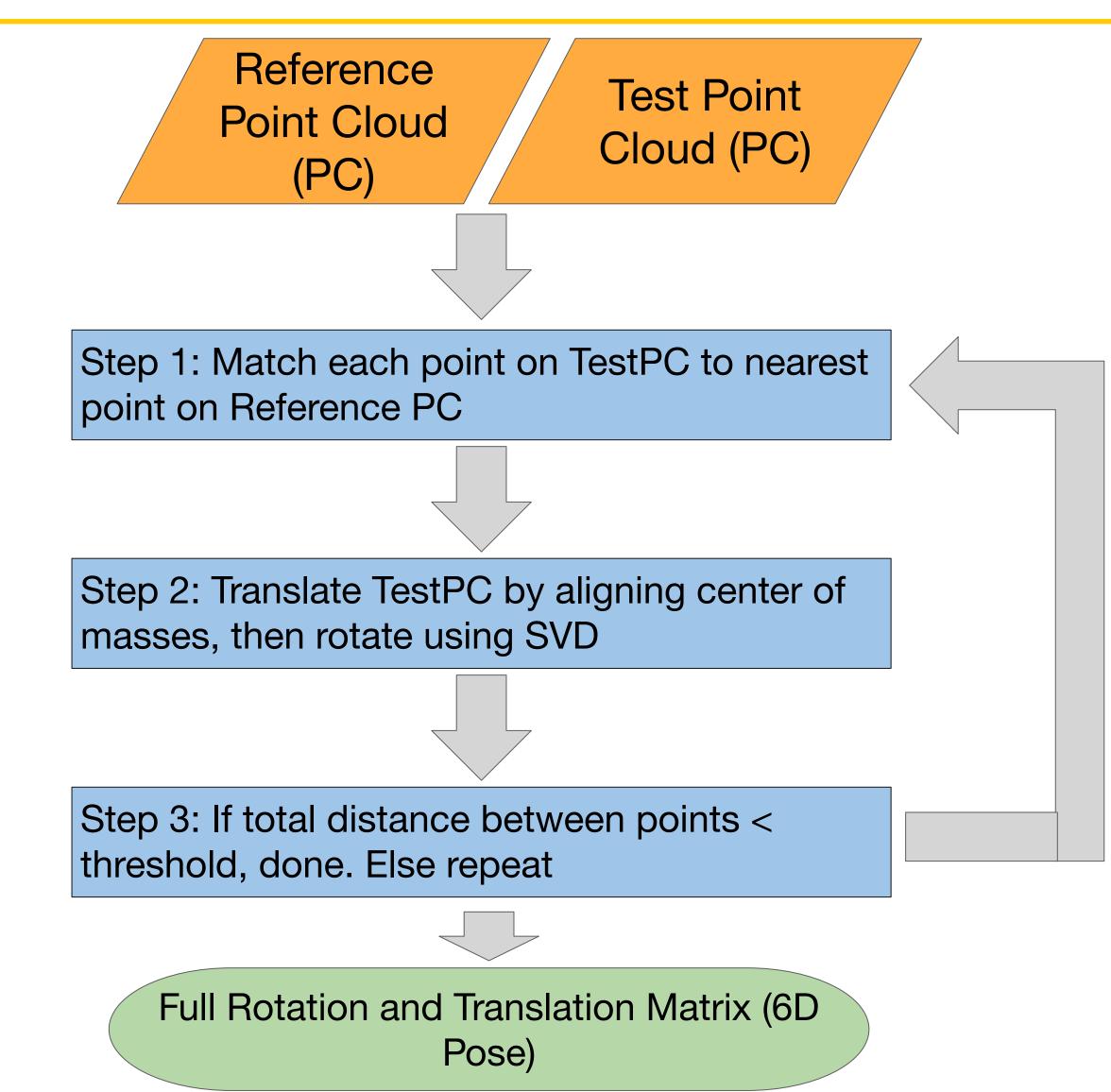
Normalised Object Coordinate Space

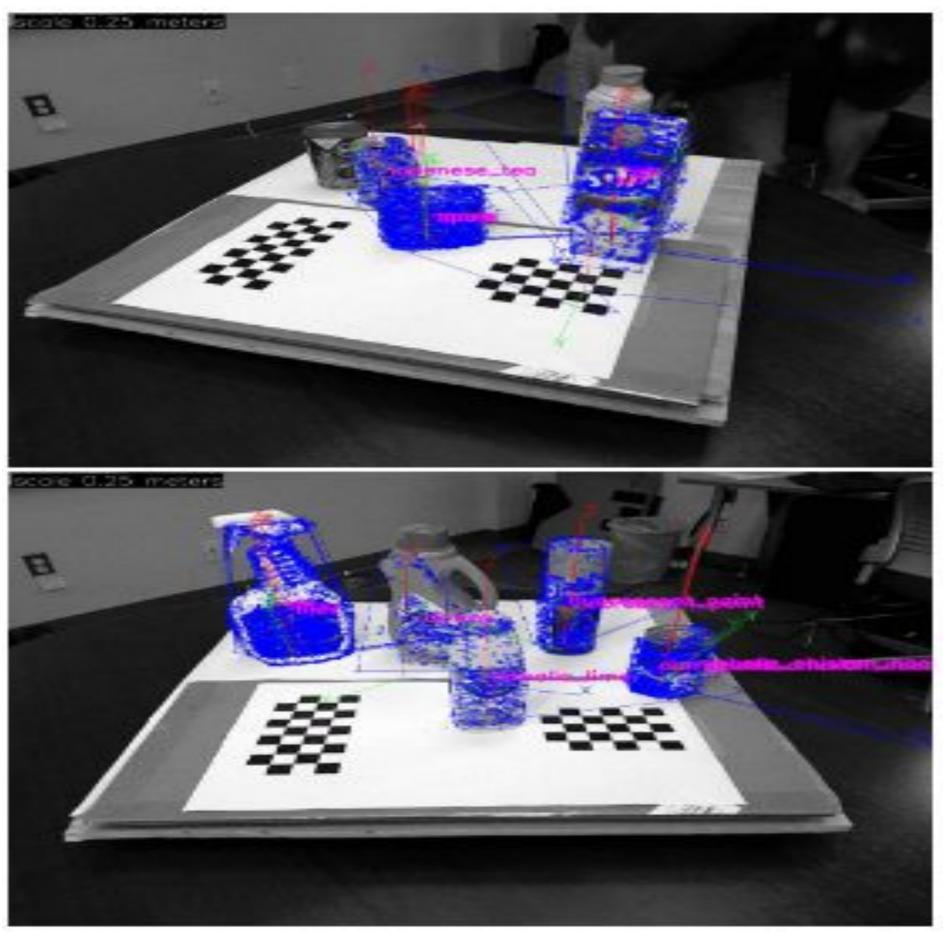
Traditional Methods for Pose Estimation

Iterative Closest Point (ICP)



Point Cloud Library. "Interactive ICP". PCL Tutorials. 2021, <u>https://pcl.readthedocs.io/projects/tutorials/en/latest/interactiv</u> <u>e_icp.html</u>.





Steps Involved 1) Match features and descriptors to a database of 49 household objects captured under various views using a 2D camera and a Kinect device.

In order to establish a match, it is necessary to not only match the 2) descriptors, but also to compute a pose.

3) To obtain an estimate of the pose, we apply the Progressive Sample Consensus and Efficient Perspective-n-Point algorithms.

Rublee, Ethan, Vincent Rabaud, Kurt Konolige, and Gary Bradski. "ORB: An Efficient Alternative to SIFT or SURF." Proceedings of the IEEE International Conference on Computer Vision, vol. 2, no. 3, 2011, pp. 2564-2571, doi: 10.1109/ICCV.2011.6126544.

DR

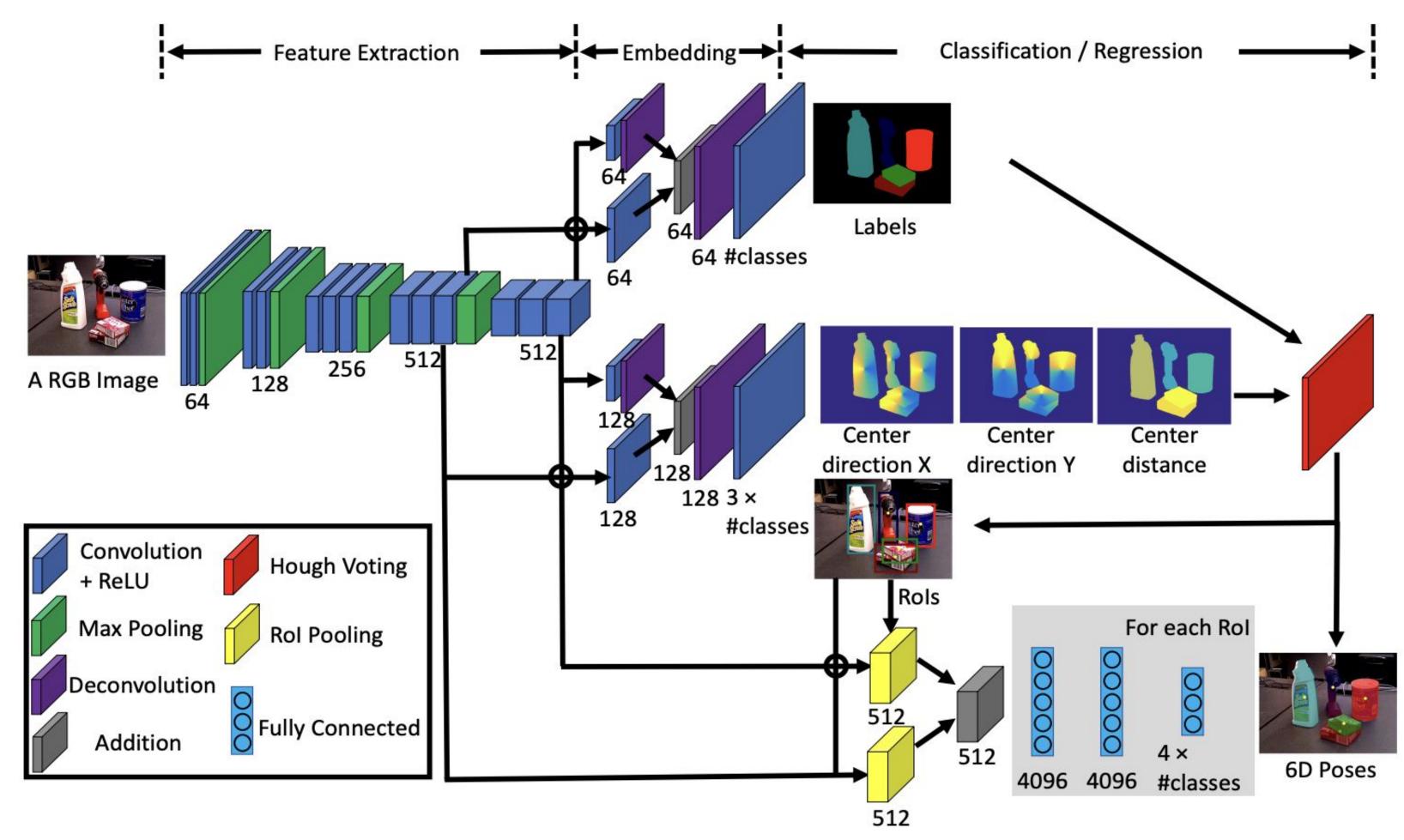
ORB based Pose Estimation

PR The MOPED framework: Object Recognition and Pose Estimation for Manipulation

Collet, A., Martinez, M., & Srinivasa, S. S. (2011). The MOPED framework: Object recognition and pose estimation for manipulation. In 2011 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4967-4974). IEEE.

Steps Involved

- 1. **Feature extraction**: SIFT features
- 2. Feature matching: ANN algorithm
- 3. Image space clustering: Mean Shift algorithm
- 4. **Estimation #1**: RANSAC algorithm and Levenberg-Marquardt optimization
- 5. **Cluster clustering:** Mean Shift clustering
- 6. Estimation #2: RANSAC and Levenberg-Marquardt optimization
- 7. Pose recombination: Mean Shift and Levenberg-Marquardt optimization



Xiang, Y., Schmidt, T., Narayanan, V., & Fox, D. (2018). PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018-Jun, 1-10. DOI: 10.1109/CVPR.2018.00016

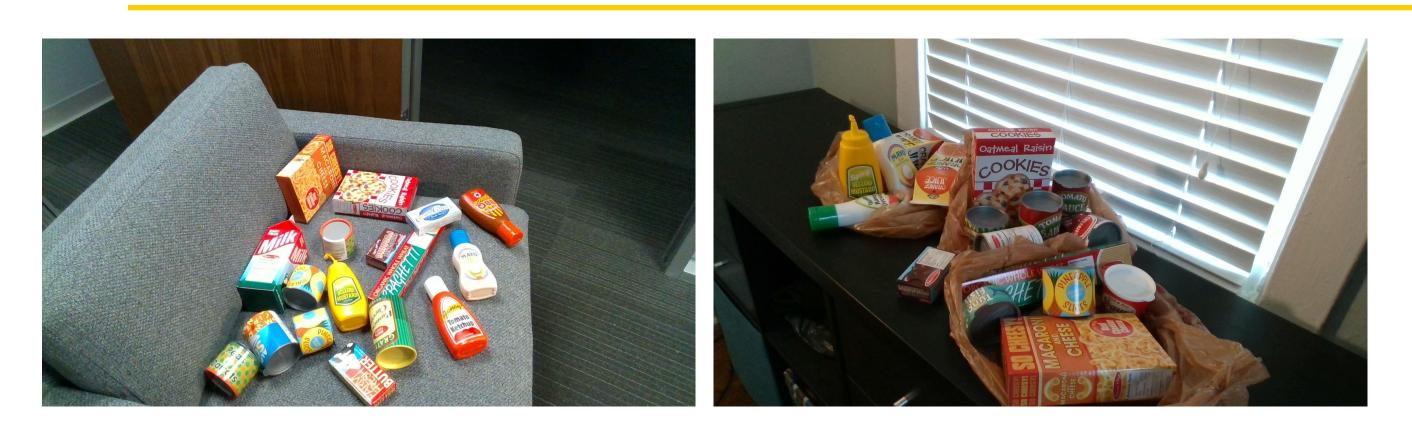
PoseCNN

Datasets

BOP: Benchmark for 6D Object Pose Estimation
Small items, focus on manipulation

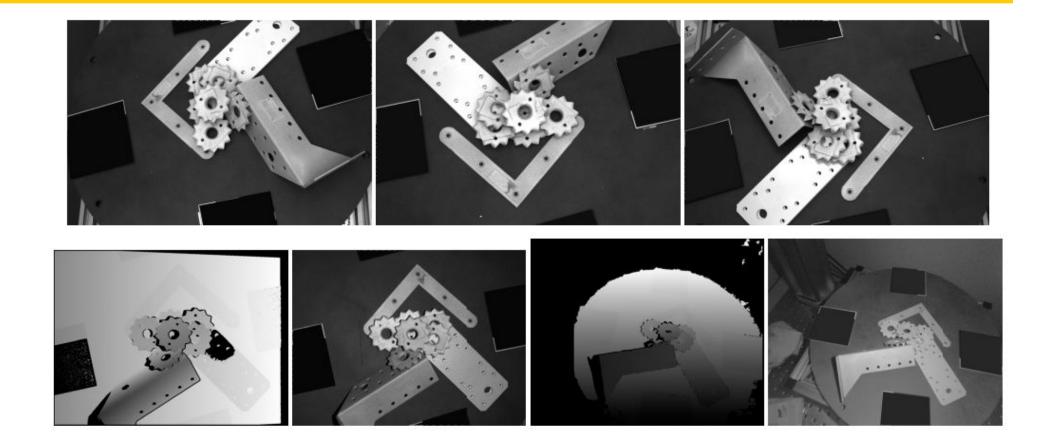
Dataset Name	Application	Year			
Linemod	Texture-less 3D objects, cluttered	2012			
HOPE	Household objects	2020			
ITODD	Industrial setting objects	2017			
RU-APC	Warehouse setting objects	2016			
TYO-L (Toyota Light)	Lighting condition variation	2018			

BOP Challenge



HOPE

BOP Challenge



I-TODD

RU-APC

BOP Challenge

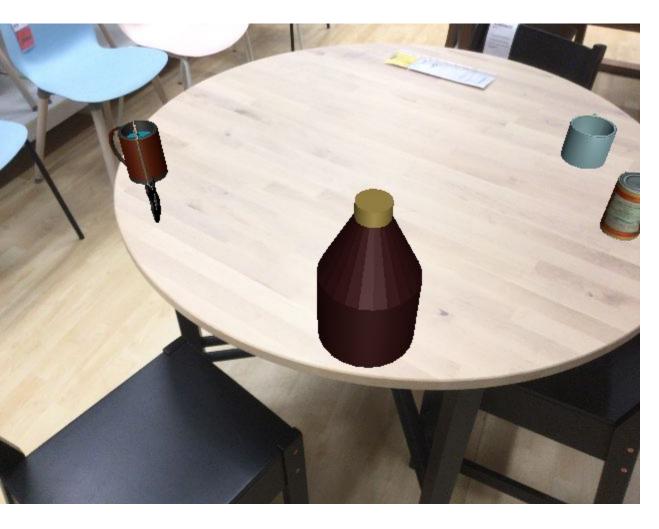
Pose estimation (BOP 2019-2022) – Core datasets

This leaderbord shows the overall ranking on the core datasets (LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V). For each method, the date of the latest considered submission is reported. If more submissions of a method are available for a dataset, the submission with the highest AR_{Core} score is considered. The performance scores are defined in the BOP <u>Challenge 2019 description</u>. The reported time is the average image processing time averaged over the core datasets.

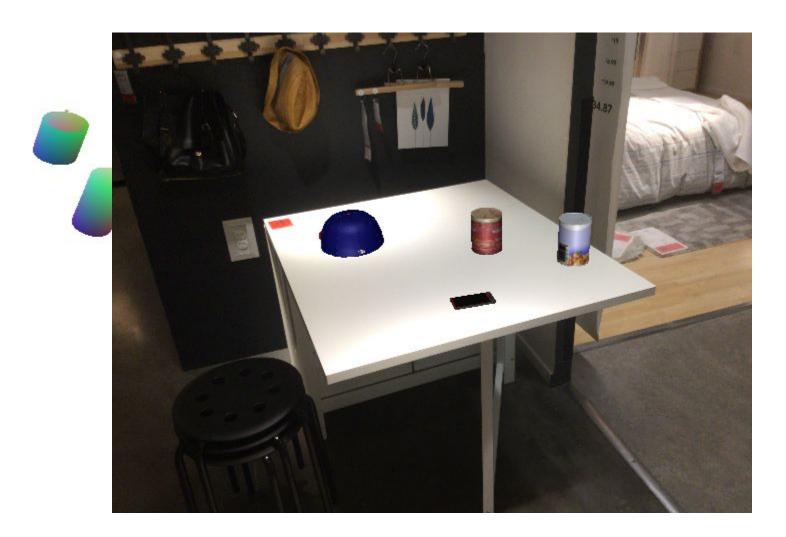
Show	how 50 🗸 entries										Search:	Search:		
	Date (UTC) 🔷	Method		Test image ≑	AR _{Core} 🔶	AR _{LM-0}	AR _{T-LESS} 🔶	AR _{TUD-L} \$	AR _{IC-BIN} ♦	AR _{ITODD} \$	AR _{HB}	AR _{YCB-V}	Time (s) 🔷	
1	2022-10-15	GDRNPP-PBRReal-RGBD-MModel		RGB-D	0.837	0.775	0.874	0.966	0.722	0.679	0.926	0.921	6.263	
2	2022-10-15	GDRNPP-PBR-RGBD-MModel		RGB-D	0.827	0.775	0.852	0.929	0.722	0.679	0.926	0.906	6.264	
3	2022-10-14	GDRNPP-PBRReal-RGBD-MModel-Fast		RGB-D	0.805	0.792	0.872	0.936	0.702	0.588	0.909	0.834	0.228	
4	2022-10-13	GDRNPP-PBRReal-RGBD-MModel- OfficialDet		RGB-D	0.798	0.758	0.824	0.966	0.708	0.543	0.890	0.896	6.406	
5	2022-10-11	Extended FCOS+PFA-MixPBR-RGBD		RGB-D	0.787	0.797	0.850	0.960	0.676	0.469	0.869	0.888	2.317	
6	2022-10-12	Extended FCOS+PFA-MixPBR-RGBD-Fast		RGB-D	0.771	0.792	0.779	0.958	0.671	0.460	0.860	0.880	0.639	
7	2022-10-16	RCVPose 3D_SingleModel_VIVO_PBR		RGB-D	0.768	0.729	0.708	0.966	0.733	0.536	0.863	0.843	1.336	
8	2022-10-15	ZebraPoseSAT-EffnetB4 + ICP (DefaultD		RGB-D	0.765	0.752	0.727	0.948	0.652	0.527	0.883	0.866	0.500	
9	2022-10-12	Extended FCOS+PFA-PBR-RGBD		RGB-D	0.762	0.797	0.802	0.893	0.676	0.469	0.869	0.826	2.631	
10	2021-12-22	SurfEmb-PBR-RGBD		RGB-D	0.758	0.760	0.828	0.854	0.659	0.538	0.866	0.799	9.048	

DR Context Aware Mixed Reality (CAMERA)

- Combines real background (tabletop) with synthetic objects for efficient data generation - 6 object categories from ShapeNetCore: bottle, bowl, camera, can, laptop, and mug - 1085 object instances, 184 set aside for validation
- Distractor categories for robustness (phone, guitar, etc.)
- 300k images, 25k set aside for validation



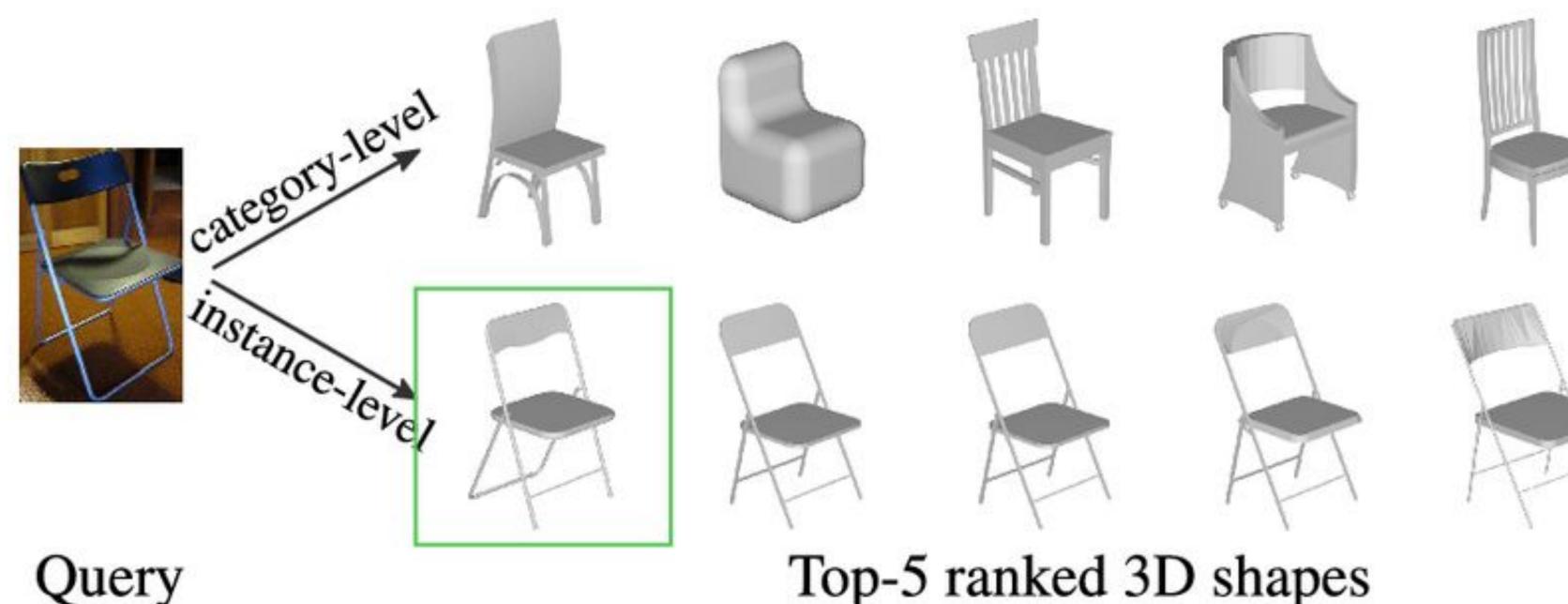
Chang, Angel X., et al. "Shapenet: An information-rich 3d model repository." *arXiv* preprint arXiv:1512.03012 (2015).



Normalized Object Coordinate Space for Category-Level 6D **Object Pose and Size Estimation**

He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, Leonidas J. Guibas

Computer Vision and Pattern Recognition Conference 2019



Zou, Qian-Fang, Ligang Liu, and Yang Liu. "Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding." The Visual *Computer* 37 (2021): 1743-1756.

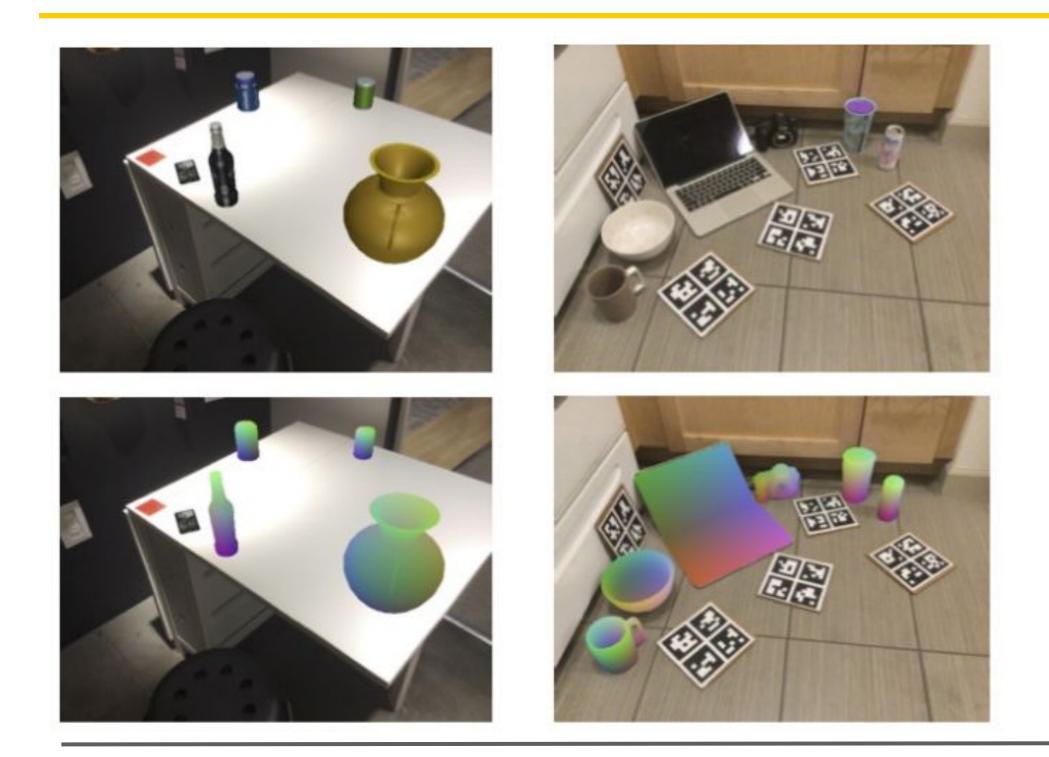
Category vs Instance level representation

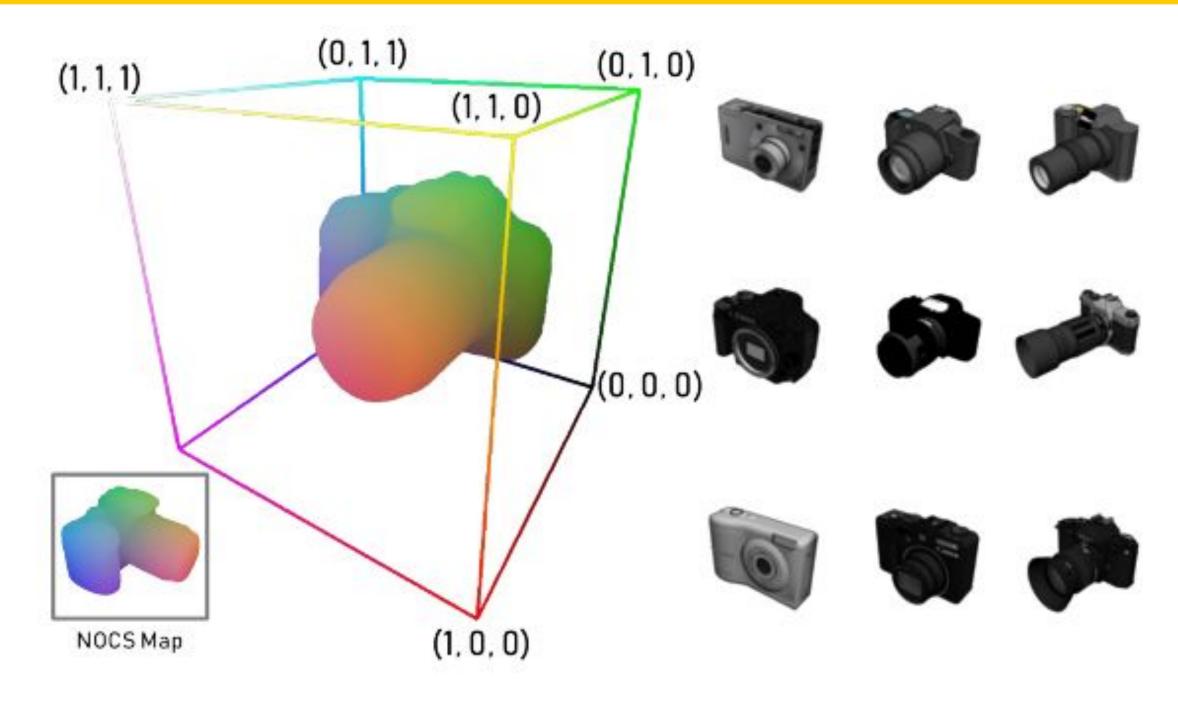
(0, 1, 1) (0, 1, 0) (1, 1, 1) (1, 1, 0) (0, 0, 0) (1, 0, 0) NOCS Map

Zou, Qian-Fang, Ligang Liu, and Yang Liu. "Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding." *The Visual Computer* 37 (2021): 1743-1756.

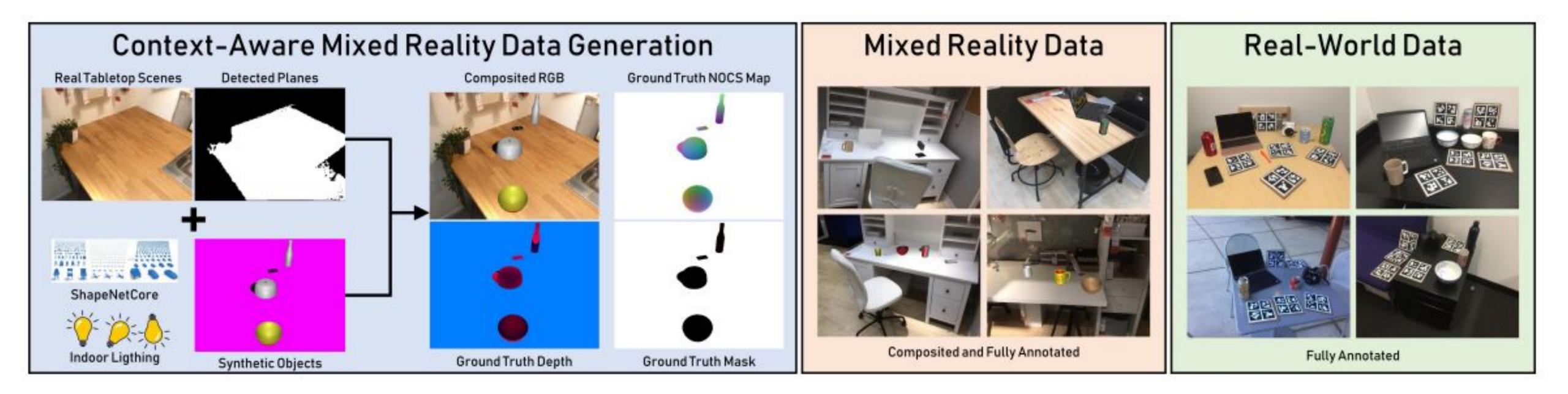
Category vs Instance level representation

Normalized Object Coordinate Space

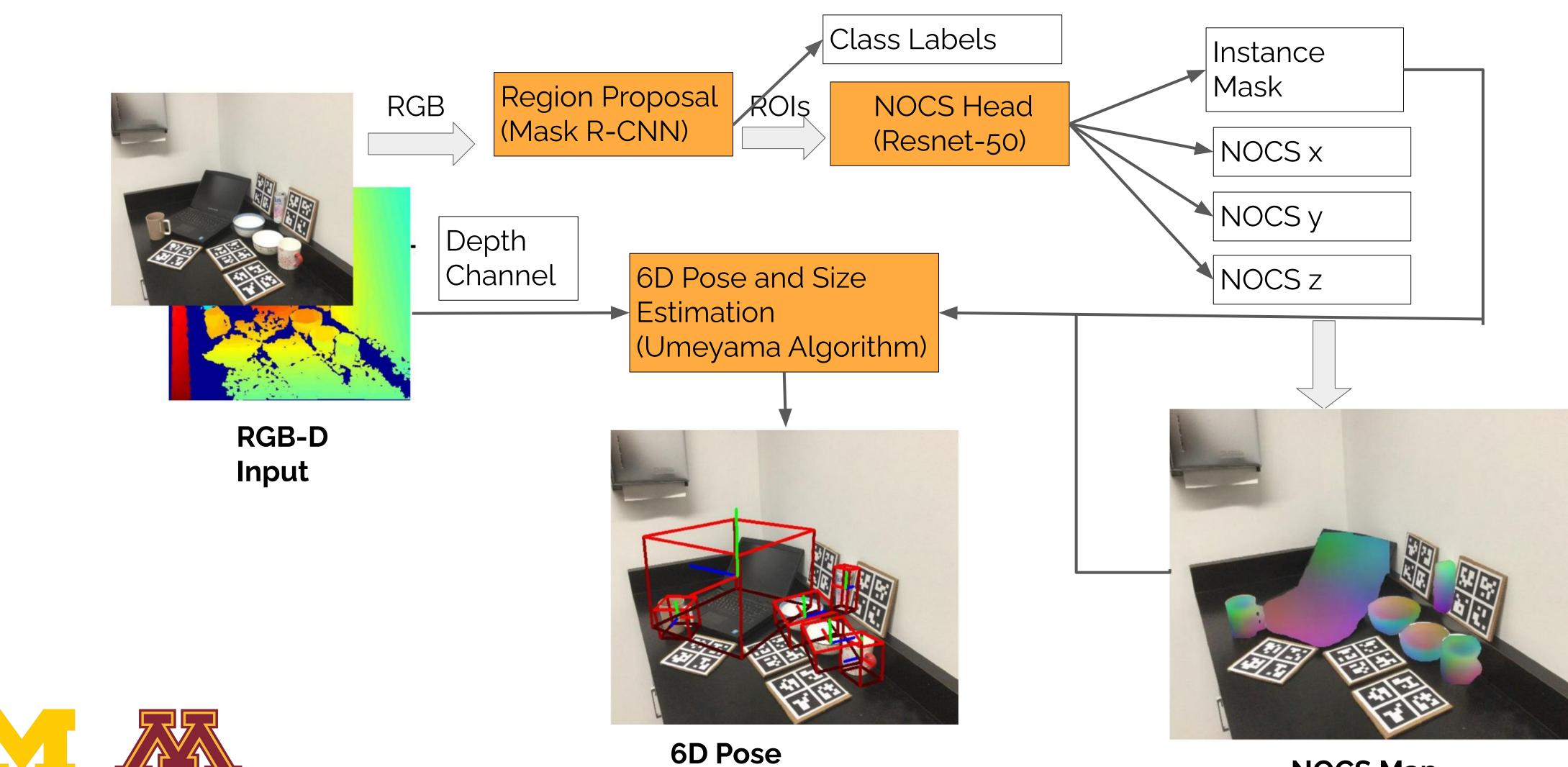




Dataset



Model Architecture

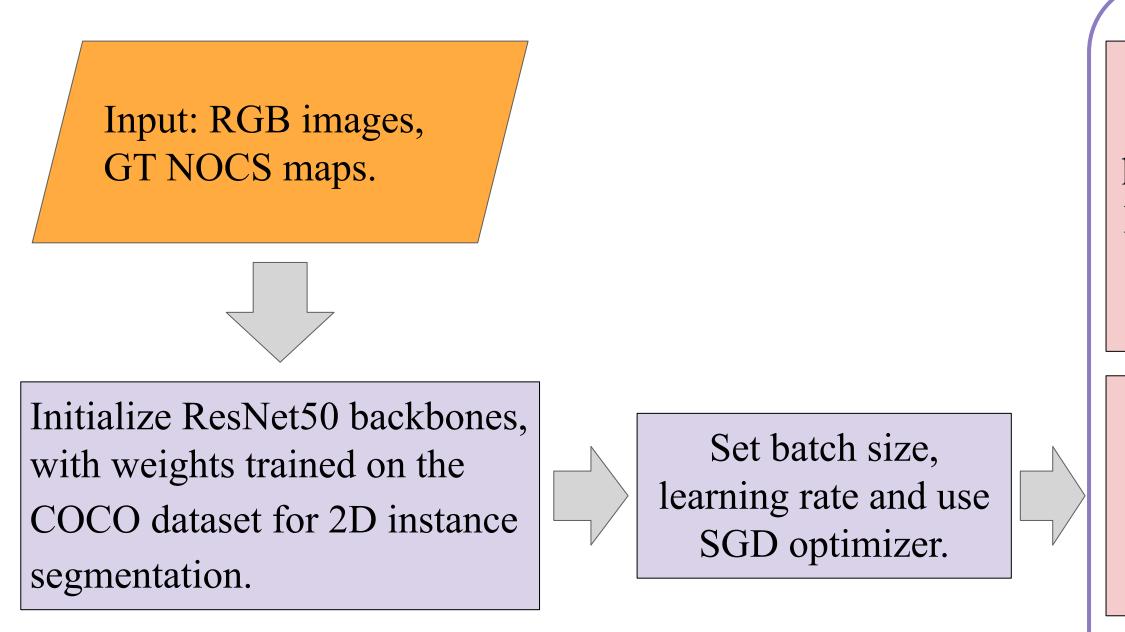


Estimate

DR

NOCS Map

Model Training



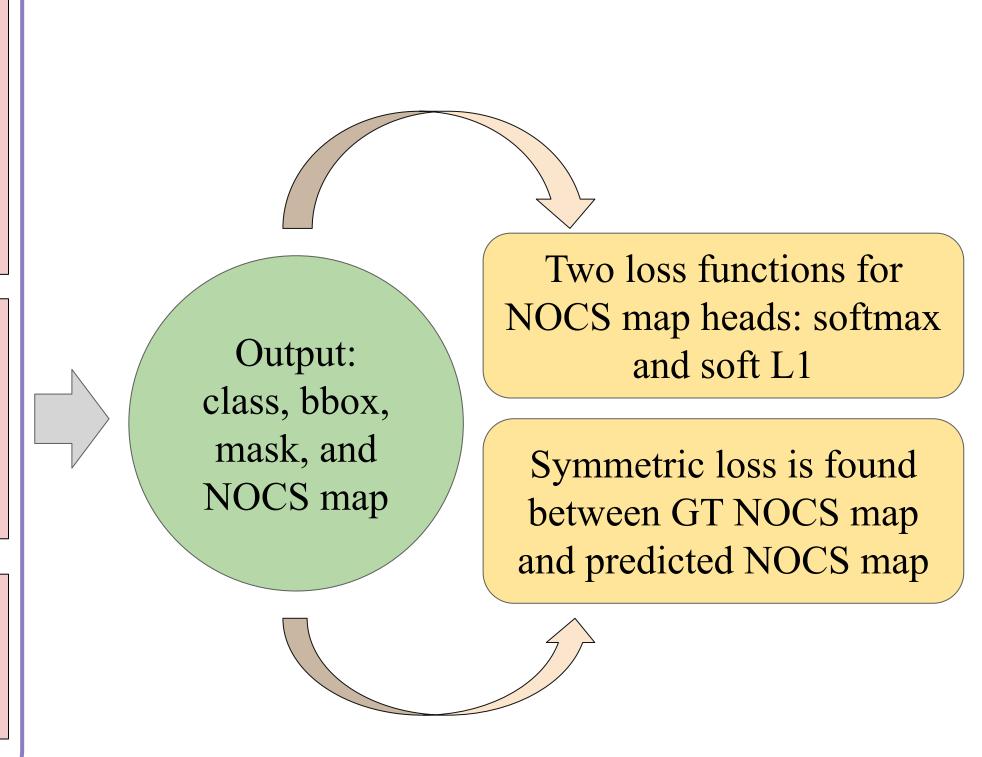
DR

ResNet 50

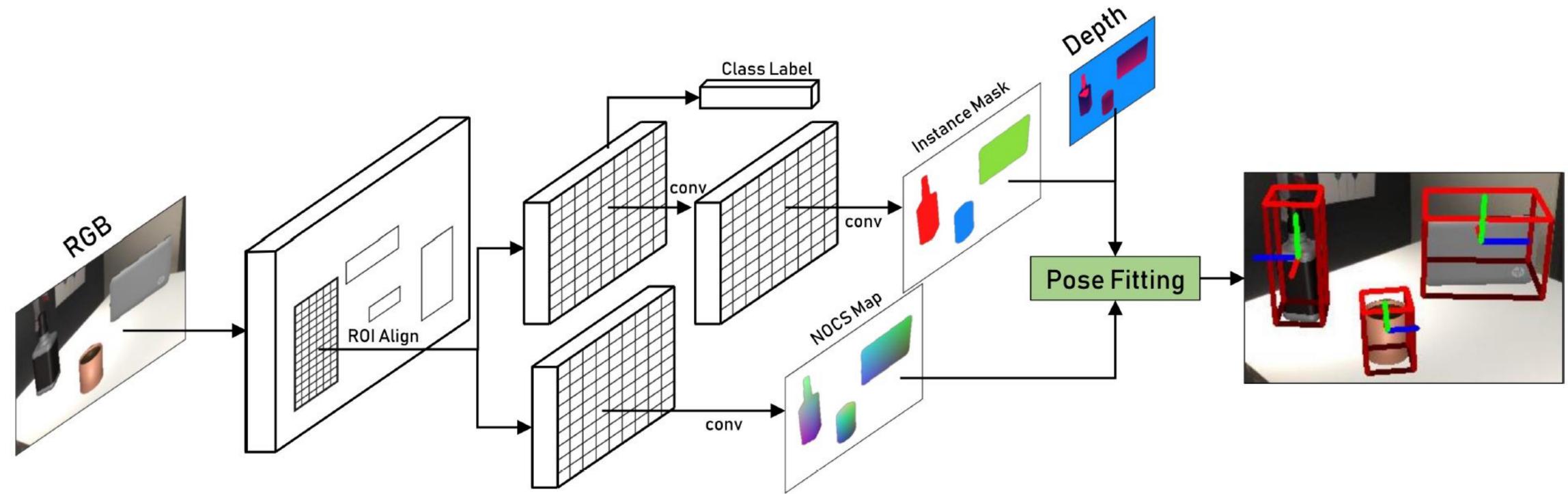
Stage 1: Weights are frozen and only the layers in the heads, the RPN, and FPN trained for 10K iterations. LR decreased by 10x

Stage 2: Freeze below level 4, train for 3K iterations. LR decreased by 10x

Stage 3: Freeze below level 3 and train for 70K iterations



Model Training



111055

 $L(\mathbf{y}, \mathbf{y}^*) = \frac{1}{n} \begin{cases} 5(\mathbf{y} - \mathbf{y}^*)^2, & |\mathbf{y} - \mathbf{y}^*| \le 0.1 \\ |\mathbf{y} - \mathbf{y}^*| - 0.05, & |\mathbf{y} - \mathbf{y}^*| > 0.1 \end{cases}$ $\forall \mathbf{y} \in N, \mathbf{y}^* \in N_p,$

> y - ground truth NOCS map pixel value y* - predicted NOCS map pixel value, n - number of mask pixels in ROI.

Softmax Loss

$$L = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C}$$

- N number of samples
- C number of classes
- xi i-th input sample
- fj (xi) score of the j-th class for the i-th sample
- yij 1 if true label of i =j , 0 otherwise

 $\sum_{i=1}^{C} y_{ij} \log \left(\frac{e^{f_j(x_i)}}{\sum_{k=1}^{C} e^{f_k(x_i)}} \right)$

Symmetric loss function

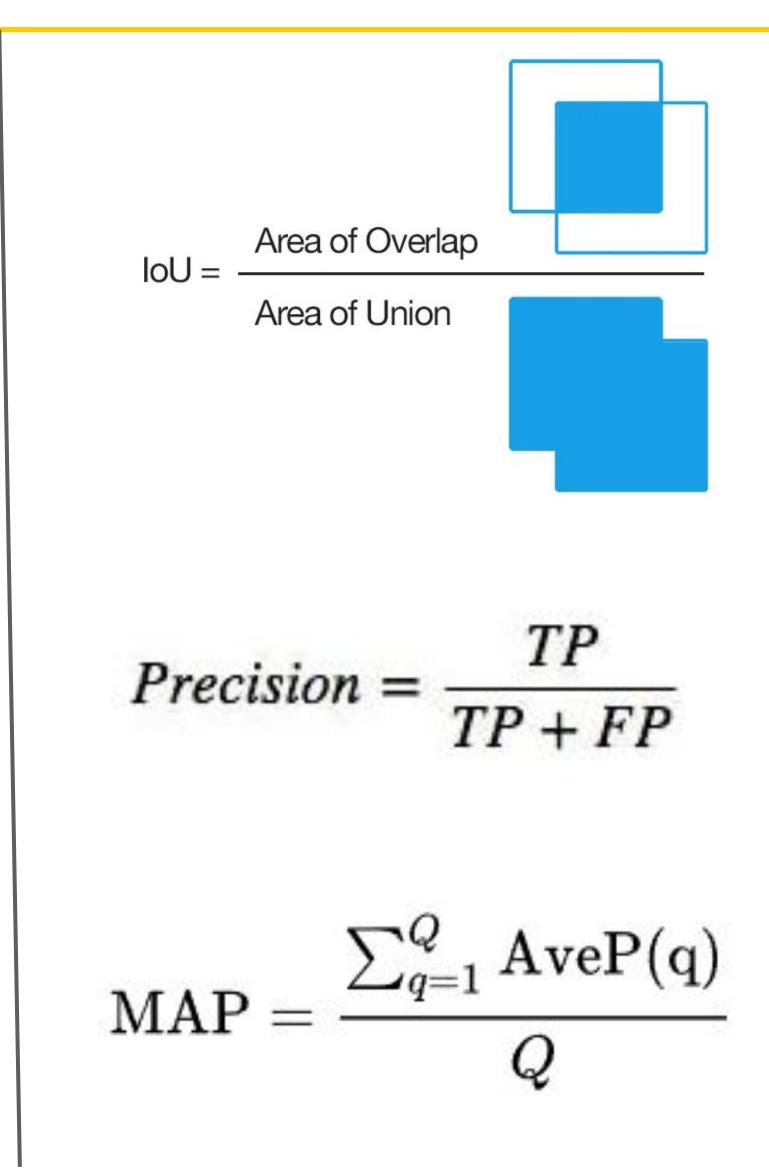
 $L_s = \min_{i=1,\dots,|\theta|} L(\tilde{y}_i, y^*)$

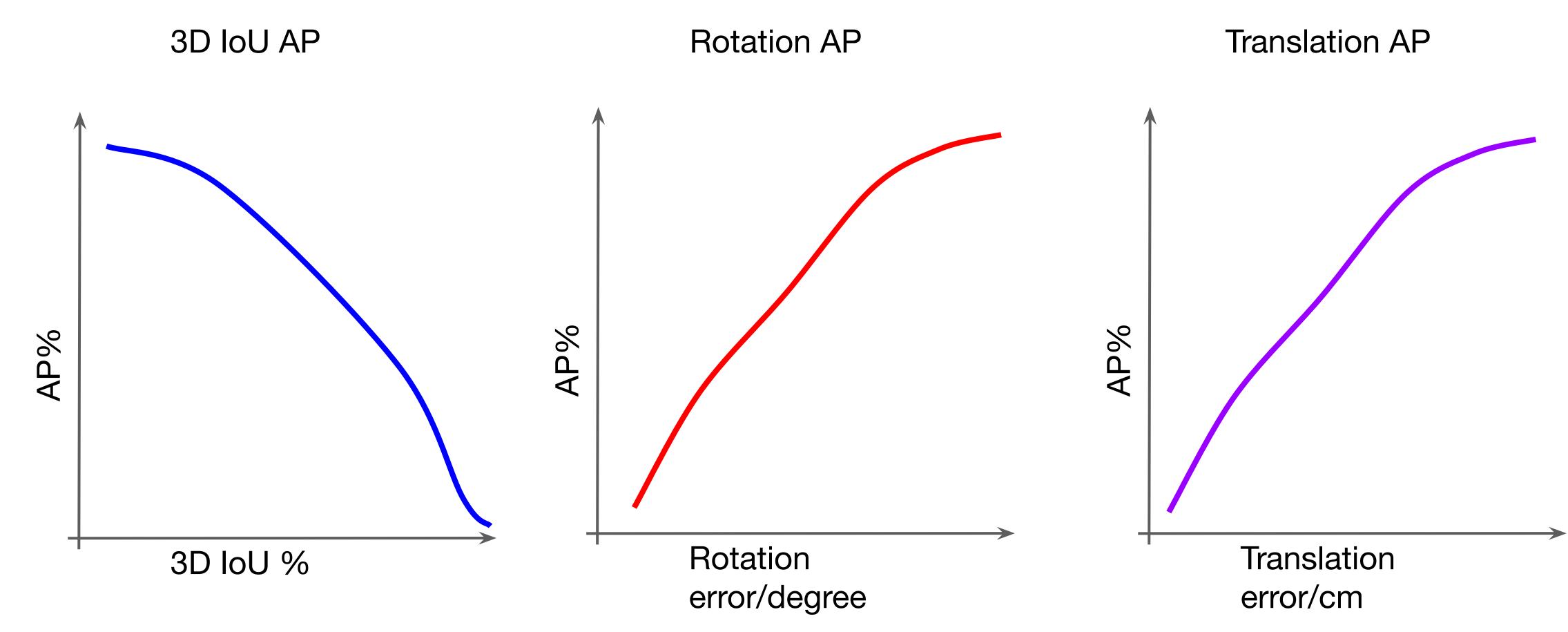
y~-~ground truth NOCS map pixel value y^{\ast} - predicted NOCS map pixel value $|\theta|$ - angle to rotate the NOCS maps along the symmetry axis

Evaluation Metrics

- 3D detection and object dimension estimation

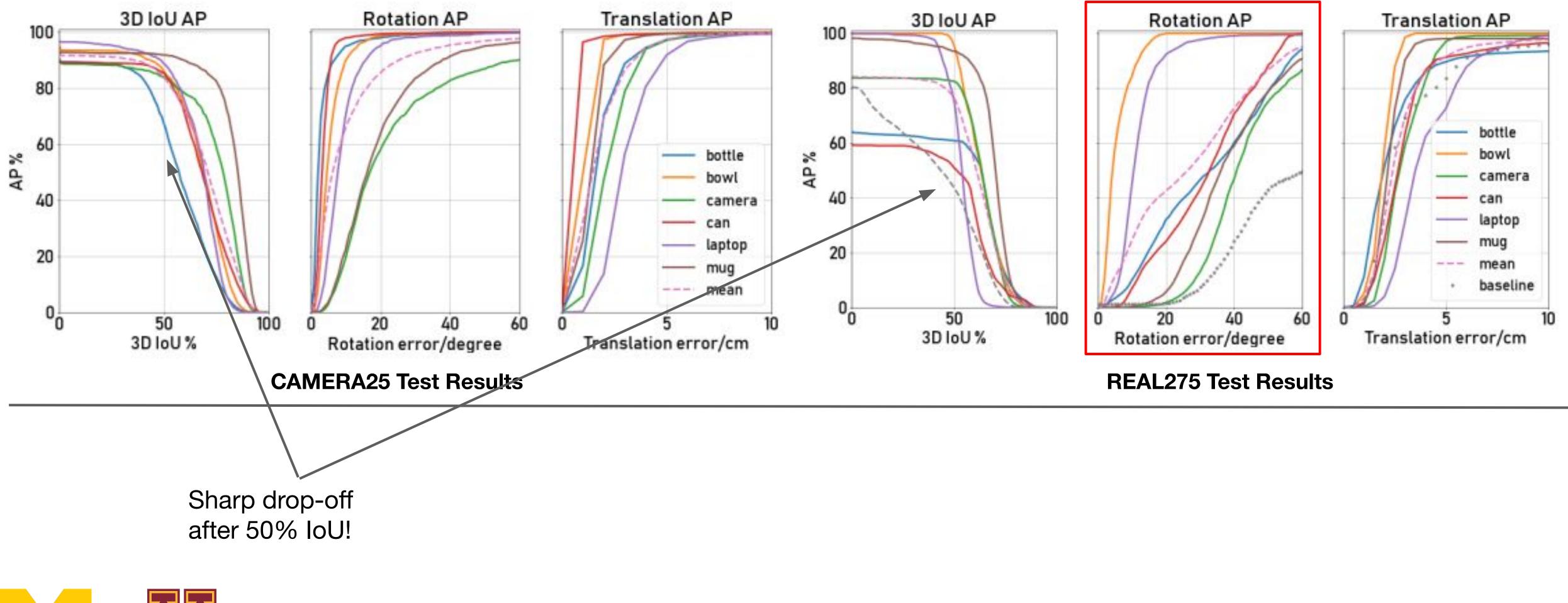
- mAP at IoU at 25% and 50% threshold
- 6D Pose estimation
 - Average precision of object instances for which the error is less than m=5,10 cm for translation and n = 5.,10. for rotation





Results: Hypothesis

Results: Actual



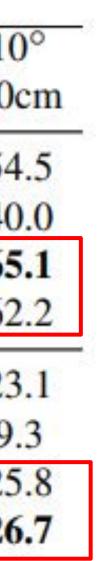
DR

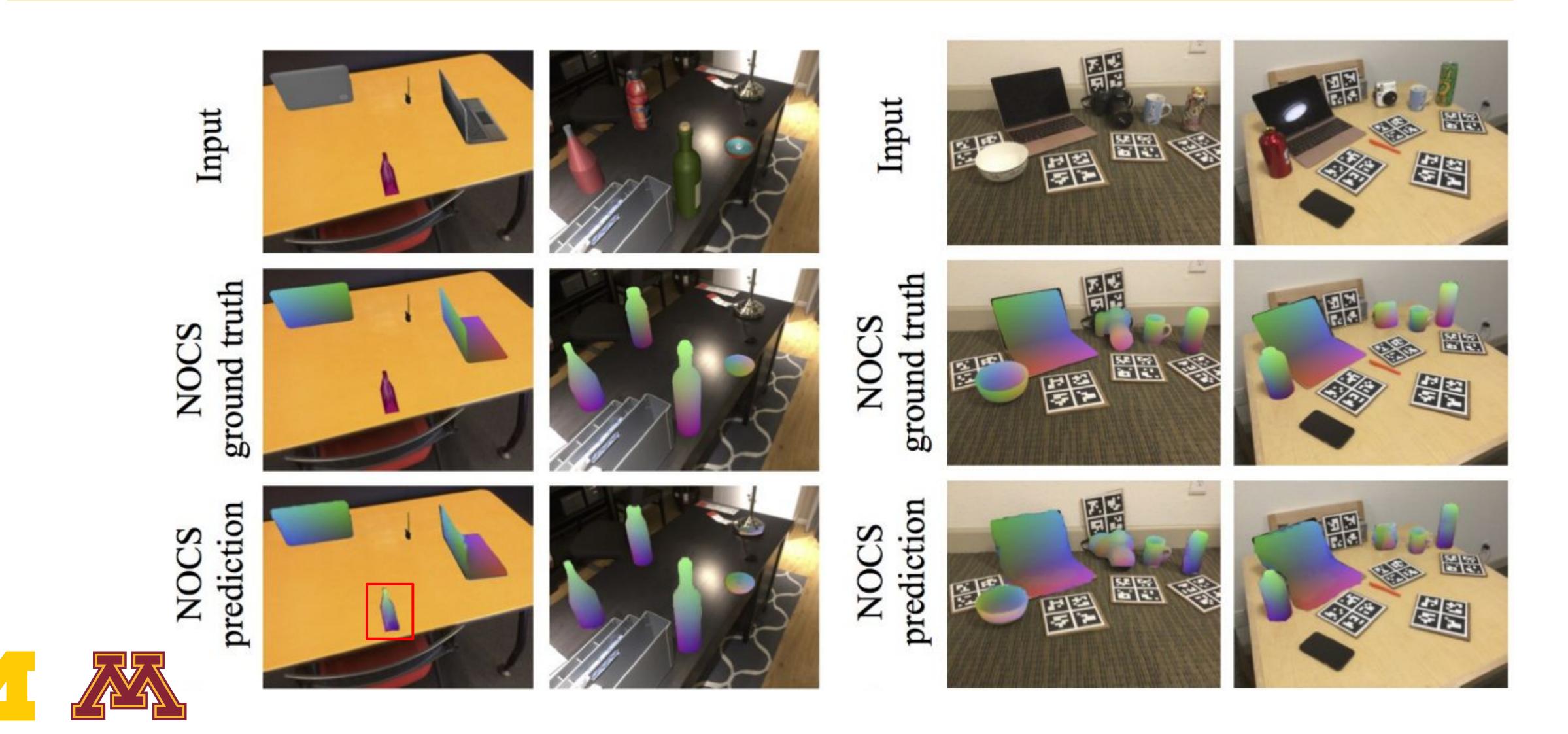
Ablation Studies

Data					mAP					mAP				
CAMERA*	COCO	REAL*	3D ₂₅	3D ₅₀	5 ° 5 cm	10° 5 cm	10° 10cm	Data	Network	3D ₂₅	3D ₅₀	5° 5 cm	10° 5 cm	10° 10ci
С			51.7	36.7	3.4	20.4	21.7		Reg.	89.3	80.9	29.2	53.7	54.5
С	~		57.6	41.0	3.3	17.0	17.1		Reg. w/o Sym.	86.6	79.9	14.7	38.5	40.0
		~	61.9	47.5	6.5	18.5	18.6	CAMERA25	32 bins	91.1	83.9	40.9	64.6	65.1
	~	~	71.0	53.0	7.6	16.3	16.6		128 bins	91.4	85.3	38.8	61.7	62.2
C		1	79.2	69.7	6.9	20.0	21.2) 						
С	1	1	79.6	72.4	8.1	23.4	23.7		Reg.	79.6	72.4	8.1	23.4	23.1
									Reg. w/o Sym.	82.7	73.8	1.3	9.1	9.3
B			42.6	36.5	0.7	14.1	14.2	REAL275	32 bins	84.8	78.0	10.0	25.2	25.8
B	~	~	79.1	71.7	7.9	19.3	19.4		128 bins	84.9	80.5	9.5	26.7	26.

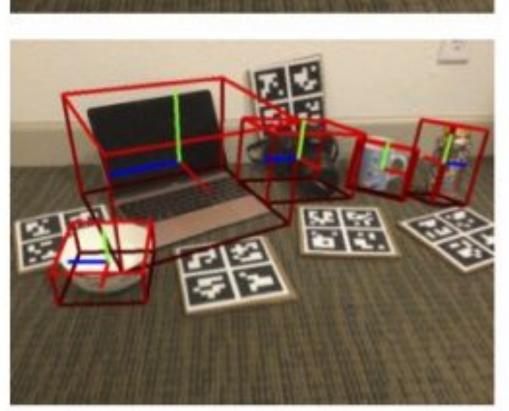
Testing on Real275

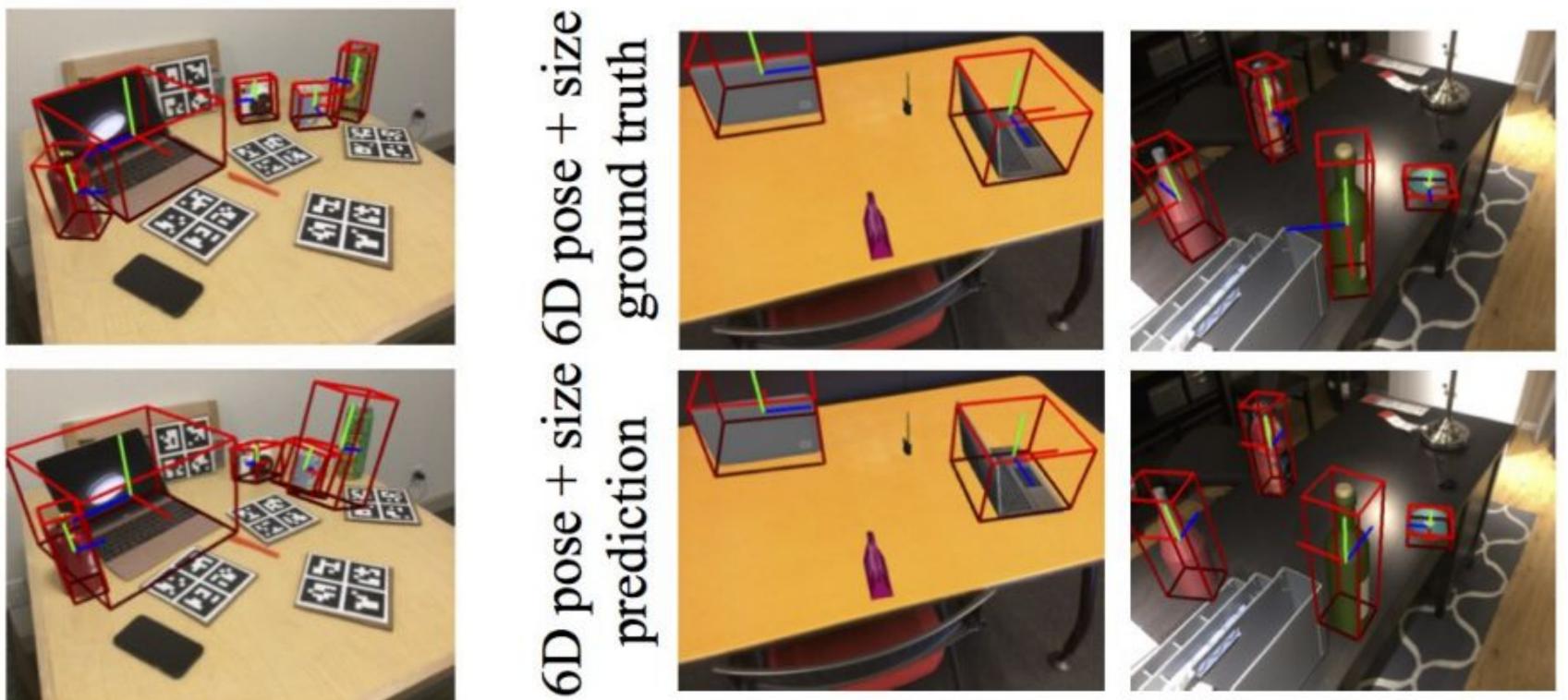
Different losses





6D pose + size 6D pose + size truth ground prediction







Qualitative Results

Conclusions

Primary Contributions:

- 6D pose and size estimate
- 3. Synthetic data generation technique in addition to the resultant CAMERA and Real data

Further work:

- 1. Incorrect region proposal or category prediction could result in failures
- 2. Relies on depth image to fully utilize the NOCS map
- Does not talk about articulate objects 3.

1. NOCS, a method which allows for different but related (same category) objects to have the same representation, allowing for

2. CNN which allows joint prediction of class label, instance mask, and NOCS map of multiple unseen objects in an image

Extensions of NOCS

ShAPO: Implicit Representations for Multi-Object Shape, Appearance, and Pose Optimization

6D pose and size

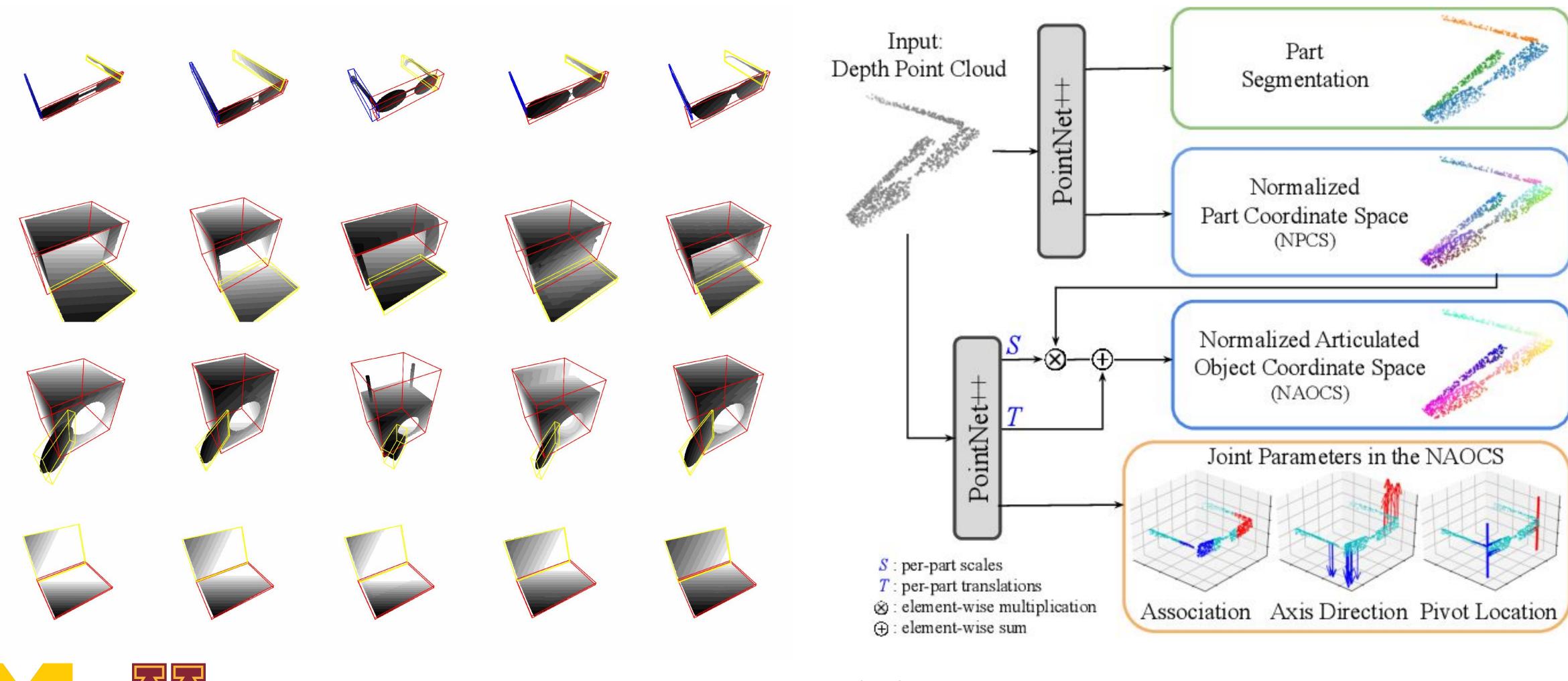
Instance Tracking

Irshad, M. Z., Zakharov, S., Ambrus, R., Kollar, T., Kira, Z., & Gaidon, A. (2021). ShAPO: Implicit Representations for Multi-Object Shape, Appearance, and Pose Optimization. arXiv preprint arXiv:2104.08901.

3D Shape and Appearance

Other Relevant Works

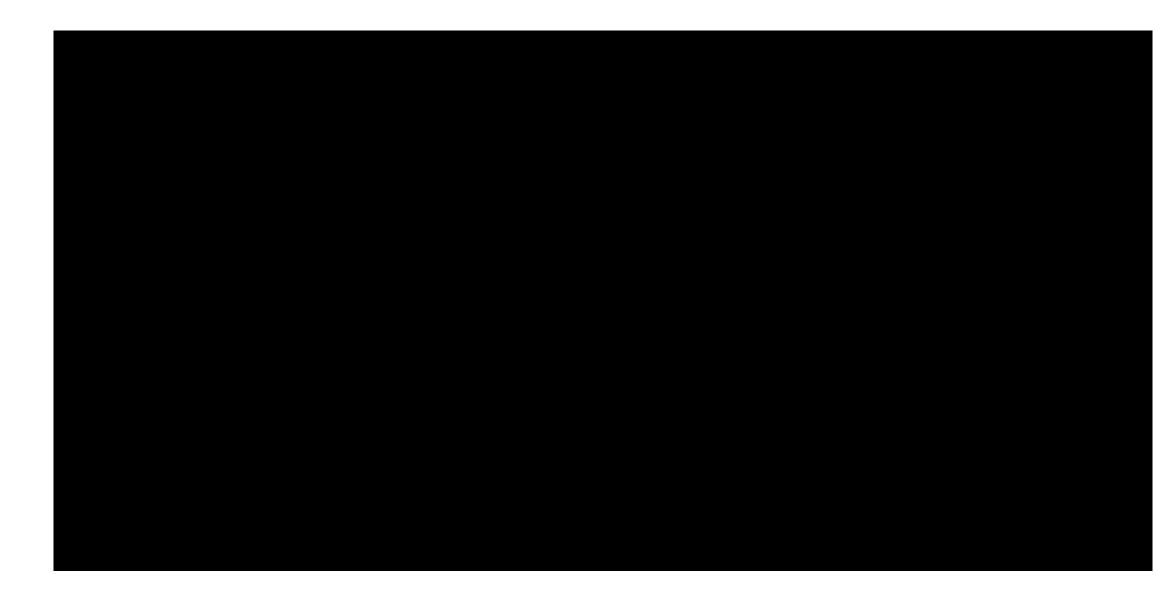
Category-Level Articulated Object Pose Estimation



Li, X., Wang, H., Yi, L., Guibas, L., Abbott, A.L., & Song, S. (2018). Category-Level Articulated Object Pose Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1572-1580).

Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation

What is the best object representation for robot manipulation?



Common Representation Across a category

Florence, Peter R., Lucas Manuelli, and Russ Tedrake. "Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation." *Conference on Robot Learning*. PMLR, 2018.

Picking up an object at same point in different orientations

Questions?

DeepRob

[Student] Lecture 15 by Bharath Sivaram, Sahith Reddy, Prakadeeswaran Manivanan Rigid Object Perception, Dense Descriptors, Category-level Object Pose Estimation University of Michigan and University of Minnesota

