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Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course 1


https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Project 3 Released

* Here: https://rpm-lab.github.io/CSCI5980-

* |nstructions available on the website QoL

Spr23-DeepRob/projects/project3/

« New PROPS Detection dataset

* Implement CNN for classification and Faster

R-CNN for detection

* Due Tuesday, March 14th 11:59 PM CT

L\, |



https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project3/
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project3/
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project3/
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/datasets/props-detection/

Final Project Tasks

|Graded] Final Project Proposal document submission (2%)
(Graded] In-class topic-paper(s) presentation (4%)
In-class final project pitch
In-class final project checkpoint
(Graded] Reproduce published results (12%)
* Algorithmic extension to obtain results with new idea, technique or dataset
(Graded] Video Presentation + Poster (4%)
/. [Graded] Final Report (2%)

L\, 3
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Final Project Tasks

1. [Graded] Final Project Proposal document submission (2%)

Recommendations:

1. Each member will read a paper in the topic.

2. Meet with the team and discuss your notes on the
papers.

3. Select a paper your team want to reproduce-
extend...

Paper selection due tomorrow 02/24.

Update on the google-sheet next to your groups

Final Project Proposal due 03/02
A template will be sent out soon...




Final Project Tasks
2. |Graded] In-class topic-paper(s) presentation (4%)

Student lecture-presentations starting 03/02
If you presenting on a Tuesday

Meet with me during OH the previous Wednesday
If you presenting on a Thursday

Meet with me during OH the previous Friday
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Recap: Deep Learning Software

Static Graphs vs Dynamic Graphs

PyTorch vs TensorFlow



So far: Image Classification

;}\[ > 3k }\J >< \ 4096 to 10 Granola Bar
- = ‘:1 52 192 128 - }E’
R\ ﬁ > ? q Potato Chips
224 4| 3 > ATENY dense | |dense |
» — I :
A O LS Water Bottle
o o Vector:
Figure copyr ight Alex Kr izhevsky, llya Sutskever, an d ) Popcorn
Geoffrey H inton, 2012 . Repro duced with perm ission. 4096




Computer Vision Tasks

Semantic Object Instance
Classification Segmentation Detection Segmentation

“Chocolate Pretzels”

- I
I ) Shelf Flipz, Keese's
No spatial extent
ﬁ
No objects, just pixels Multiple objects

L\, 8



Computer Vision Tasks

Classification

“Chocolate Pretzels”

—

No spatial extent

L\,




Transfer Learning:
Generalizing to New Tasks

L\,



Transfer Learning with CNNs

1. Train on ImageNet

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

M Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014



DR

1. Train on ImageNet

FC-1000

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

M Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs

2. Use CNN as a
feature extractor

FC-4096
—— \ Remove
MaxPool last layer

Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool > Freeze

Conv-256

Conv-256 i h ese

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64

Conv-64 j

Image

12
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Transfer Learning: Feature Extraction

1. Train on ImageNet

FC-1000

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

2. Use CNN as a
feature extractor

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

\

Remove
last layer

> Freeze
these

y

Mean Accuracy per Category

Classification on Caltech-101

&
(o

O
(o)

O
»

O
N

SVM DeCAF6 w/ Dropout
+— Yang et al. (2009)

+— LogReg DeCAF6 w/ Dropout

5 10 15 20 25 30
Num Train per Category

M Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014
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Transfer Learning: Feature Extraction

1. Train on ImageNet

FC-1000

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

2. Use CNN as a
feature extractor

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

\

Remove
last layer

> Freeze
these

y

/0
65
60
55
50
45
40

Bird Classification on Caltech-UCSD

5678  °28.75

= . .

DPD (Zhang et POOF (Berg & AlexNet FC6 +
al, 2013) Belhumeur, logistic
2013) regression

M Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014 14



DR

Transfer Learning: Feature Extraction

1. Train on ImageNet

FC-1000

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

2. Use CNN as a
feature extractor

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

\

Remove
last layer

> Freeze
these

y

/0
65
60
55
50
45
40

Bird Classification on Caltech-UCSD

64.96
5678  °28.75

= . . l

DPD (Zhang et POOF (Berg & AlexNet FC6 + AlexNet FC6 +
al, 2013) Belhumeur, logistic DPD
2013) regression

M Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014 15
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Transfer Learning: Feature Extraction

2. Use CNN as a

1. Train on ImageNet

FC-1000

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

- PAA

feature extractor

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

95
90
85
30
75
70
65
60
55
50

Objects

584 56.8
533

Image Classification

89589

I 8I III

Scenes Birds Flowers Human Object

Attriburtes Attributes

B Prior State of the art m CNN + SVM m CNN + Augmentation + SVM

Razavian et al, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014 16
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Transfer Learning: Fine Tuning

1. Train on ImageNet

FC-1000

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

L\,
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Transfer Learning: Fine Tuning

1. Train on ImageNet

FC-1000

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

ﬁ

L\,

Add randomly —
initialized final FC
layer for new task

Initialize from
ImageNet model

New FC Layer

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

18



Transfer Learning: Fine Tuning

1. Train on ImageNet

FC-1000 Add randomly = [ NewFClayer
e el e e . FC-4096

FC-4096 . ..
— initialized final FC — Continue training
r— layer for new task oo > entire model for
Conv-512 Conv-512 new tas k
Conv-512 Conv-512

MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512

MaxPool I Initialize from MaxPool
Conv-256 | ma g e N et mo d e | Conv-256
Conv-256 Conv-256

MaxPool MaxPool
Conv-128 Conv-128
Conv-128 Conv-128

MaxPool MaxPool

Conv-64 Conv-64

Conv-64 Conv-64

Image Image

L\,
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Transfer Learning: Fine Tuning

1. Train on ImageNet

FC-1000 Add randomly = [ NewFClayer

FC-4096 initialized final FC 4 Ez:gzz

FC-4096 -

— layer for new task o)

Conv-512 Conv-512

Conv-512 Conv-512

MaxPool MaxPool

Conv-512 Conv-512

a— PR i Some tricks:

MaxPool Nitiallize Trom MaxPool . . . .
oz | % ImageNet model Conv-256 Train WI’Fh feat.ure extraction first
Cony- 20 Conv-256 before finetuning

— e » Lower the learning rate: use ~1/10 of
Conv-128 Conv-128 LR used in original training

e Moo « Sometimes freeze lower layers to
Conv-64 Conv-64 save computation

Image \ Image

L\,
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FC-1000

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

Transfer Learning: Fine Tuning

ﬁ

L\,

1. Train on ImageNet

Add randomly —
initialized final FC 4
layer for new task

Initialize from
ImageNet model

New FC Layer

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

Compared with feature extraction,

fine-tuning:

* Requires more data

* |s computationally expensive
* Can give higher accuracies

21
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Transfer Learning: Architecture Matters!

ImageNet Classification Challenge

30 28.2 152 152 152
25.8 layers | layers || layers

25

NS
(-

16.4

& By i PR =21 |
layers Iavers

Error Rate
o

10
8 layers 8lavers
S . .
Shallow
; = - -
2010 2011 2012 2013 2014 2014 2015 2016 2017
Lin et al Sancher & Krizhevsky et al Zeler& Simonyan&  Stegedyetal  Hee ok a Hu et &l
Perronni (AlexNet) Fergus Jsserman [VGG) (GoogleNet) (RﬂNﬂ) (SENet)

L\,

Improvements in CNN
architecture leads to
Improvements in many down

stream tasks thanks to transfer

learning!

22
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50

40

30

20

10

Transfer Learning: Architecture Matters!

Object Detection on COCO

46
26 39
29
15 19
N N
_

DPM Faster R-CNN  Faster R-CNN Faster R-CNN FPN Mask R-CNN FPN
(Pre DL) (AlexNet) (VGG-16) (VGG-16) (ResNet-50)  (ResNet-101)  (ResNeXt-152)

M Ross Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition o4



FC-1000

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

VL

Transfer Learning with CNNs

AN

More specific

More generic

/

24




Transfer Learning with CNNs

FC-1000

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool

Corv5i2 More specific

Conv-512

MaxPool
Conv-256
Conv-256

Use Linear Classifier on
top layer

More generic
MaxPool

Conv-128
Conv-128
MaxPool

Conv-64
Conv-64

Image

VL .




Transfer Learning with CNNs

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool

Corv5i2 More specific

Conv-512

MaxPool
Conv-256
Conv-256

Use Linear Classifier on
top layer

More generic
MaxPool

Conv-128
Conv-128
MaxPool

Conv-64
Conv-64

Finetune a few layers ?

Image

VL .




Transfer Learning with CNNs

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool

Corv5i2 More specific

Conv-512

MaxPool
Conv-256
Conv-256

Use Linear Classifier on
top layer

More generic
MaxPool

Conv-128
Conv-128
MaxPool

Conv-64
Conv-64

Finetune a larger

Finetune a few layers
number of layers

Image

VL .




Transfer Learning with CNNs

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool

Corv5i2 More specific

Conv-512

You’re in trouble...
Try linear classifier from
different stages

MaxPool
Conv-256
Conv-256

Use Linear Classifier on
top layer

More generic
MaxPool

Conv-128
Conv-128
MaxPool

Conv-64
Conv-64

Finetune a larger

Finetune a few layers
number of layers

Image

VL .
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Transfer Learning can help you converge faster

COCO object detection

45 |
40 +
35 |

30| If you have enough data and train for

much longer, random initialization can
sometimes do as well as transfer learning

25

20 | fine-tuning
schedule

15|

10|

5 —random init
w/ pre-train

0 1 2 3 4 S

He et al, "Rethinking ImageNet Pre-Training”, ICCV 2019 oQ



Transfer Learning is persvasive!
It's the norm, not the exception

>
»

Pretraining for Robotics (PT4R)

Workshop at the 2023 International Conference on Robotics and Automation - ICR;

London, May 29 2023, ful aay WOrkshop

Very active area of research! Callfor papers

Important dates (all times AoE)

e Submissions cpen: Feb 15th 2023
e Submissiondeadline: Apr 14th 2023
e Decision notificatncn: Ape 30th 2023

o Cameraready deadline: May 14th 2023

M o Workshoo: May 25th 2023

J
R
’

30
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DR
Classification: Transferring to New Tasks

Classification

“Chocolate Pretzels”

—

No spatial extent

L\,

31



Today: Object Detection

Object
Detection

Flipz, Keese's

Multiple objects

32



Object Detection: Task definition

Input: Single RGB image

Output: A set of detected objects;
For each object predict:

1. Category label (from a fixed set
of labels)

2. Bounding box (four numbers:
X, Yy, width, height)

L\,

33



Object Detection: Challenges

Multiple outputs: Need to output
variable numbers of objects per
Image

Multiple types of output: Need to
predict "what” (category label) as
well as “where” (bounding box)

Large images: Classification works
at 224x224; need higher resolution
for detection, often ~800x600

L\,

34



Bounding Boxes

Bounding boxes are typically axis-
aligned

l: #
/‘h.

.! : -

35



Bounding Boxes

Bounding boxes are typically axis-
aligned

Oriented boxes are much less
common

L\,

36
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R
Object Detection: Modal vs Amodal Boxes

Bounding boxes cover only the
visible portion of the object

Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017 37
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Object Detection: Modal vs Amodal Boxes

Bounding boxes cover only the
visible portion of the object

Amodal detection: box covers the
entire extent of the object, even
occluded parts

: - 5 | ' o S " >~ i T ) et g
b . » - - - -
M Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017 38
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Object Detection: Modal vs Amodal Boxes

"Modal” detection: Bounding boxes
(usually) cover only the visible
portion of the object

Amodal detection: box covers the
entire extent of the object, even
occluded parts

‘b . = " % - F
M Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017 39
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Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?

———

‘Our prediction

o

Grou‘nd.t th

40



DR
Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?

——

“Our prediction
Intersection over Union (loU) (Also called “Jaccard
similarity” or “Jaccard index”): -

Grou‘n“d tguth

Area of Intersection

Area of Union

41



DR
Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?

A —

“Our prediction

Intersection over Union (loU) (Also called “Jaccard
similarity” or “Jaccard index”):

Area of Intersection

Area of Union

42



DR
Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?

“Our prediction

Intersection over Union (loU) (Also called “Jaccard
similarity” or “Jaccard index”):

Area of Intersection

Area of Union
loU > 0.5 is “decent”,

43



DR
Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?
— - —_

Intersection over Union (loU) (Also called “Jaccard
similarity” or “Jaccard index”):

Our prediction

Area of Intersection

Area of Union

loU > 0.5 Is “decent”,
loU > 0.7 is “pretty good?,

L\, .
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Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (loU) (Also called “Jaccard
similarity” or “Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”,
loU > 0.7 is “pretty good?,
loU > 0.9 is “almost perfect”

L\, .




Detecting a single object

> T 128 5% \ / I5%s
s
13 ) 13 13
ALEN T dense| |densd |
. 192 192 128 Max - »
Max 128 Max pooling * 2048
pooling pooling

Vector:
4096

Figure copyright Alex Krizhevsky, llya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

Treat localization as a
regression problem!

L\,
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Detecting a single object

What?? Correct Label:
Class scores: Chocolate Pretzels
Chocolate Pretzels: *
0.9
Fully connected:  ,,,01a Bar: 0.02
4096 to 10 Potato Chips: 0.02 === Softmax Loss

Water Bottle: 0.02
Popcorn: 0.01

152 192 128 2538 7538
2 128 ey o -
A3, 13 13
i - K . 3 s N p-
= : i ‘ s 13 dense | |[dense
E
192 192 128 Max -
— e pooling 2098 2088
pooling
Vector:
Figure copyright Alex Krizhevsky, llya Sutskever, and °

Geoffrey Hinton, 2012. Reproduced with permission.

4096
Treat localization as a

regression problem!

L\,




Detecting a single object

What?? Correct Label:
Class scores: Chocolate Pretzels
Chocolate Pretzels: *
0.9
Fully connected:  ,,,01a Bar: 0.02
4096 to 10 Potato Chips: 0.02 === Softmax Loss

Water Bottle: 0.02
Popcorn: 0.01

P ~ P 152 192 128 2048 2048
27 128 S ” » gr— —
s .
AN, 13 13
AL 3 :i . | 3 S
o® .'-' A0 .

5 EN 3l -
—— (P sl
_. P ’ 192 192 128 Max .| -
Strid Max 128 Max pooling 2048
of 4 pooling pooling
Figure copyright Alex Krizhevsky, llya Sutskever, and Ve Cto r:
Geoffrey Hinton, 2012. Reproduced with permission.
4096
Treat localization as a Fully connected:
- 4096 to 10
reg ression prOblem! 7 Box coordinates: —’ L2 Loss

(X, Yy, W, h) T
Where?? Correct coordinates:
M - (x’, y', w’, h’)

48



Detecting a single object

What?? Correct Label:
Class scores: Chocolate Pretzels
Chocolate Pretzels: *
0.9
Fully connected:  ,,,01a Bar: 0.02
4096 to 10 Potato Chips: 0.02 === Softmax Loss

Water Bottle: 0.02
Popcorn: 0.01

Multitask Loss

| “~ e 152 192 128 2048 2048
27 128 . o - *.': — —
A AN, 13 13
i — Ty
o A0 ‘ -

43(5
w

27 — \. 13 dense dense
| — Weighted Sum —> Loss
- - 192 192 128 :::‘mg g L
pooling

°
Figure copyright Alex Krizhevsky, llya Sutskever, and Ve Cto r °

Geoffrey Hinton, 2012. Reproduced with permission. 4096
Treat localization as a Fully connected:

regreSSion prOblem! 109610 10 Box coordinates: —’ L2 Loss

(x, ¥, w, h)

Where?? Correct coordinates:
\M . (', y', w’, h?)
49

L= Lcls T ﬂLreg

—_—

—>




Detecting a single object

What? ? Correct Label:

Class scores: Chocolate Pretzels

Chocolate Pretzels:
0.9

: . Fully connected: G562 Bar: 0.02
Often pretrained on ImageNet: Transfer 4096 to 10 Potato Chips: 0.02 === Softmax Loss

learning Water Bottle: 0.02
Popcorn: 0.01

Multitask Loss

—

Weighted Sum —’ Loss

L= Lcls T /1Lreg

Max

Figure copyright Alex Krizhevsky, llya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

—_—

Treat localization as a Fully connected:
regreSSion prOblem! 109610 10 Box coordinates: —’ L2 Loss

(x, ¥, w, h)

Where?? Correct coordinates:
M - (x’, y', w’, h’)
50
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Detecting a single object

What? ? Correct Label:

Class scores: Chocolate Pretzels

Chocolate Pretzels:
0.9

: . Fully connected: G562 Bar: 0.02
Often pretrained on ImageNet: Transfer 4096 to 10 Potato Chips: 0.02 === Softmax Loss

learning Water Bottle: 0.02
Popcorn: 0.01

Multitask Loss

—

Weighted Sum —’ Loss

L — LCZS + /1Lreg

Max

Figure copyright Alex Krizhevsky, llya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

—_—

Treat localization as a Fully connected:
regreSSion prOblem! 109610 10 Box coordinates: —’ L2 Loss
(x! y! W! h)
Problem: Images can have T |
i Where?? Correct coordinates:
M more than one object! s y', W, )
51



Detecting Multiple Objects

of 4

Strid

L) N
-~ ~N
N i }‘.‘.’ g/ N é » g/
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o »

N
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-
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v

b
e 12 i 2oas
13 l\ga
4 3 13- dense d
128 Max -
Max pooling 2588 2048
pooking
N\ i \
S
. 28 2 48
" AN \1)
- p = dense | denso .
8 Ma -
Max pooling LI
pooling
4.
/ X N v S
- AN\
& 192 128 2548
13 13 13
eeeee
Max -
Max pooling 2088
pooling

Hershey’s: (x, y, w, h)
4 numbers

Hershey’s: (x, y, w, h)
Flipz: (x, vy, w, h)
Reese’s (x, y, w, h)

12 numbers

Chips: (x, y, w, h)
Chips: (x, v, w, h)

Many numbers!

Need different numbers of

output per image
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops
of the image, CNN classifies each
crop as object or background

NE e e S e %,\ Hershey’s: No
NS ey e\ k==& V] Flipz: No

= — Reese’s: No
N e Background: Yes

128 Max
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops
of the image, CNN classifies each
crop as object or background

s = e\ e V\J\] Flipz: Yes

= — i Reese’s: No
e Background: No

128 Max
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops
of the image, CNN classifies each
crop as object or background

NE e e S e %,\ Hershey’s: No
NS ey e\ k==& V] Flipz: No

[ — Reese’s: Yes
N Background: No

128 Max
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops
of the image, CNN classifies each
crop as object or background

Question: How many possible boxes

are there in an image of size H x W? .
J Total possible boxes:

H W
Consider box of size h x w:
W—-—w+1D)H-h+1
Possible x positions: W -w + 1 }; 21 ( ) )
— W:

Possible y positions: H-h + 1

Possible positions: HH+1) WW+1)
(W-w+1) x (H-h+1) — 5 5
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Detecting Multiple Objects: Sliding Window

800 x 600 image has

~58M boxes. No way

we can evaluate them
all

Apply a CNN to many different crops
of the image, CNN classifies each
crop as object or background

Question: How many possible boxes

are there in an image of size H x W? .
J Total possible boxes:

H W
Consider box of size h x w:
W—-—w+1D)H-h+1
Possible x positions: W -w + 1 }; 21 ( ) )
— W:

Possible y positions: H-h + 1

Possible positions: HH+1) WW+1)
(W-w+1) x (H-h+1) — 5 5
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Region Proposals

* Find a small set of boxes that are likely to cover all objects

* Often based on heuristics: e.g. look for “blob-like” image regions

* Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al, “Selective Search for Object Recognition”, [JCV 2013
Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014
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R-CNN: Region-Based CNN
R-CNN: Region-Based CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN
R-CNN: Region-Based CNN

Regions of
Interest (Rol)
from a proposal
method (~2k)

Figure copyright Ross Girshick, 2015; source. Reproduced with permission

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN
R-CNN: Region-Based CNN

/__/ Warped image
s regions (224x224)

Regions of
Input = Interest (Rol)
image et VBN from a proposal

method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN
R-CNN: Region-Based CNN

Conv Foryvard each
Conv Net region through
oy Net ConvNet
Net ﬁWarped image
ﬁ regions (224x224)

Regions of
Interest (Rol)
from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Class

R-CNN: Region-Based CNN
R-CNN: Region-Based CNN

Class

Class

L]

Conv
Net

Conv
Net

Conv
Net

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.

Forward each
region through
ConvNet

ﬁ Warped image

regions (224x224)

Regions of
Interest (Rol)
from a proposal
method (~2k)

Classify each region

63

Figure copyright Ross Girshick, 2015; source. Reproduced with permission



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN
R-CNN: Region-Based CNN

Bbox || Class Classify each region
Bbox | | Class

Bbox | | Class ) t Forward each
1 Conv ST Bounding box regression:
Conv Net reslon throus Predict “transform” to correct the Rol: 4
Net ConvNet . bt b 4
Conv numbers (tx, ty, th, tw)
Net ﬁWarped image
é regions (224x224)

~ Regions of
Interest (Rol)
from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission o4



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Box Regression

Consider a region proposal with
center (px, py), width »,,, height p;,

Model predicts a transform (tx, ty, tw, th)
to correct the region proposal
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R-CNN: Box Regression

Consider a region proposal with
center (px, py), width p,,,, height p;,

Model predicts a transform (tx, ty, tw, th)
to correct the region proposal

The output box is defined by:

bx = Px T Dy Shift center by amount
by = Dy 4+ phty relative to proposal size

bw = Pw eXp(tw) Scale proposal; exp ensures
by, = py, exp(th) that scaling factor is > 0

66



R-CNN: Box Regression

Consider a region proposal with
center (px, py), width p,,,, height p;,

Model predicts a transform (tx, ty, tw, th)
to correct the region proposal

The output box is defined by: ~ When transform is O,

b, =D, + Dty output = proposal
by = py + Dnty o

b, = p,, exp(t,,) L2 regularization
b, = vy, exp(ty) encourages leaving

proposal unchanged
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R-CNN: Box Regression

Consider a region proposal with
center (px, py), width p,,,, height p;,

to correct the region proposal

The output box is defined by:
by = Dx + Puwix

by — py + Phty

by = Pw eXp(tw)

by, = ppn exp(ty)

Model predicts a transform (tx, ty, tw, th)

Scale / Translation invariance:
Transform encodes relative
difference between proposal
and output; important since

CNN doesn’t see absolute size
or position after cropping
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R-CNN: Box Regression

Consider a region proposal with
center (px, py), width p,,,, height p;,

to correct the region proposal

The output box is defined by
by = Dx + Puwix

by = py + pnty

by = Pw eXp(tw)

by, = ppn exp(ty)

Model predicts a transform (tx, ty, tw, th)

Given proposal and target output,
we can solve for the transform the
network should output:

ty = (by — Dx)/Pw
Ly = (by — py)/ph
tyw = log(b,,/pw)
t, = log(hn/pn)
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R-CNN: Training

Input Image

Ground Truth
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R-CNN: Training

Input Image

Ground Truth

Region Proposals

L\,

/1



R-CNN: Training

Input Image

: : B
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R-CNN: Training

Input Image

Categorize each region proposal as positive,
negative or neutral based on overlap with the
Ground truth boxes:

S e I Positive: > 0.5 loU with a GT box
N [ | Negative: < 0.3 loU with all GT boxes

| Neutral: between 0.3 and 0.5 loU with GT boxes
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R-CNN: Training

Input Image

Crop pixels from
each positive and
negative proposal,
resize to 224 x 224

Run each region through CNN
Positive regions: predict class and transform
Negative regions: just predict class
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R-CNN: Training

Input Image

Class target: Flipz
Box target: =————pp

Class target: Hershey’s

Box target: =————

Class target: Reese’s

Box target: m———

Ground Truth

Posmve

mm
Class target: Background

Run each region through CNN M = '~ Box target: None
Positive regions: predict class and transform e A I e e T e
Negative regions: just predict class | 75




Input Image

Region Proposals

L\,

R-CNN: Test time

Run proposal method:

1. Run CNN on each proposal to get class
scores, transforms

2. Threshold class scores to get a set of
detections

2 Problems:
1. CNN often outputs overlapping boxes
2. How to set thresholds?

76



Overlapping Boxes

Problem: Object detectors often output
many overlapping detections




D

R
Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output
many overlapping detections

Solution: Post-process raw detections
using Non-Max Suppression (NMS)

1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with
loU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1

L\,
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R
Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output
many overlapping detections

Solution: Post-process raw detections
using Non-Max Suppression (NMS)

1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with
loU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1

loU(" ,/7)=0.8
loU(" ,)=0.03
loU(l ,l )=0.05

L\,




Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output e P (Pretze1s)=0.7 g
many overlapping detections

Solution: Post-process raw detections

using Non-Max Suppression (NMS) ot "ﬁ’

1. Select next highest-scoring box = \

2. Eliminate lower-scoring boxes with P(pretzels)=0.9 ¥ e %
loU> threshold (e.g. 0.7) — T

;s
»

,’ :
-

3. If any boxes remain, GOTO 1

loU(M, )=0.85

L\,
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Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output
many overlapping detections

Solution: Post-process raw detections
using Non-Max Suppression (NMS)

1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with
loU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1

L\,
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R
Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output
many overlapping detections

Solution: Post-process raw detections
using Non-Max Suppression (NMS)

1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with
loU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1

Problem: NMS may eliminate “good”
boxes when objects are highly
overlapping... no good solution

L\, .

Crowd image is free for commercial use under the Pixabay license



https://pixabay.com/photos/audience-crowd-people-persons-828584/
https://pixabay.com/service/license/

DR

Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve

83



Evaluating Object Detectors:
Mean Average Precision (mAP)

All pretzel detections sorted by score

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision

~T-T-T-1-
(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest - - -

SCO re) All ground-truth pretzel boxes
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1.
2. For each category, compute Average Precision

Evaluating Object Detectors:
Mean Average Precision (mAP)

All pretzel detections sorted by score

Run object detector on all test images (with NMS)

(AP) = area under Precision vs Recall Curve Match: loU > 0.5

1. For each detection (highest score to lowest - -
SCore) All ground-truth pretzel boxes
1. If it matches some GT box with loU > 0.5,

mark it as positive and eliminate the GT
2. Otherwise mark it as negative

L\,

m
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DR

1. Run object detector on all test images (with NMS)

Evaluating Object Detectors:
Mean Average Precision (mAP)

2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest

score)

1.

2.
3.

L\,

If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
Otherwise mark it as negative

Plot a point on PR curve

All pretzel detections sorted by score

m

Match: loU > 0.5

All ground-truth pretzel boxes

Precision =1/1 =1.0
Recall = 1/3 =0.33

1.0 ®

Precision

Recall 1.0
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DR Evaluating Object Detectors:
Mean Average Precision (mAP)

All pretzel detections sorted by score

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest

SCOre) All ground-truth pretzel boxes
1. If it matches some GT box with loU > 0.5,
: Ly O Precision =2/2 =1.0
mark it as positive and eliminate the GT e 0 &7

2. Otherwise mark it as negative 1 0 e o
3. Plot a point on PR curve

Precision

1.0
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DR

1. Run object detector on all test images (with NMS)

Evaluating Object Detectors:
Mean Average Precision (mAP)

2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest

score)

1.

2.
3.

L\,

If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
Otherwise mark it as negative

Plot a point on PR curve

All pretzel detections sorted by score

mm

No match > 0.5 loU with GT

All ground-truth pretzel boxes

Precision = 2/3 = 0.67
Recall = 2/3 = 0.67

1.0 O O
@

Precision

Recall 1.0
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DR

1. Run object detector on all test images (with NMS)

Evaluating Object Detectors:
Mean Average Precision (mAP)

2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest

score)

1.

2.
3.

L\,

If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
Otherwise mark it as negative

Plot a point on PR curve

All pretzel detections sorted by score

mm

No match > 0.5 loU with GT

All ground-truth pretzel boxes

Precision = 2/4 = 0.5
Recall = 2/3 = 0.67

1.0 O O
O
Precision O

1.0

Recall
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DR

1. Run object detector on all test images (with NMS)

Evaluating Object Detectors:
Mean Average Precision (mAP)

2. For each category, compute Average Precision

(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest
score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR curve

L\,

All pretzel detections sorted by score

Match: > 0.5 loU

All ground-truth pretzel boxes

Precision = 3/5 = 0.6
Recall =3/3=1.0

1.0 O O
O
O
Precision O

1.0

Recall
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Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS) et ferecTons Sorted oY S0
2. For each category, compute Average Precision m m
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest -
SCOre) All ground-truth pretzel boxes
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative 1 0
3. Plot a point on PR curve
2. Average Precision (AP) = area under PR curve

Precision
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Evaluating Object Detectors:

Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest
score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR curve
2. Average Precision (AP) = area under PR curve

How to get AP = 1.0: Hit all GT boxes with loU >
0.5, and have no “false positive” detections
ranked above any ‘“true positives”

L\,

All pretzel detections sorted by score

mm

All ground-truth pretzel boxes

1.0

Precision

Recall 1.0
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DR

3.

Evaluating Object Detectors:
Mean Average Precision (mAP)

. Run object detector on all test images (with NMS)
. For each category, compute Average Precision

(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest
score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR curve
2. Average Precision (AP) = area under PR curve
Mean Average Precision (mAP) = average of AP
for each category

L\,

Flipz AP = 0.60
Hershey’'s AP = 0.85
Reese’s AP = 0.81
MAP@0.5 = 0.75



Next Time: Object Detectors and Segmentation
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Lecture 12
Object Detection
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Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course 95


https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

