

Project 3 Released

- Instructions available on the website
 - Here: https://rpm-lab.github.io/CSCI5980-

Spr23-DeepRob/projects/project3/

- New <u>PROPS Detection dataset</u>
- Implement CNN for classification and Faster
 R-CNN for detection
- Due Tuesday, March 14th 11:59 PM CT

Final Project Tasks

- 1. [Graded] Final Project Proposal document submission (2%)
- 2. [Graded] In-class topic-paper(s) presentation (4%)
- 3. In-class final project pitch
- 4. In-class final project checkpoint
- 5. [Graded] Reproduce published results (12%)
 - Algorithmic extension to obtain results with new idea, technique or dataset
- 6. [Graded] Video Presentation + Poster (4%)
- 7. [Graded] Final Report (2%)

Final Project Tasks

- 1. [Graded] Final Project Proposal document submission (2%)
- 2. [Graded] In-class to ic-paper(s) presentation (4%)
- 3. In-class final project
- 4. In-class final project of
- 5. [Graded] Reproduce
 - Algorithmic extens
- 6. [Graded] Video Prese
- 7. [Graded] Final Report

Recommendations:

- 1. Each member will read a paper in the topic.
- 2. Meet with the team and discuss your notes on the papers.
- 3. Select a paper your team want to reproduceextend...

Paper selection due tomorrow 02/24.

Update on the google-sheet next to your groups

Final Project Proposal due 03/02

A template will be sent out soon...

Final Project Tasks

- 1. [Graded] Final Project Proposal document submission (2%)
- 2. [Graded] In-class topic-paper(s) presentation (4%)
- 3. In-class final project hitch
- 4. In-class final project
- 5. [Graded] Reproduce
 - Algorithmic extens
- 6. [Graded] Video Prese
- 7. [Graded] Final Report

cknoint

Student lecture-presentations starting 03/02

If you presenting on a Tuesday

Meet with me during OH the previous Wednesday If you presenting on a Thursday

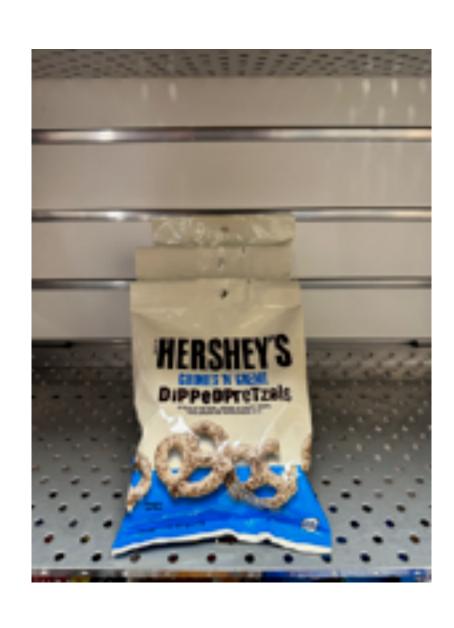
Meet with me during OH the previous Friday

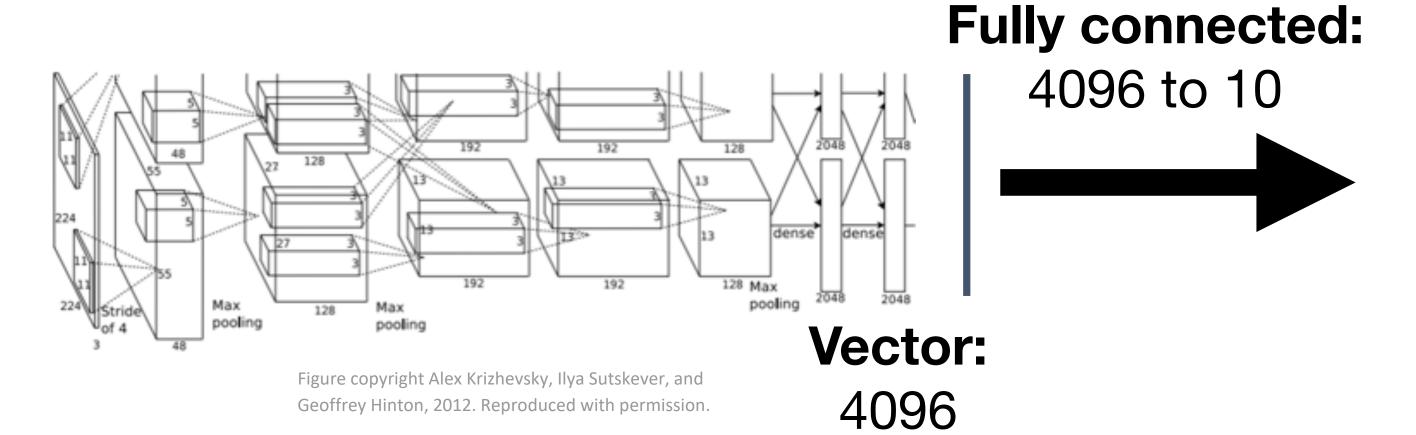
Recap: Deep Learning Software

Static Graphs vs Dynamic Graphs

PyTorch vs TensorFlow

So far: Image Classification





Chocolate Pretzels

Granola Bar

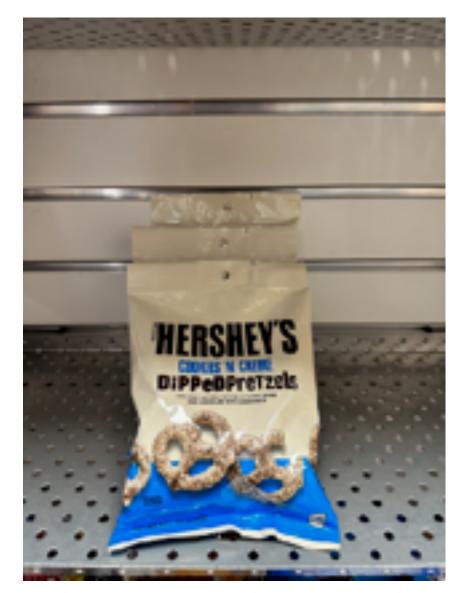
Potato Chips

Water Bottle

Popcorn

Computer Vision Tasks

Classification



"Chocolate Pretzels"

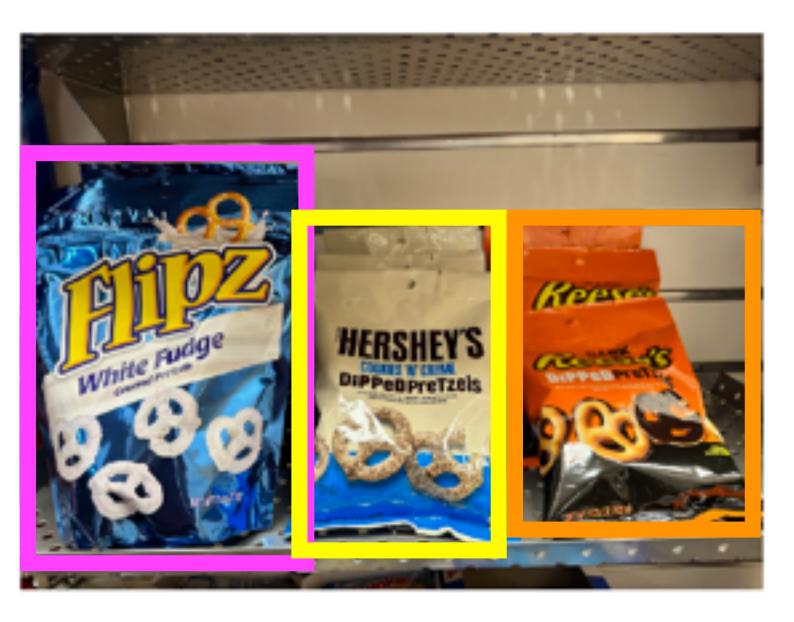
No spatial extent

Semantic Segmentation

Chocolate Pretzels, Shelf

No objects, just pixels

Object Detection



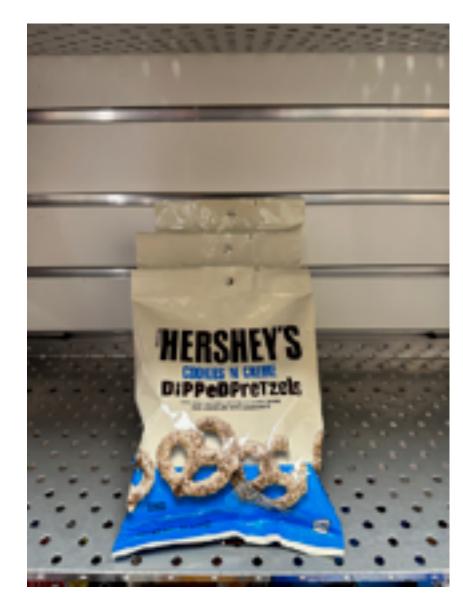
Instance Segmentation

Flipz, Hershey's, Keese's

Multiple objects

Computer Vision Tasks

Classification



"Chocolate Pretzels"

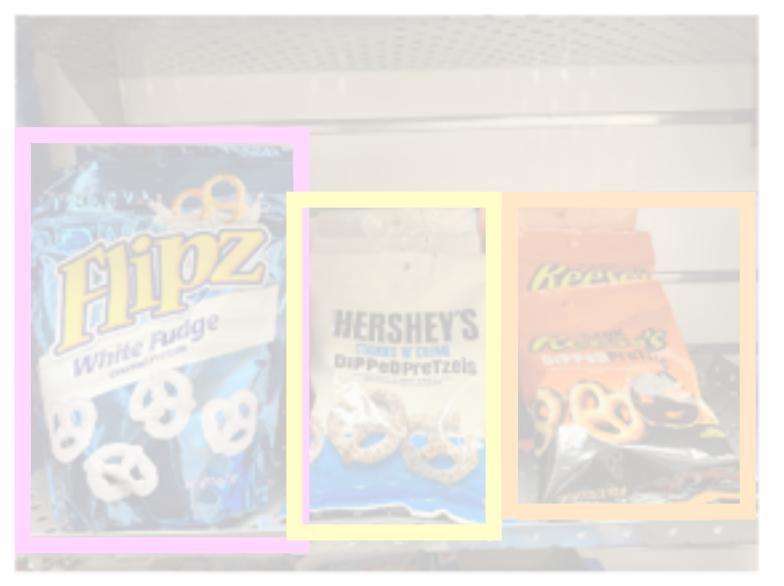
No spatial extent

Semantic Segmentation

Shelf

No objects, just pixels

Object **Detection**



Instance Segmentation

Flipz, Hershey's, Keese's

Multiple objects

Transfer Learning: Generalizing to New Tasks

1. Train on ImageNet

FC-1000 FC-4096 FC-4096 MaxPool **Conv-512 Conv-512** MaxPool **Conv-512 Conv-512** MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

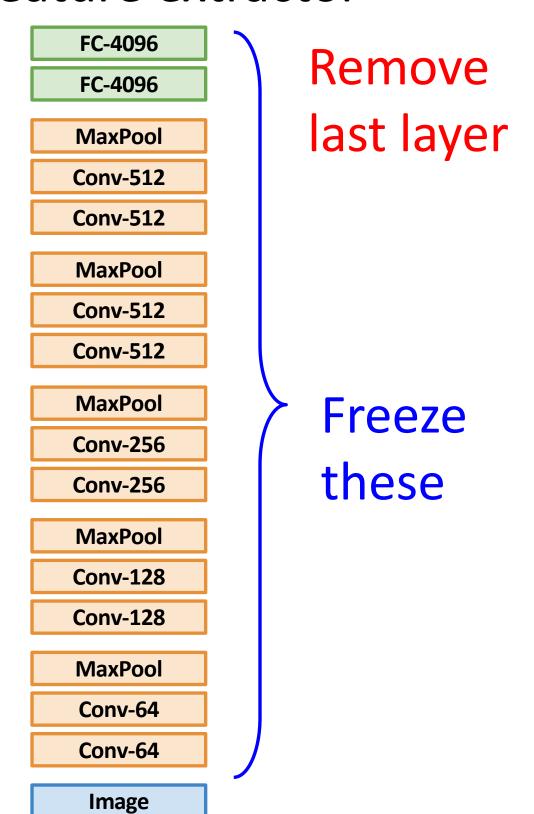
Conv-64

Image

1. Train on ImageNet

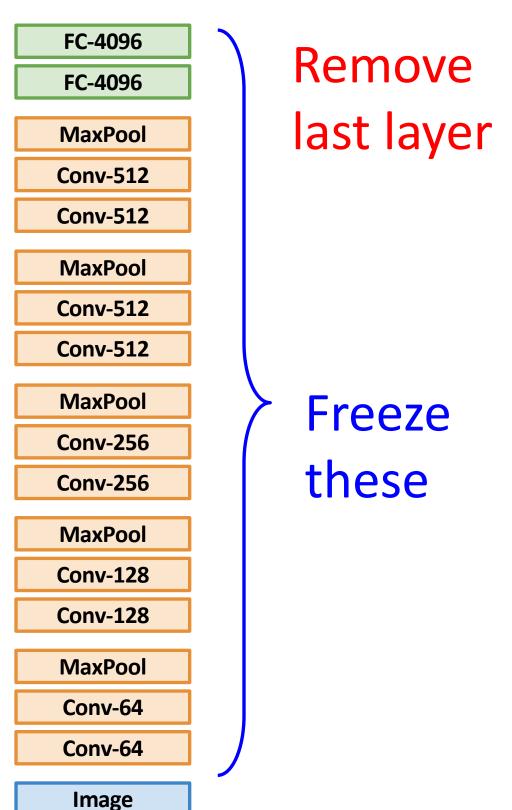
FC-1000 FC-4096 FC-4096 MaxPool **Conv-512 Conv-512** MaxPool **Conv-512 Conv-512** MaxPool **Conv-256 Conv-256** MaxPool **Conv-128 Conv-128** MaxPool Conv-64 Conv-64 **Image**

2. Use CNN as a feature extractor



1. Train on ImageNet

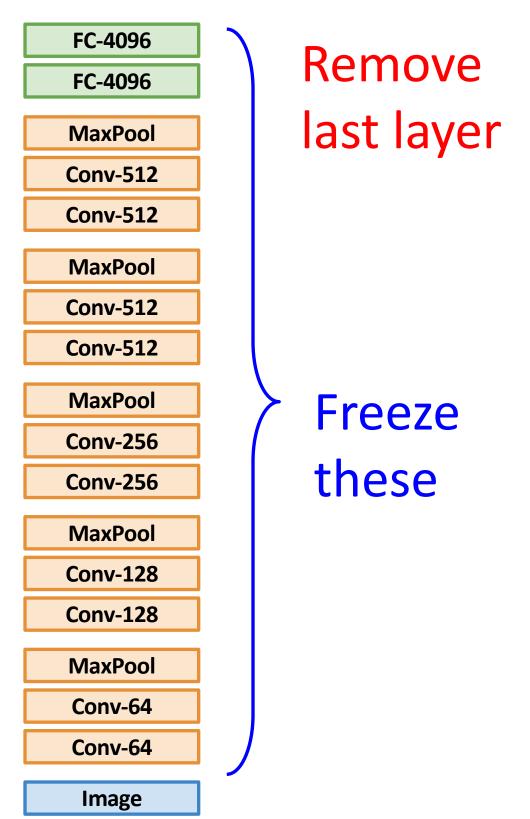
2. Use CNN as a feature extractor



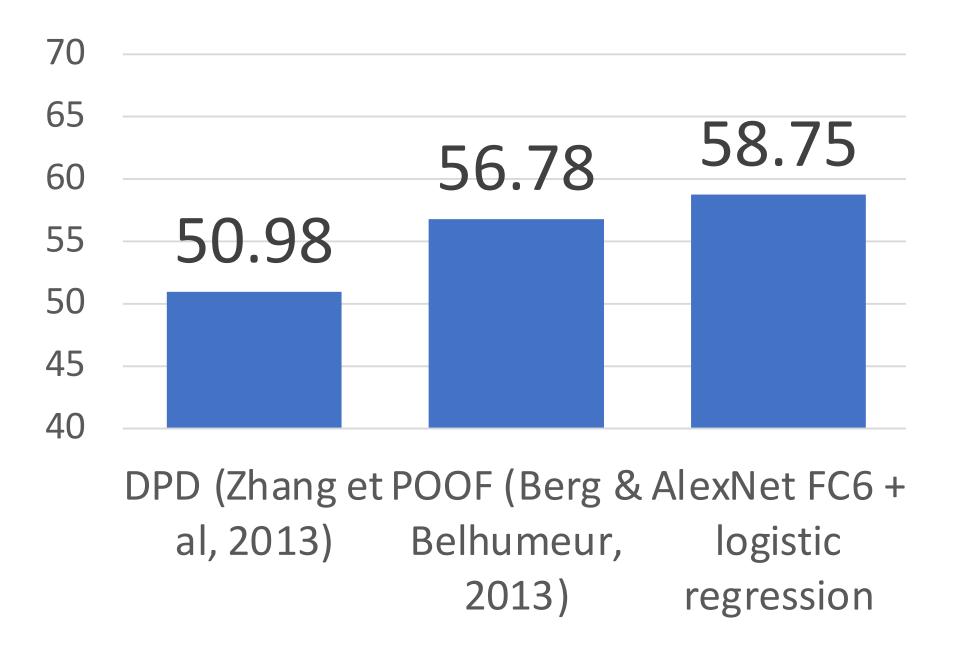
Classification on Caltech-101 Mean Accuracy per Category 0.8 0.6 LogReg DeCAF6 w/ Dropout SVM DeCAF6 w/ Dropout Yang et al. (2009) 35 15 25 30 Num Train per Category

1. Train on ImageNet

2. Use CNN as a feature extractor

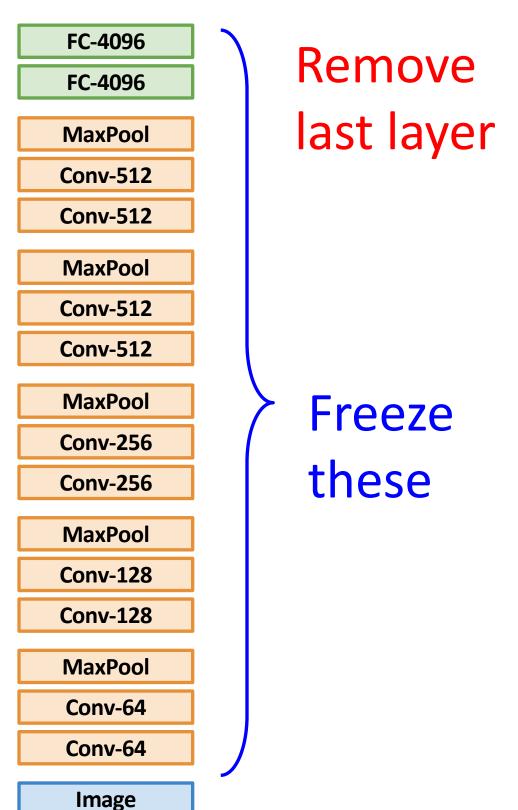


Bird Classification on Caltech-UCSD

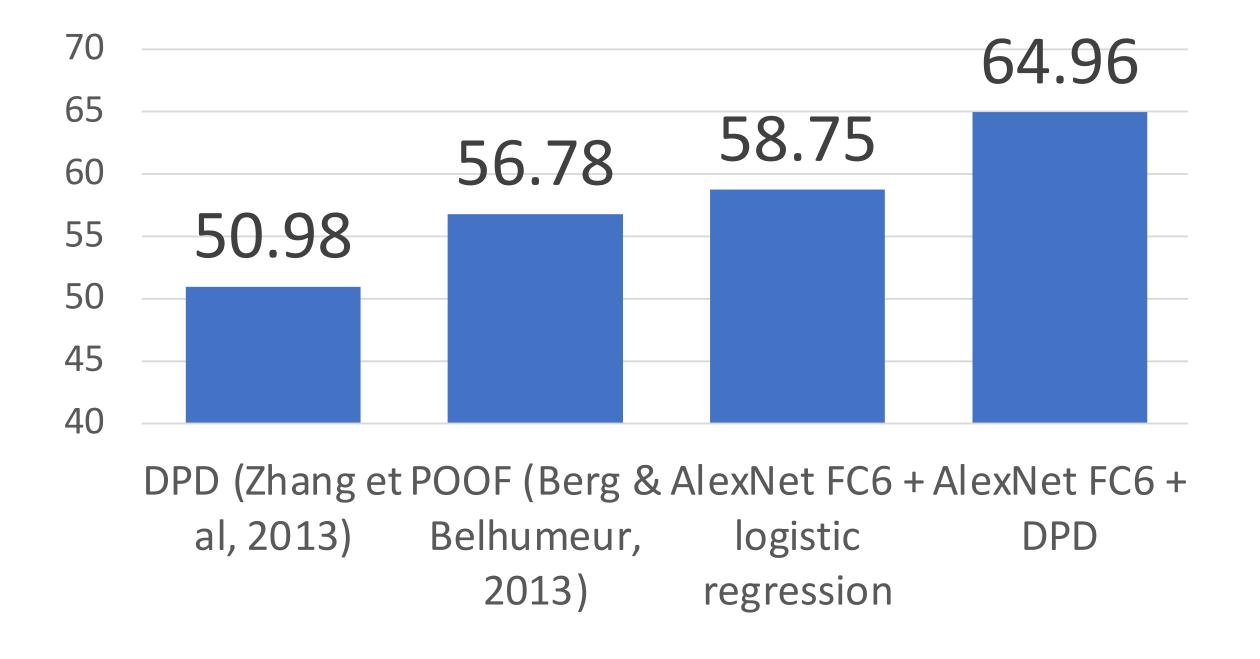


1. Train on ImageNet

2. Use CNN as a feature extractor

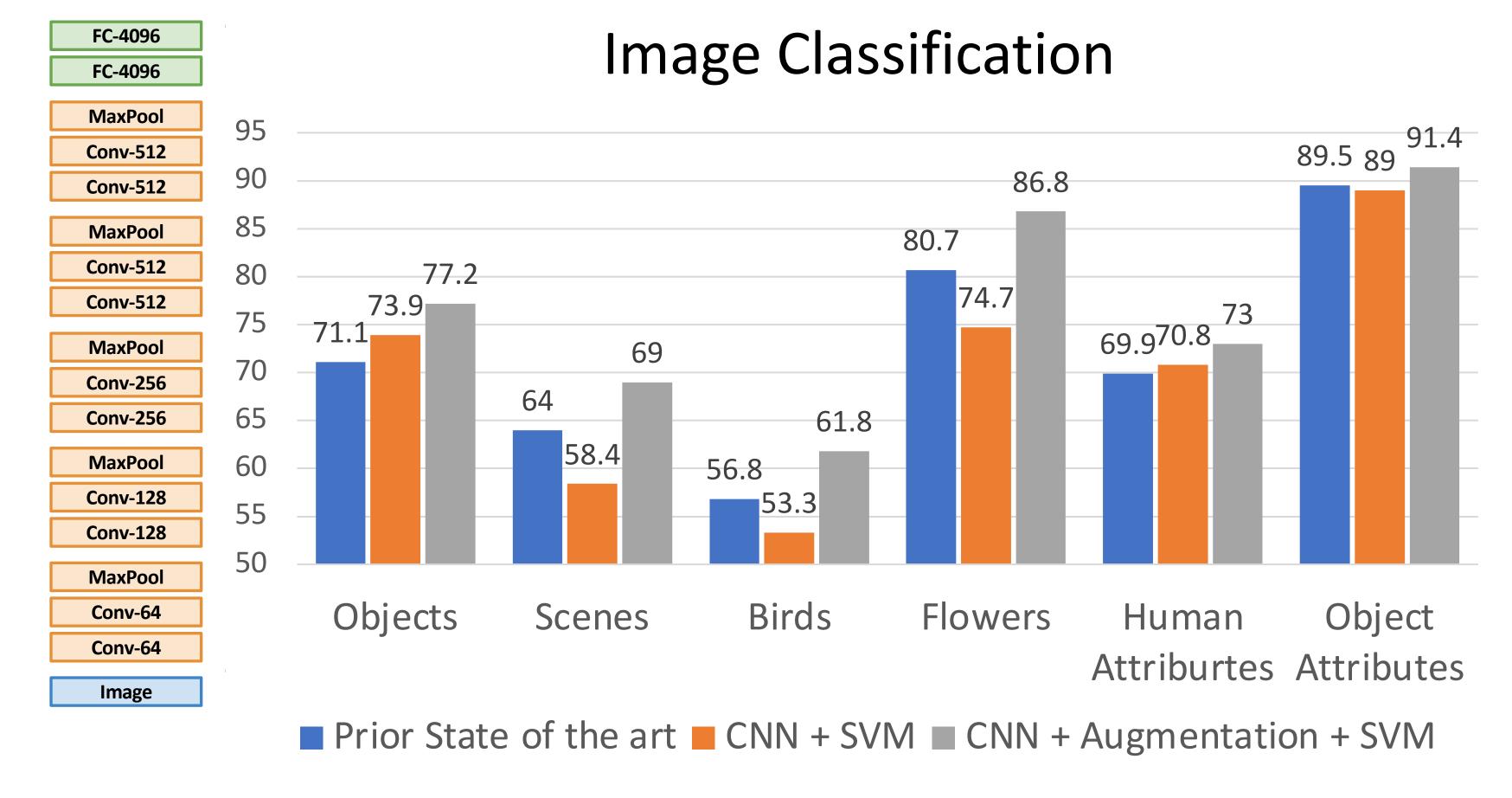


Bird Classification on Caltech-UCSD



1. Train on ImageNet

2. Use CNN as a feature extractor



1. Train on ImageNet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512

Conv-512

MaxPool
Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

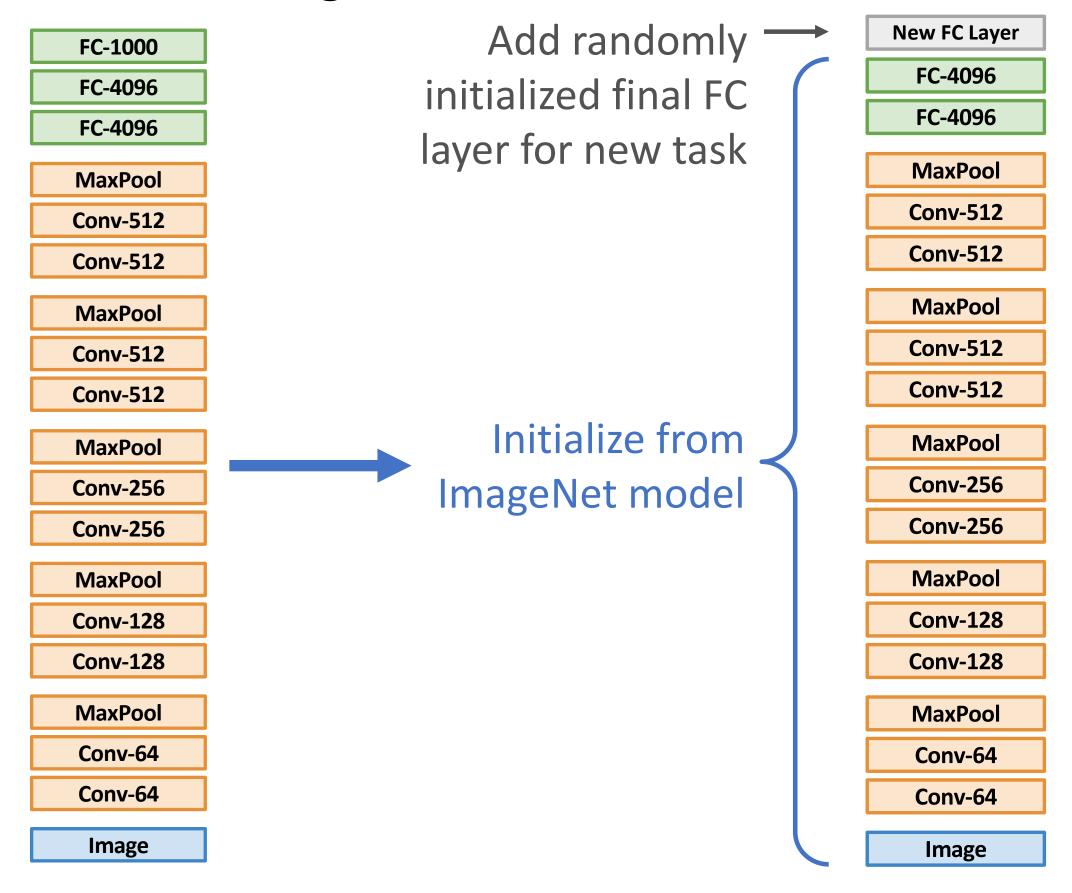
MaxPool

Conv-64

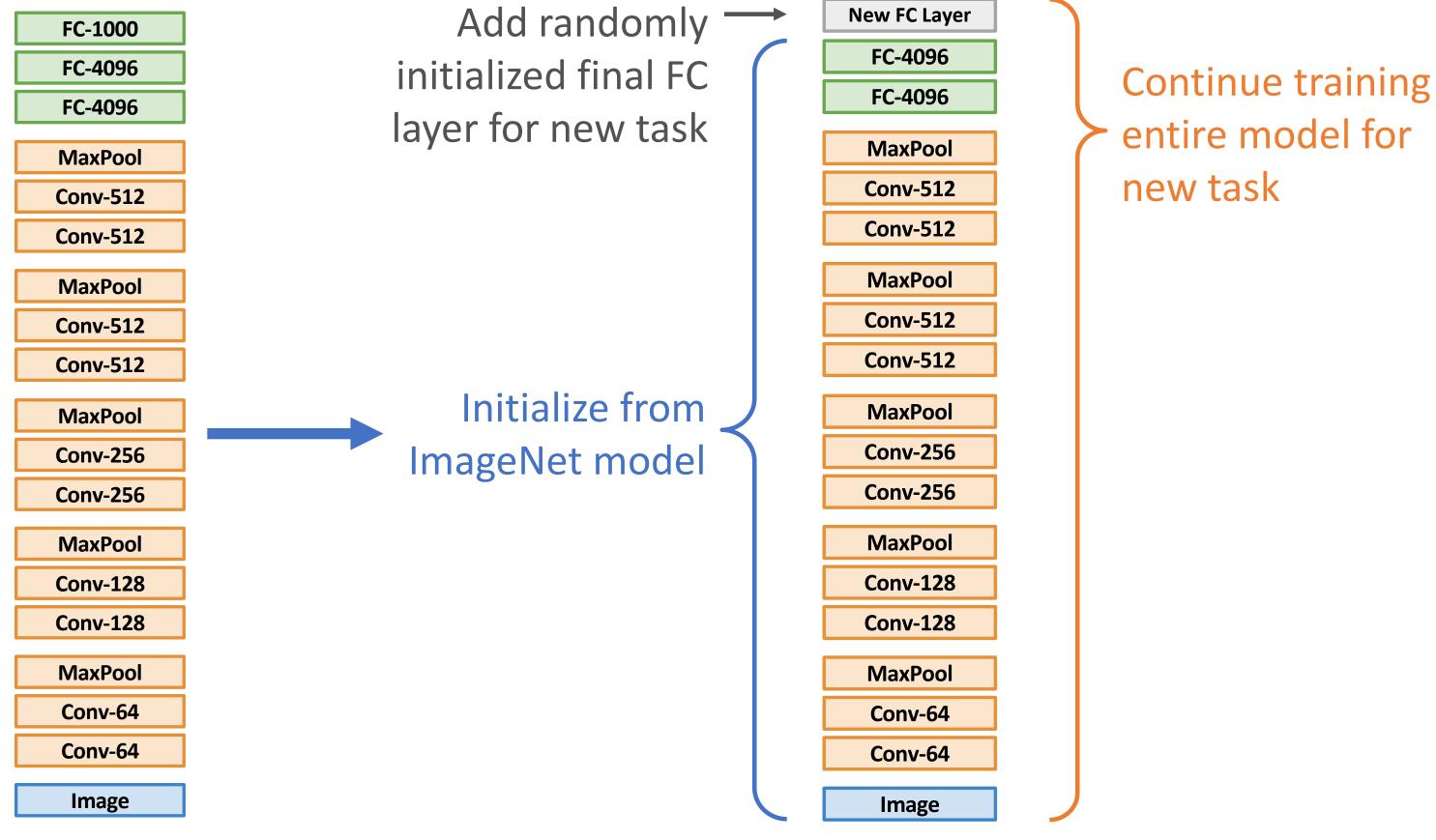
Conv-64

Image

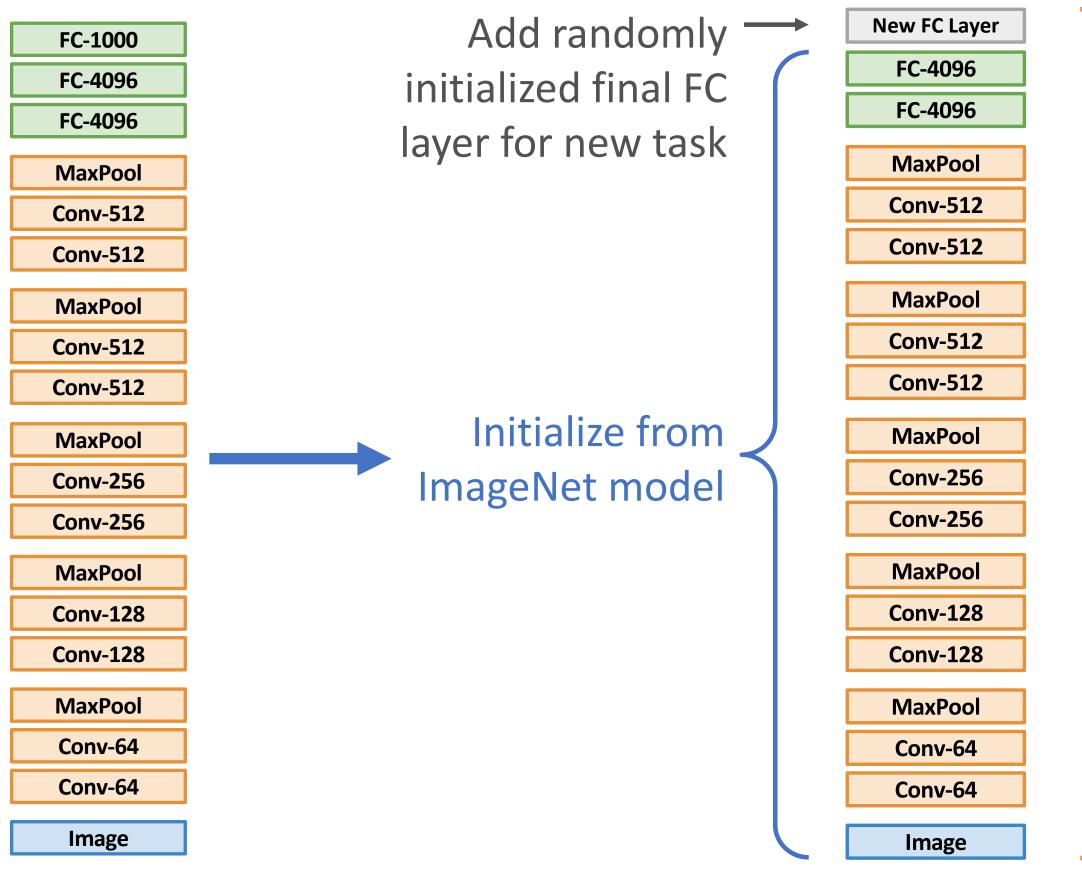
1. Train on ImageNet



1. Train on ImageNet



1. Train on ImageNet

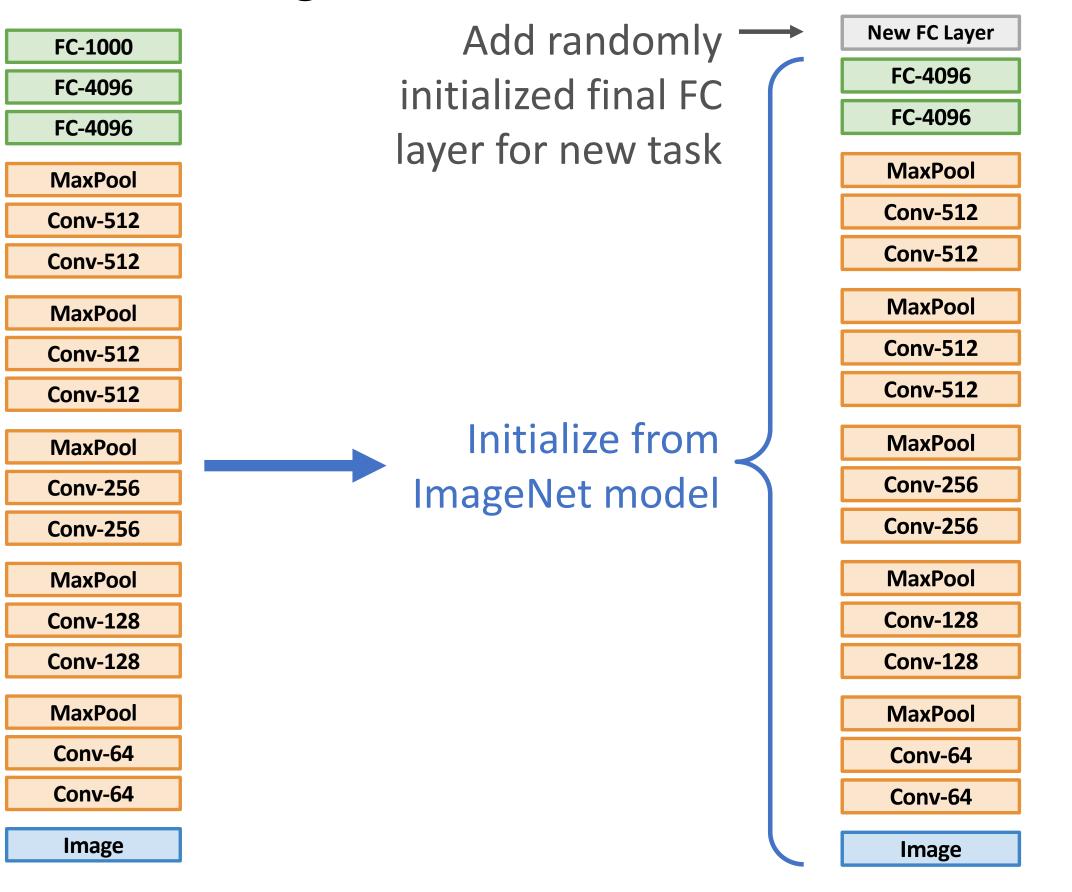


Continue training entire model for new task

Some tricks:

- Train with feature extraction first before finetuning
- Lower the learning rate: use ~1/10 of LR used in original training
- Sometimes freeze lower layers to save computation

1. Train on ImageNet



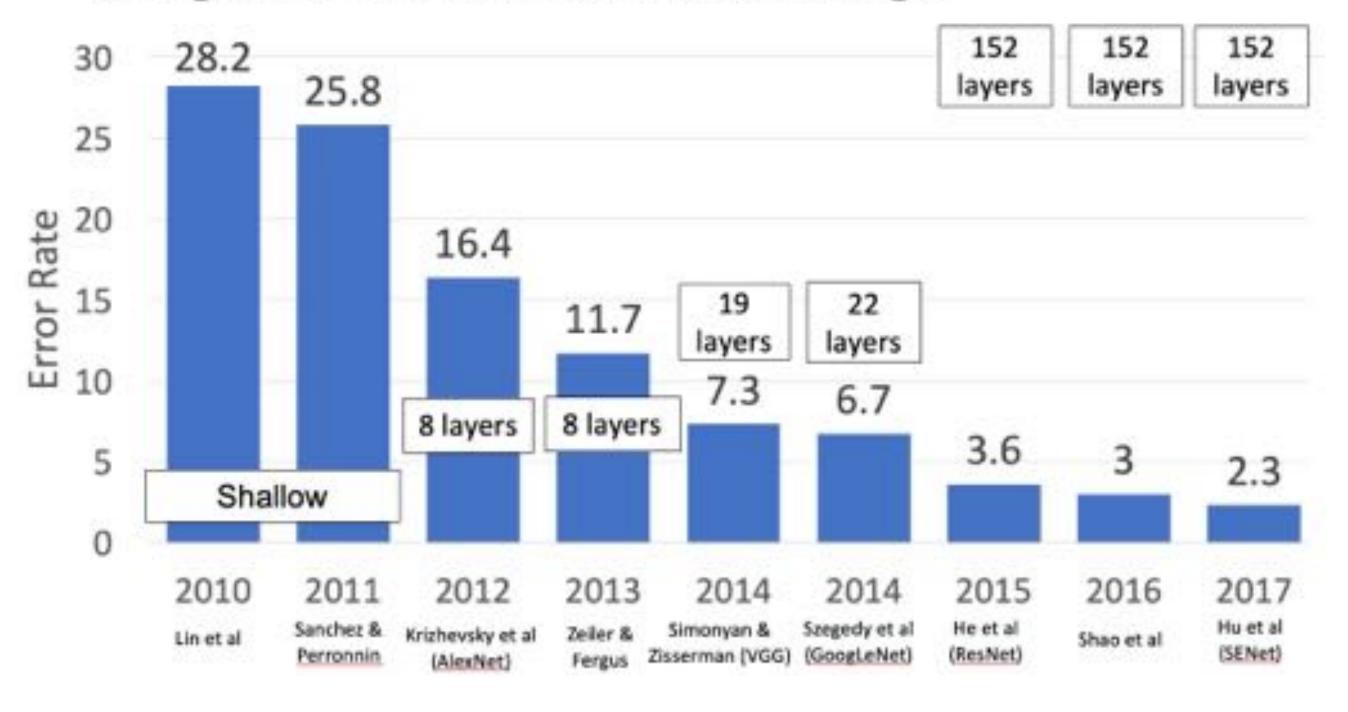
Continue training entire model for new task

Compared with feature extraction, fine-tuning:

- Requires more data
- Is computationally expensive
- Can give higher accuracies

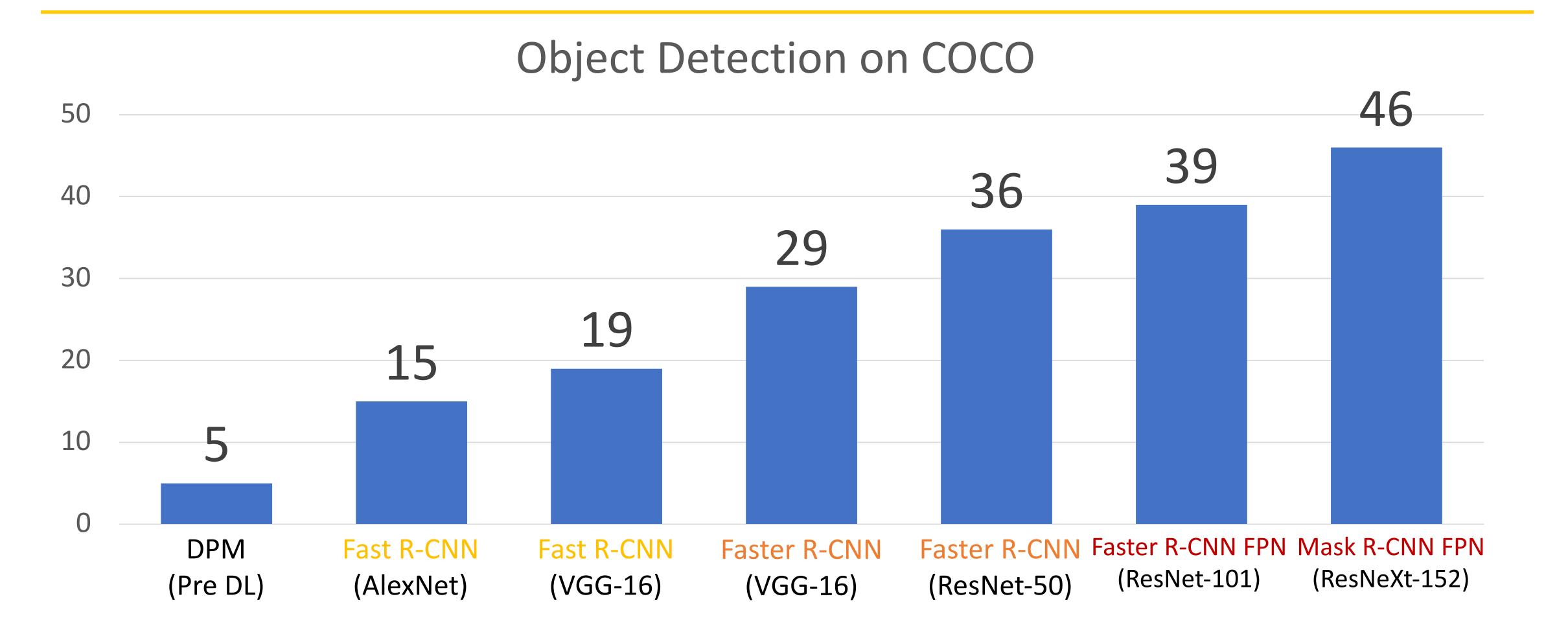
Transfer Learning: Architecture Matters!

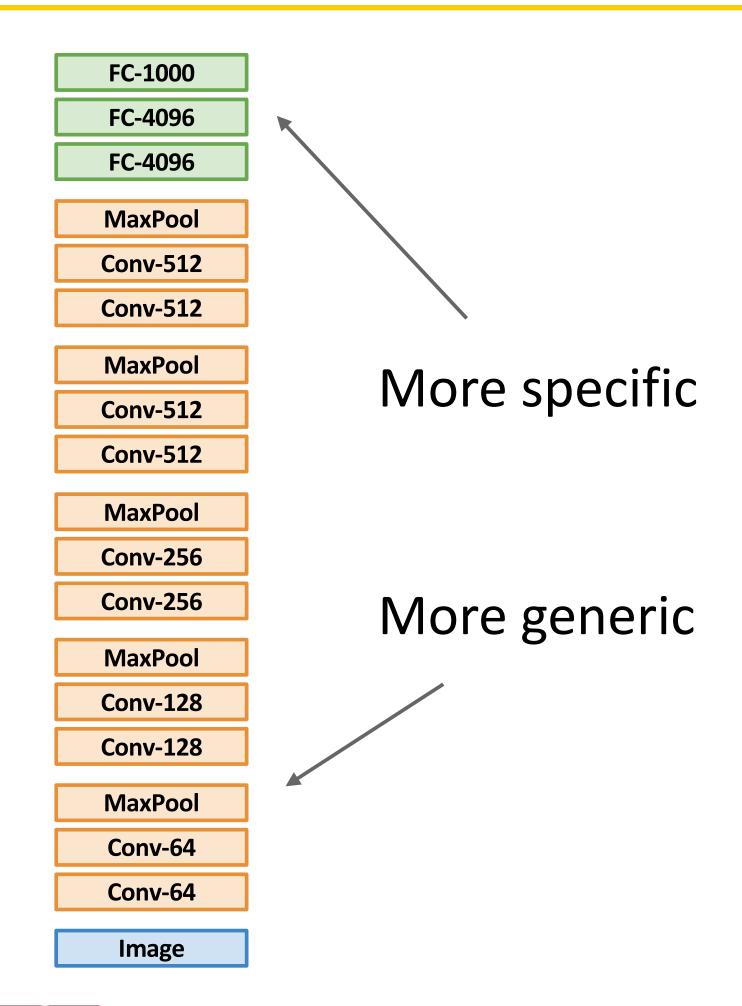
ImageNet Classification Challenge



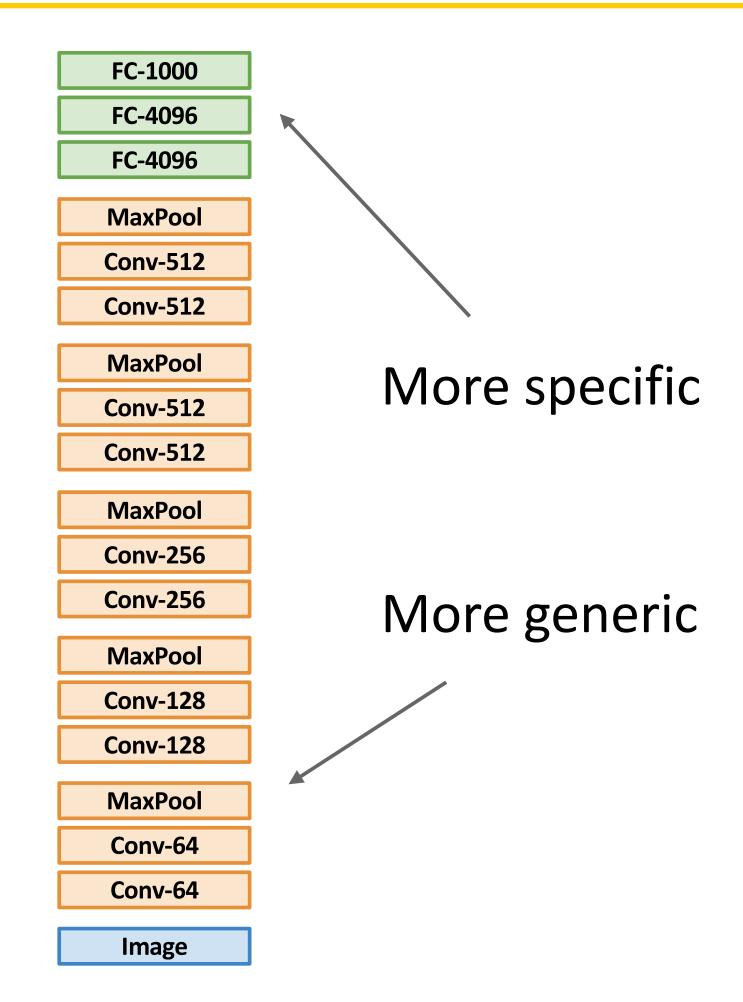
Improvements in CNN architecture leads to improvements in many down stream tasks thanks to transfer learning!

Transfer Learning: Architecture Matters!

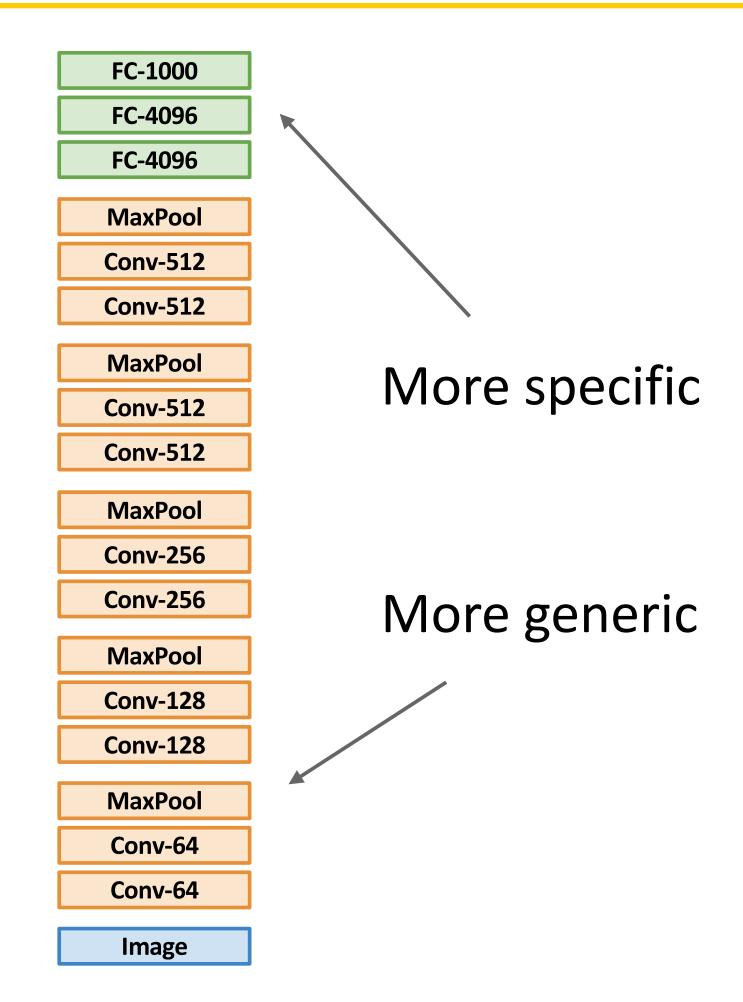




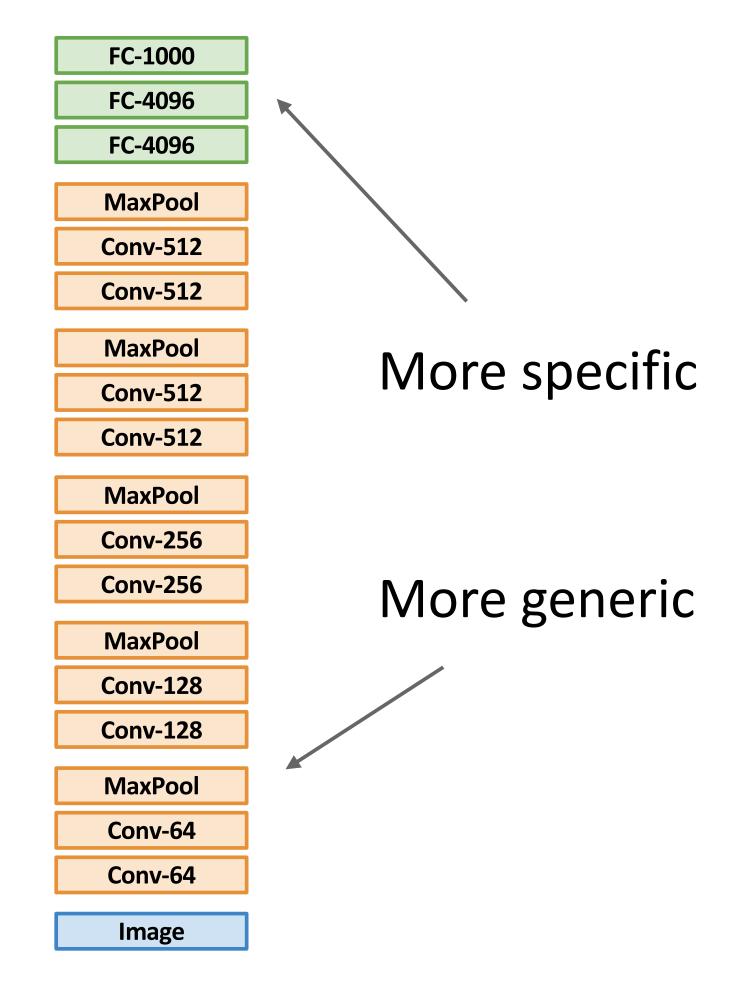
	Dataset similar to ImageNet	Dataset very different from ImageNet
Very little data (10s to 100s)	?	?
Quite a lot of data (100s to 1000s)	?	?



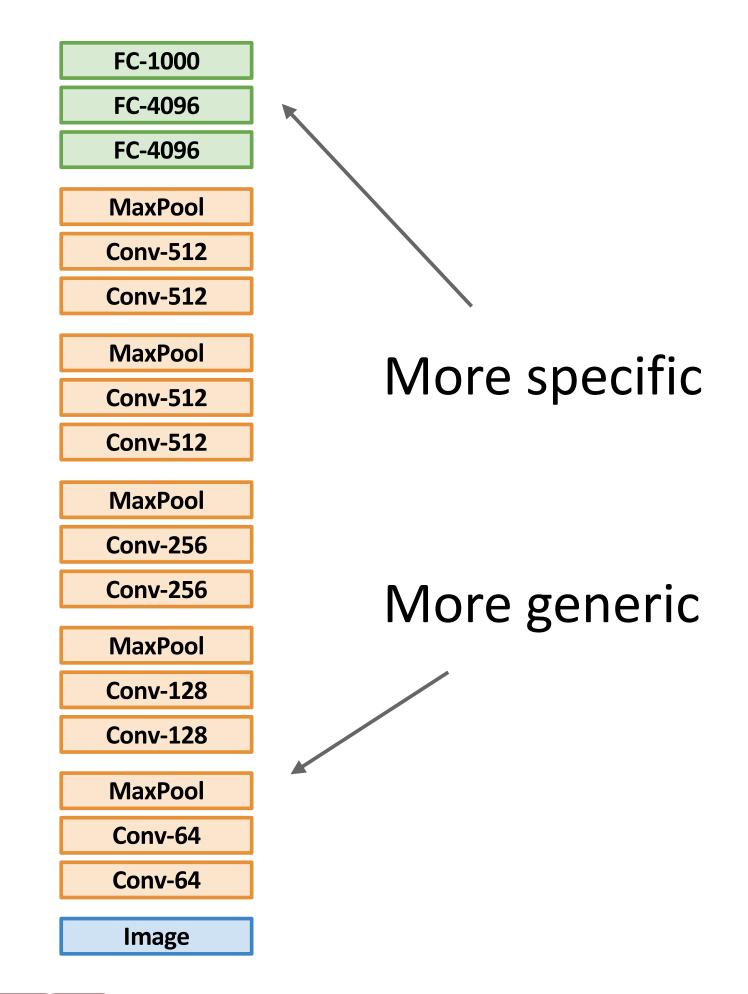
	Dataset similar to ImageNet	Dataset very different from ImageNet
Very little data (10s to 100s)	Use Linear Classifier on top layer	?
Quite a lot of data (100s to 1000s)	?	?



	Dataset similar to ImageNet	Dataset very different from ImageNet
Very little data (10s to 100s)	Use Linear Classifier on top layer	?
Quite a lot of data (100s to 1000s)	Finetune a few layers	?



	Dataset similar to ImageNet	Dataset very different from ImageNet
Very little data (10s to 100s)	Use Linear Classifier on top layer	?
Quite a lot of data (100s to 1000s)	Finetune a few layers	Finetune a larger number of layers

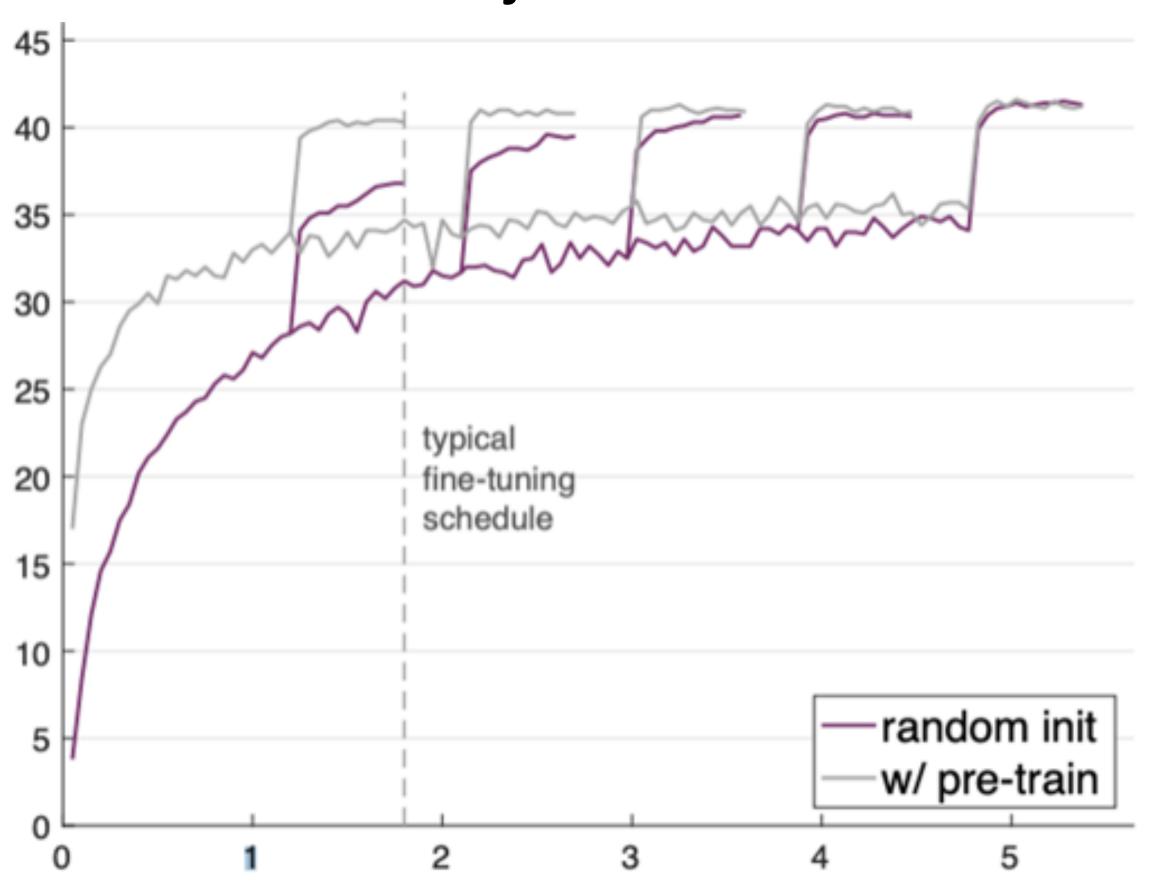


	Dataset similar to ImageNet	Dataset very different from ImageNet
Very little data (10s to 100s)	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
Quite a lot of data (100s to 1000s)	Finetune a few layers	Finetune a larger number of layers

DR

Transfer Learning can help you converge faster

COCO object detection



If you have enough data and train for much longer, random initialization can sometimes do as well as transfer learning

Transfer Learning is persvasive! It's the norm, not the exception

Pretraining for Robotics (PT4R)

Workshop at the 2023 International Conference on Robotics and Automation - ICRA London, May 29 2023, full-day workshop

Very active area of research!

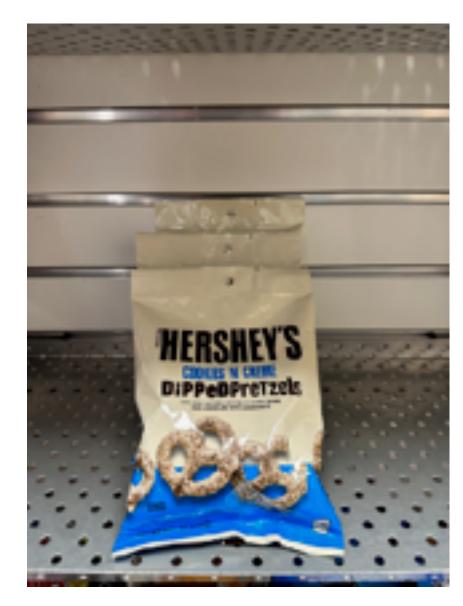
Call for papers

Important dates (all times AoE)

- Submissions open: Feb 15th 2023
- Submission deadline: Apr 14th 2023
- Decision notification: Apr 30th 2023
- Camera ready deadline: May 14th 2023
- Workshop: May 29th 2023

Classification: Transferring to New Tasks

Classification



"Chocolate Pretzels"

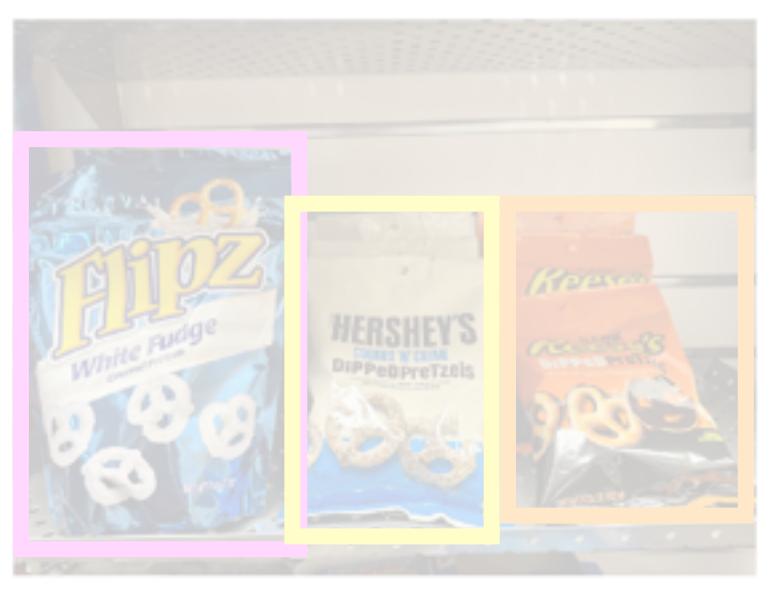
No spatial extent

Semantic Segmentation

Chocolate Pretzels, Shelf

No objects, just pixels

Object Detection



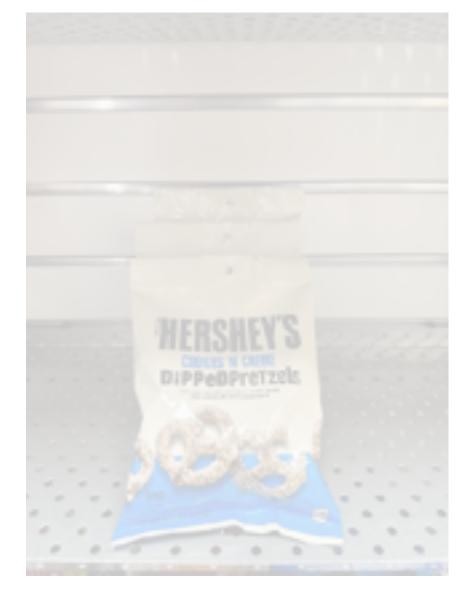
Instance Segmentation

Flipz, Hershey's, Keese's

Multiple objects

Today: Object Detection

Classification



"Chocolate Pretzels"

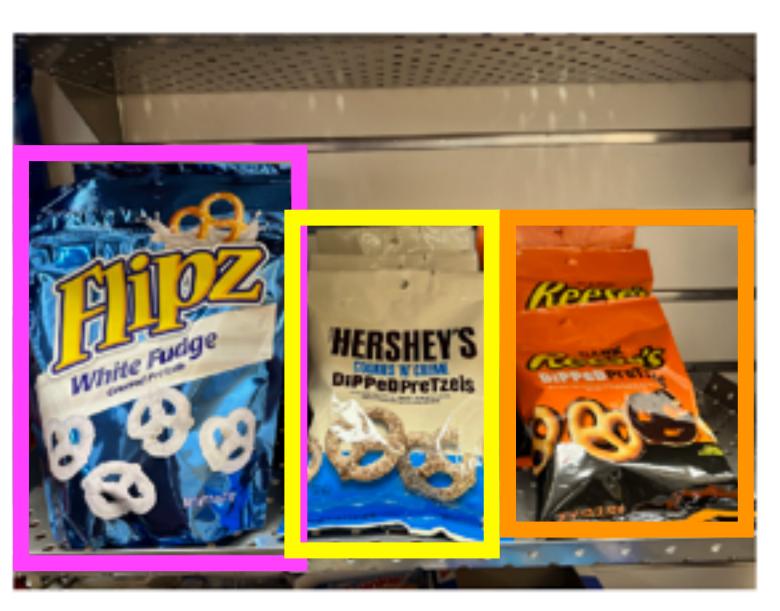
No spatial extent

Semantic Segmentation

Shelf

No objects, just pixels

Object Detection



Instance Segmentation

Flipz, Hershey's, Keese's

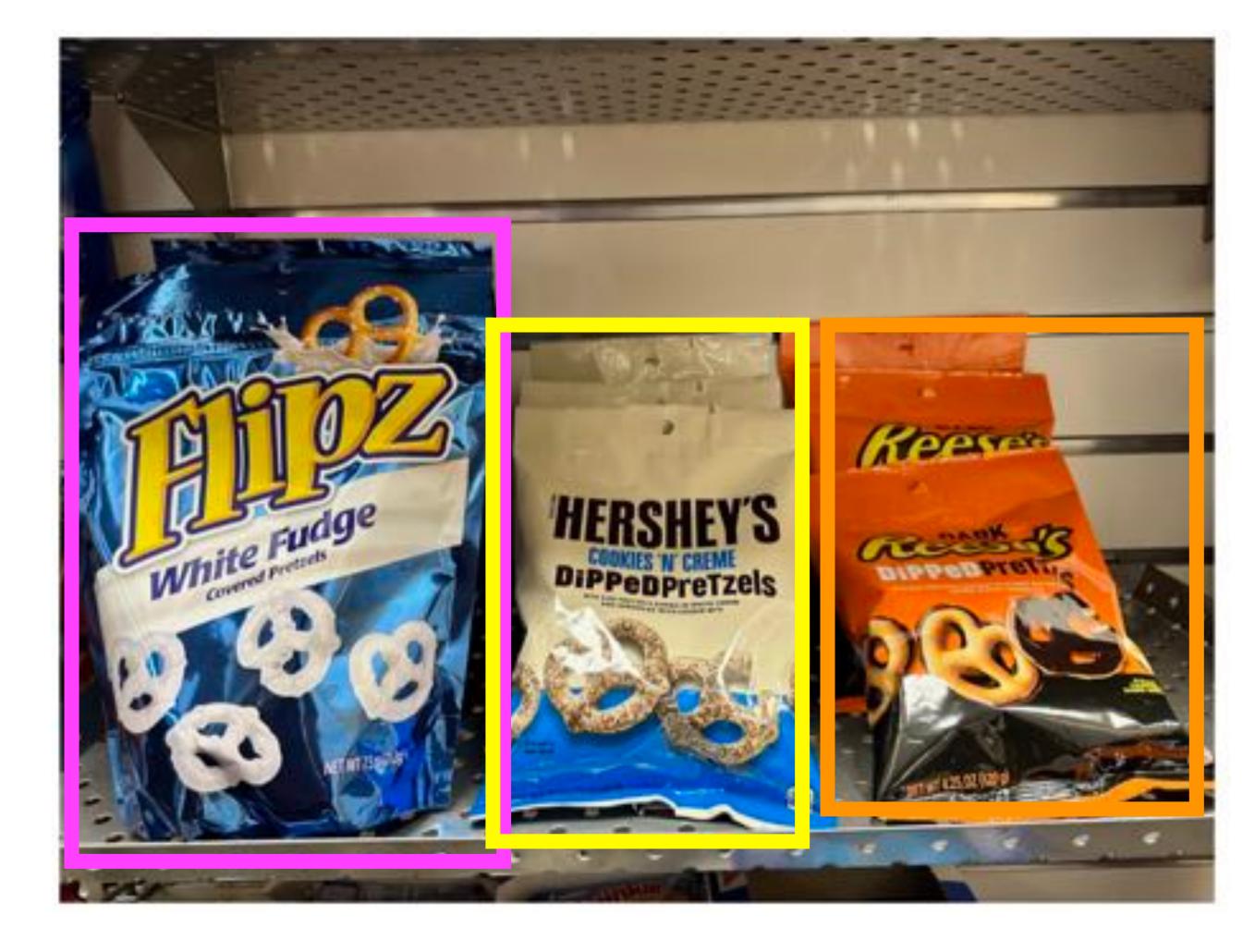
Multiple objects

Object Detection: Task definition

Input: Single RGB image

Output: A set of detected objects; For each object predict:

- 1. Category label (from a fixed set of labels)
- 2. Bounding box (four numbers: x, y, width, height)

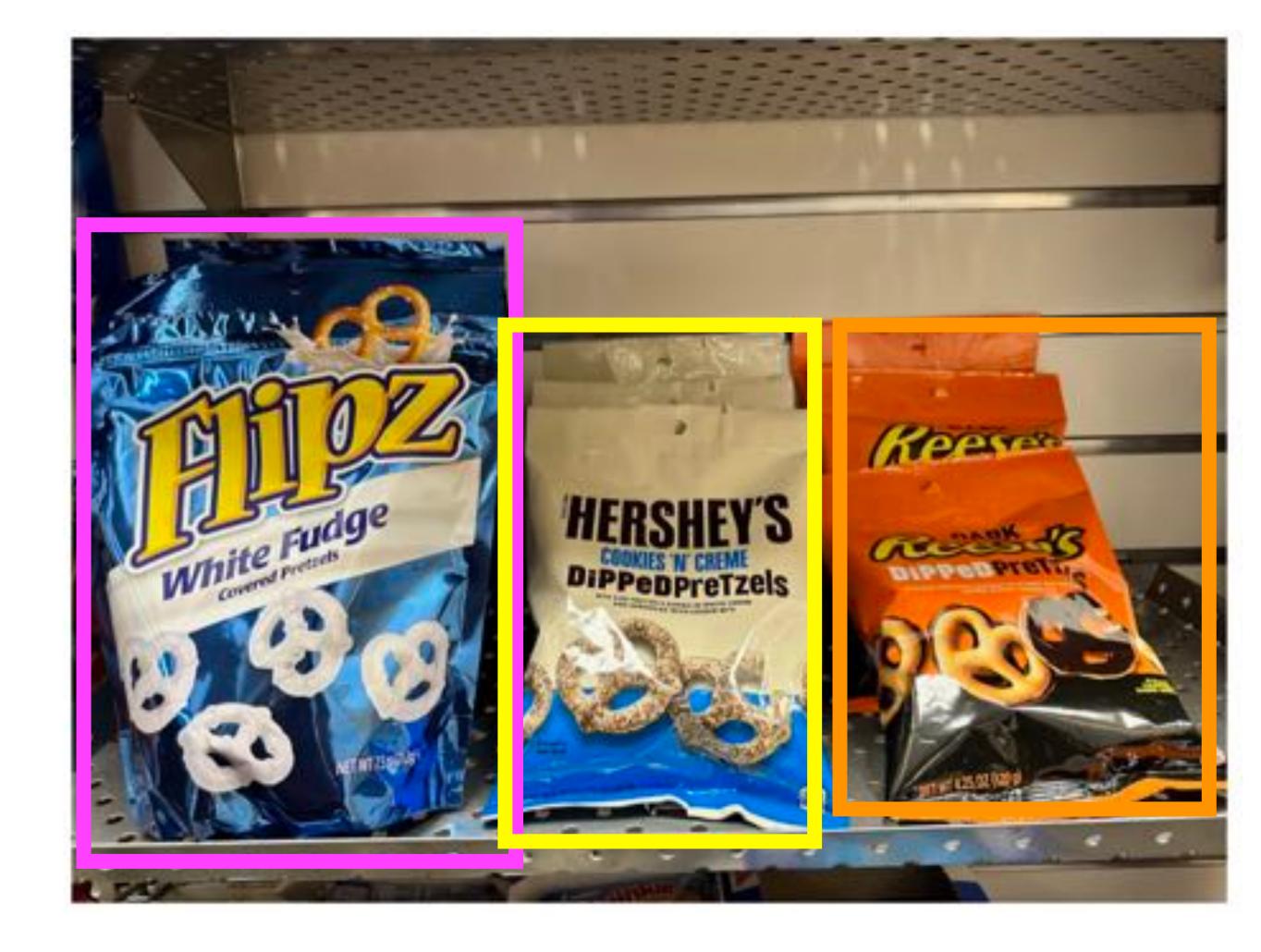


Object Detection: Challenges

Multiple outputs: Need to output variable numbers of objects per image

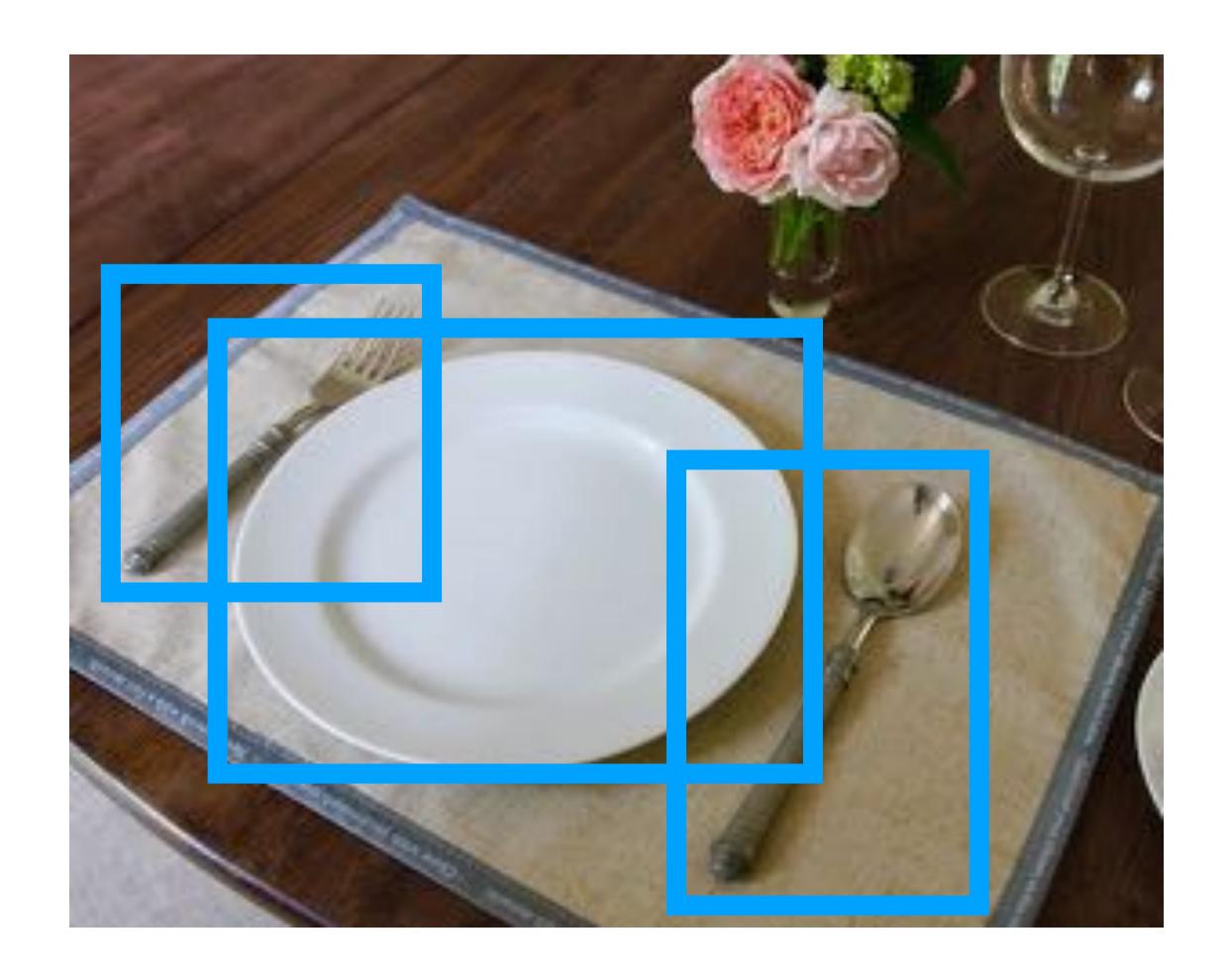
Multiple types of output: Need to predict "what" (category label) as well as "where" (bounding box)

Large images: Classification works at 224x224; need higher resolution for detection, often ~800x600



Bounding Boxes

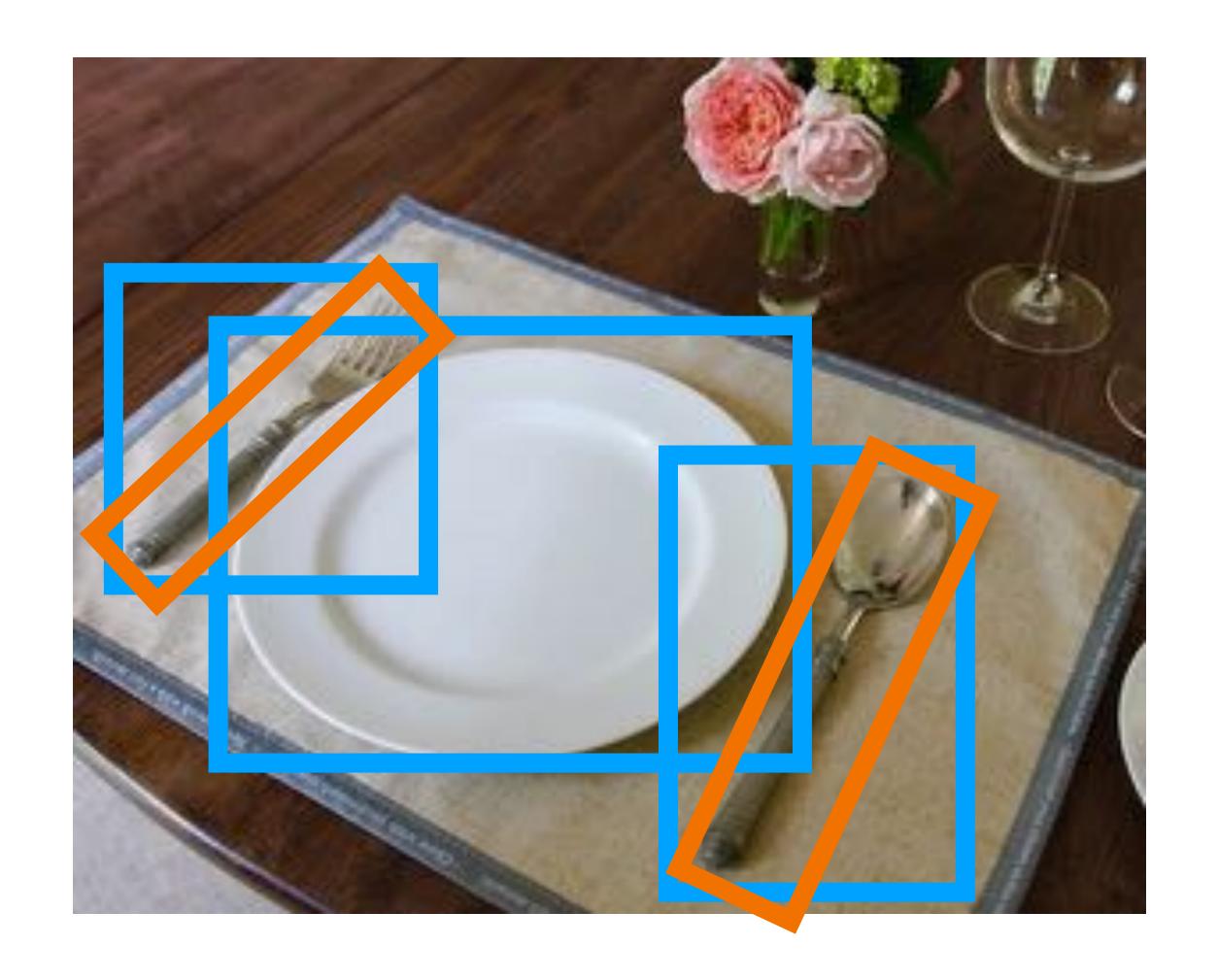
Bounding boxes are typically axisaligned



Bounding Boxes

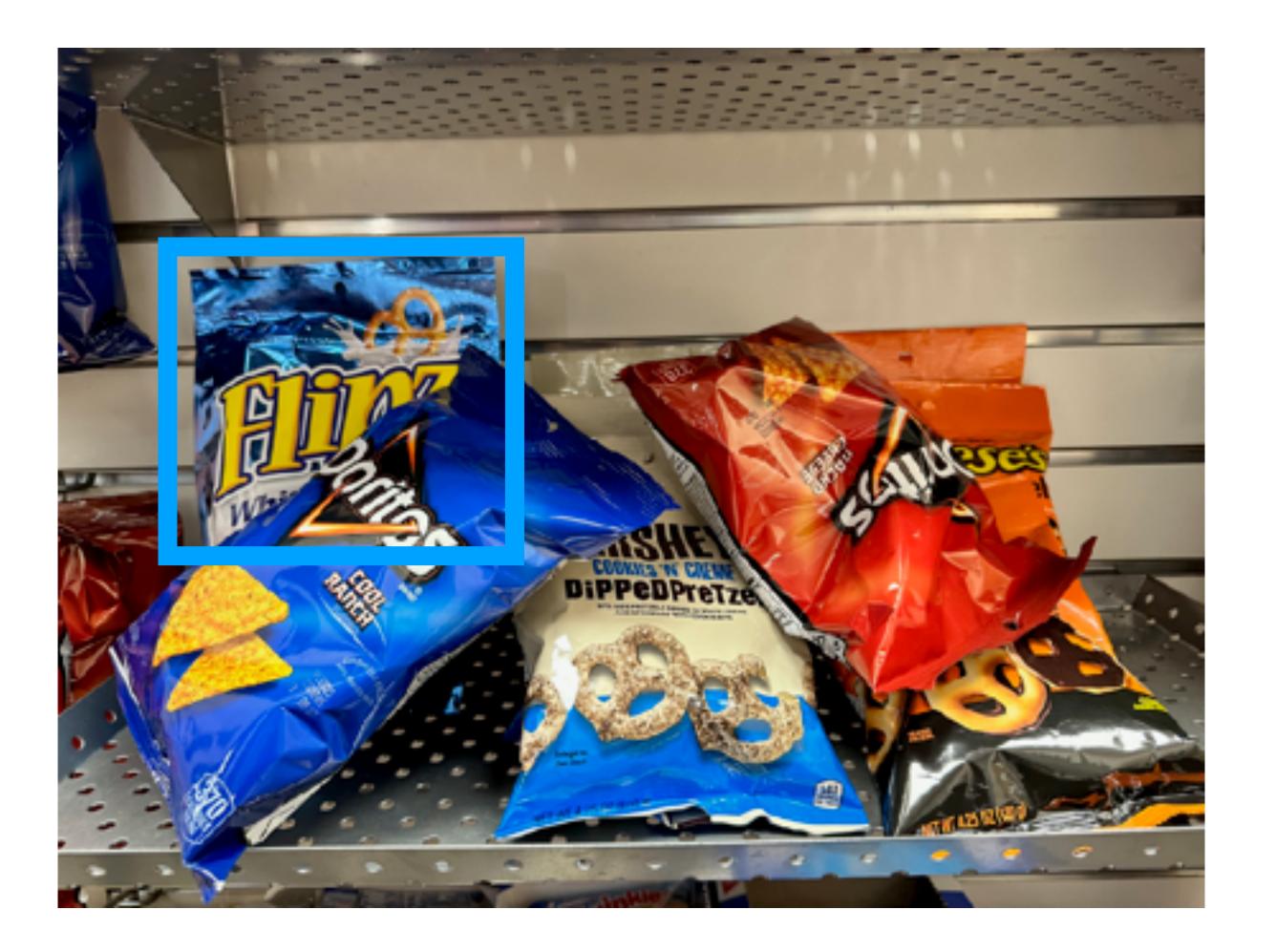
Bounding boxes are typically axisaligned

Oriented boxes are much less common



Object Detection: Modal vs Amodal Boxes

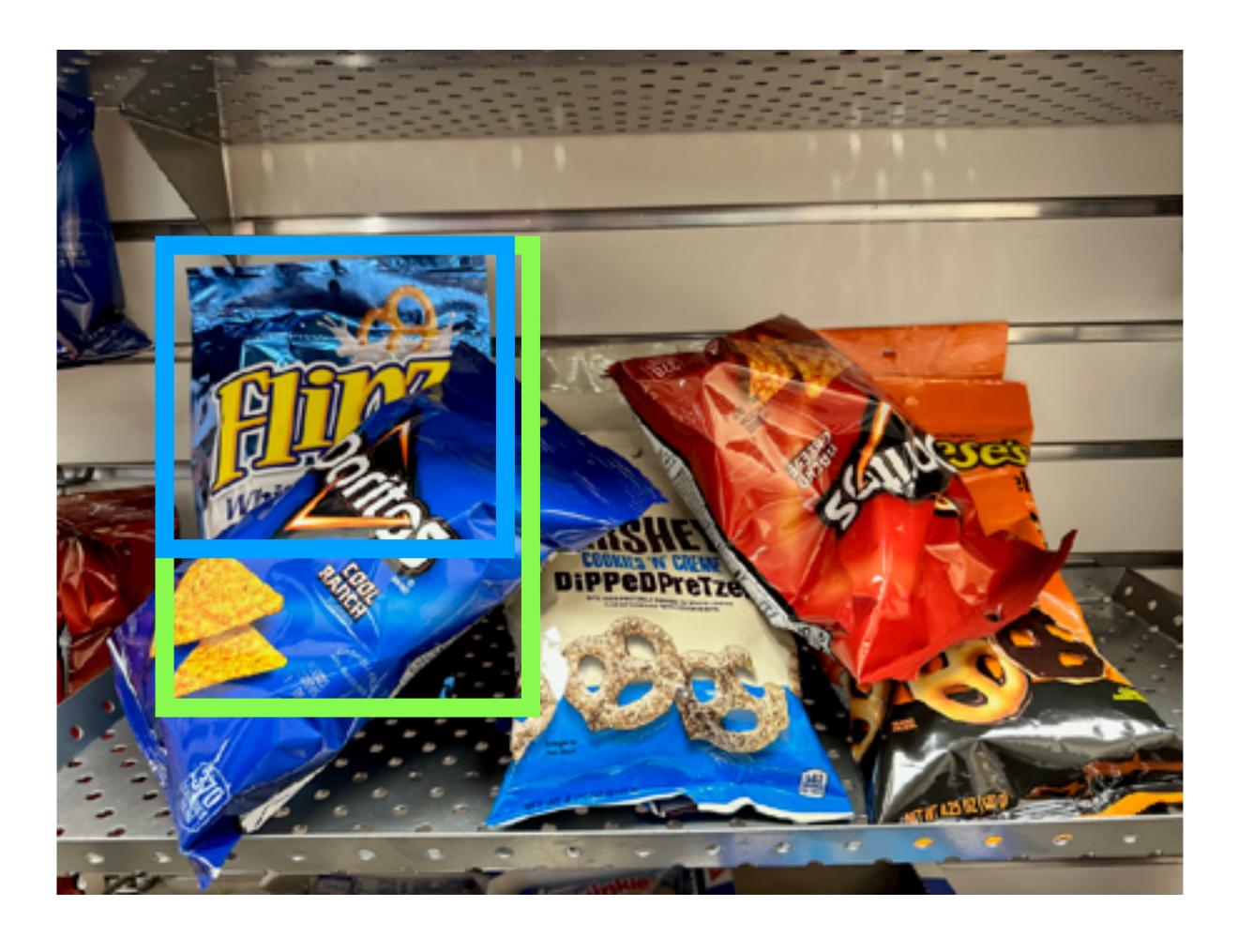
Bounding boxes cover only the visible portion of the object



Object Detection: Modal vs Amodal Boxes

Bounding boxes cover only the visible portion of the object

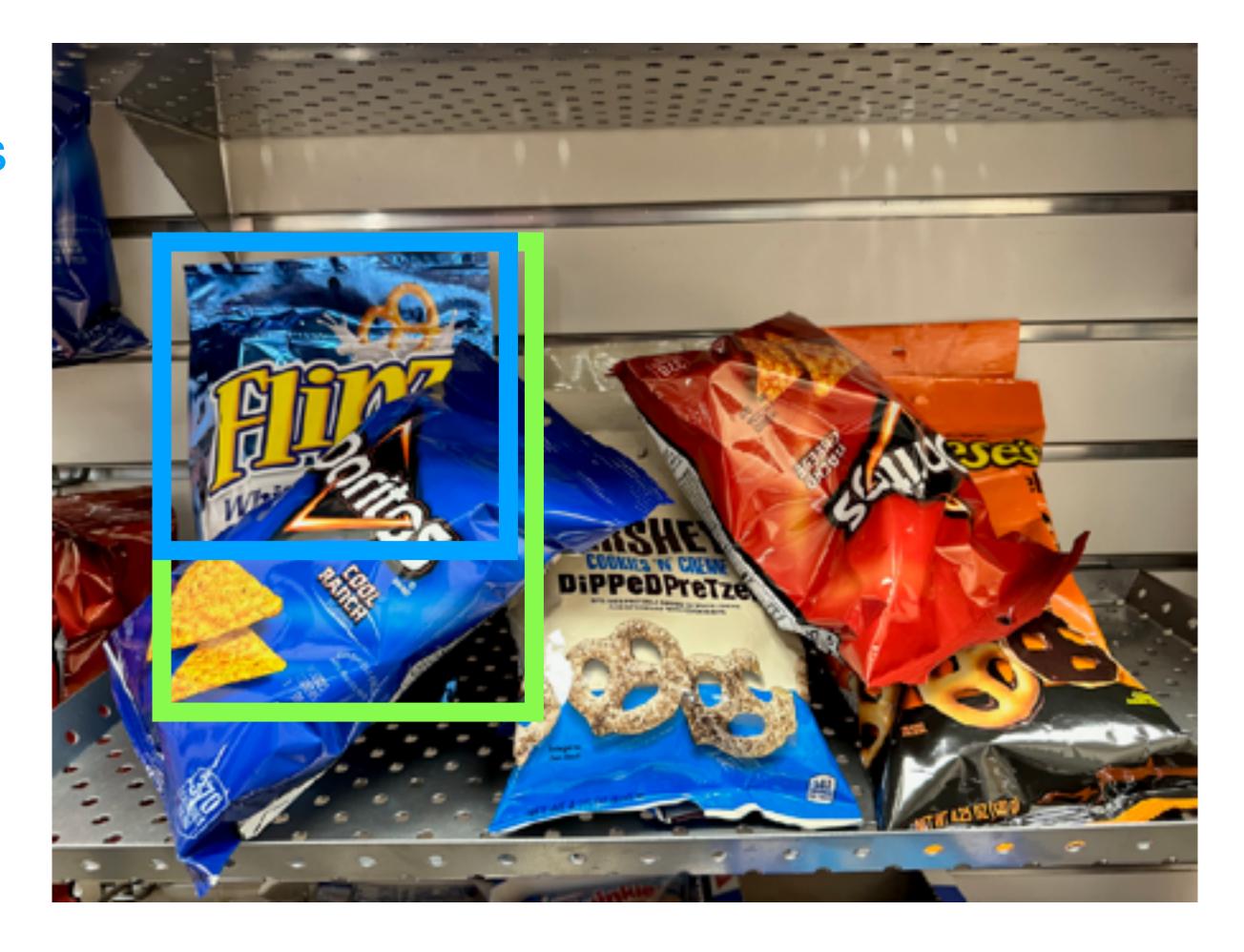
Amodal detection: box covers the entire extent of the object, even occluded parts



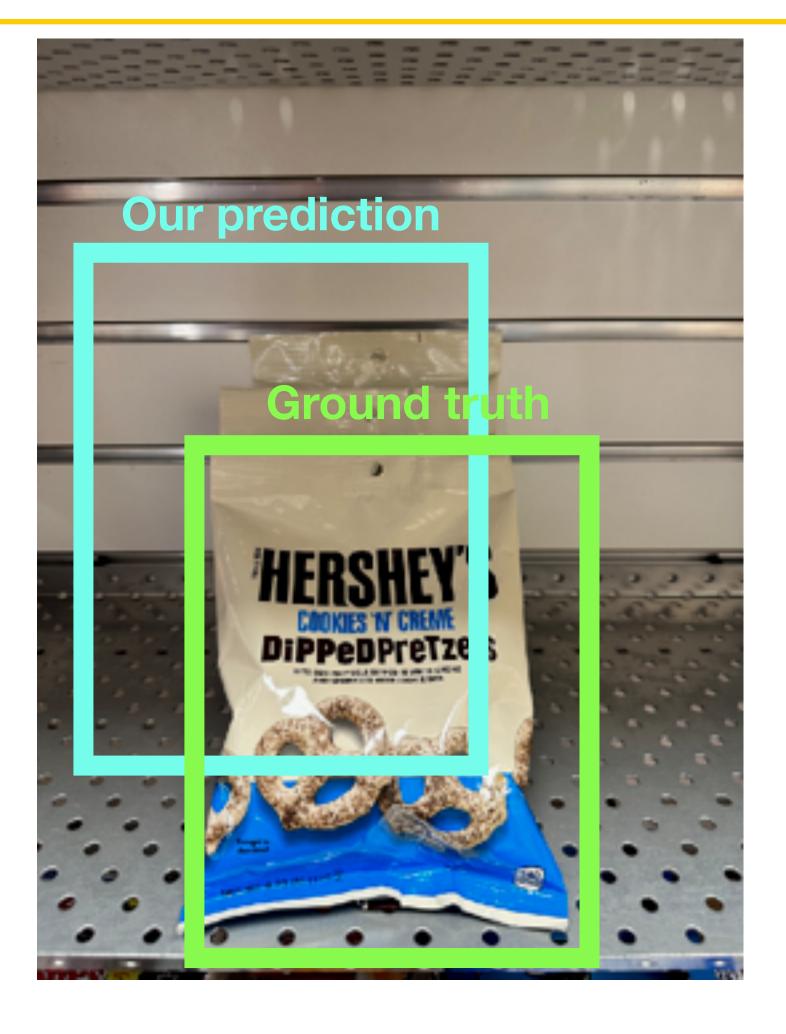
Object Detection: Modal vs Amodal Boxes

"Modal" detection: Bounding boxes (usually) cover only the visible portion of the object

Amodal detection: box covers the entire extent of the object, even occluded parts



How can we compare our prediction to the ground-truth box?

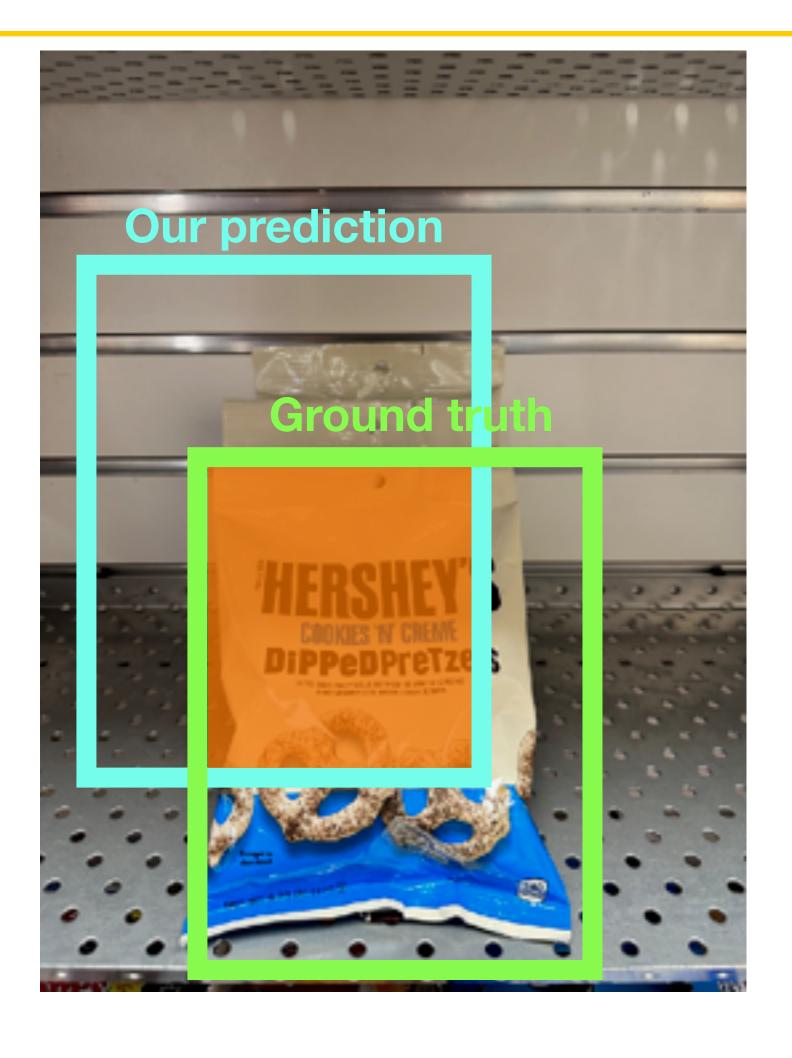


How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection

Area of Union

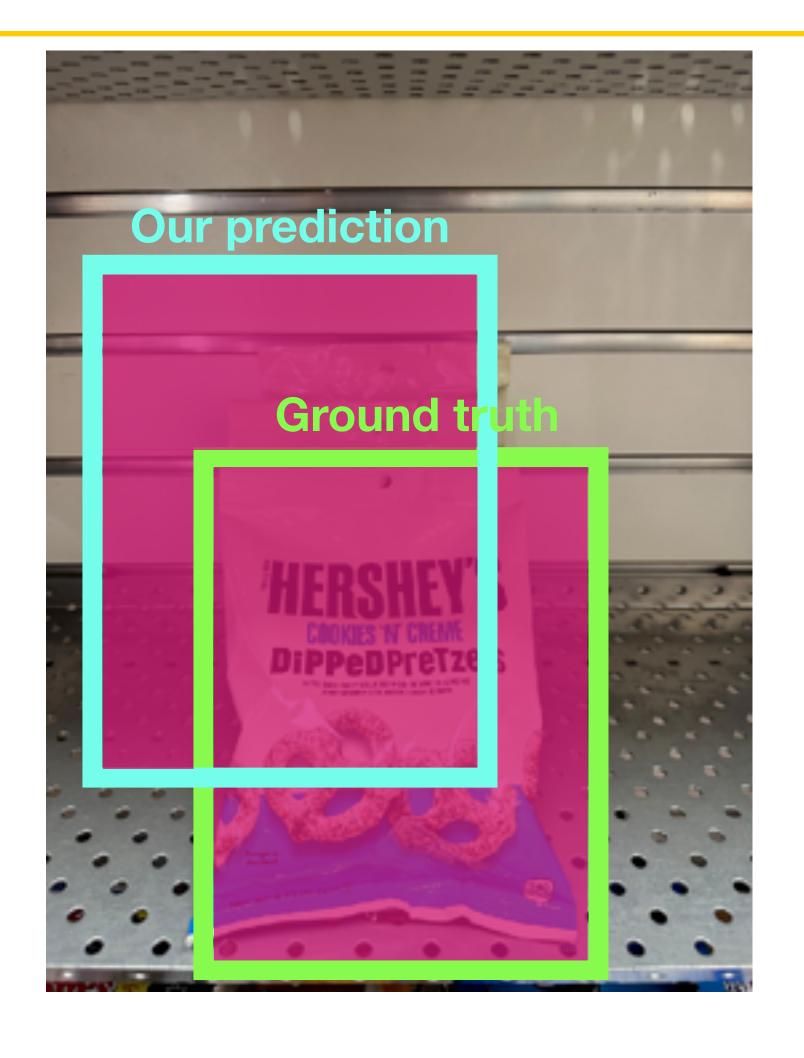


How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection

Area of Union



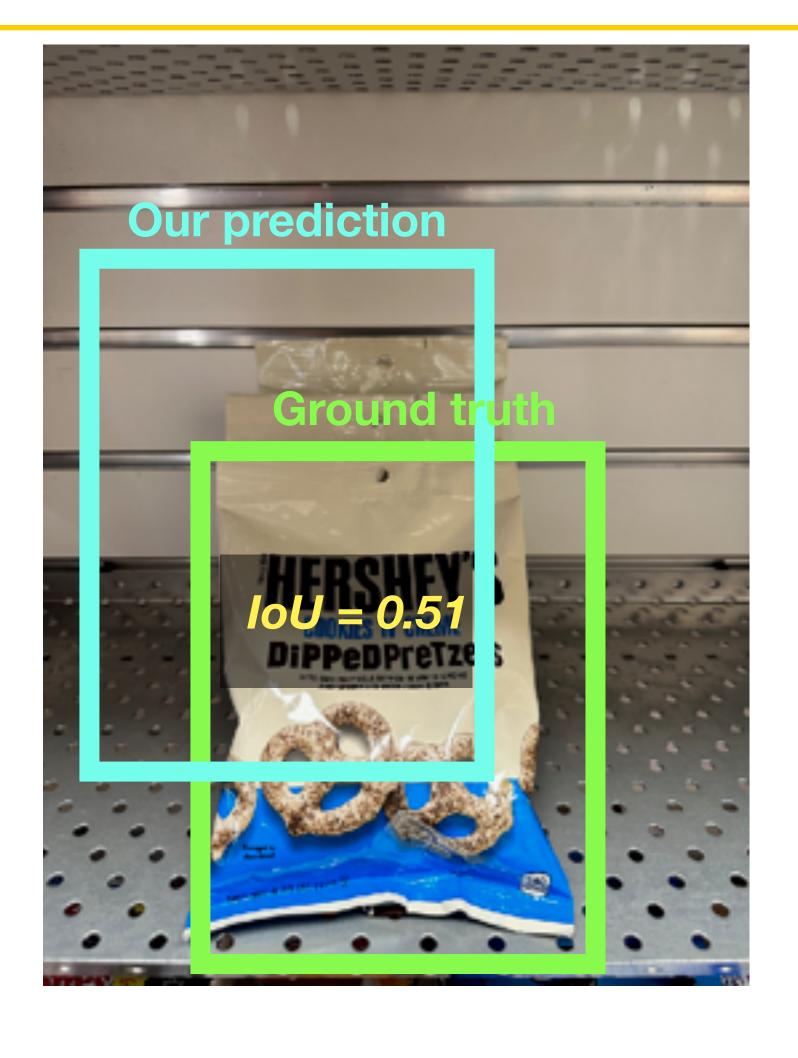
How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection

Area of Union

IoU > 0.5 is "decent",



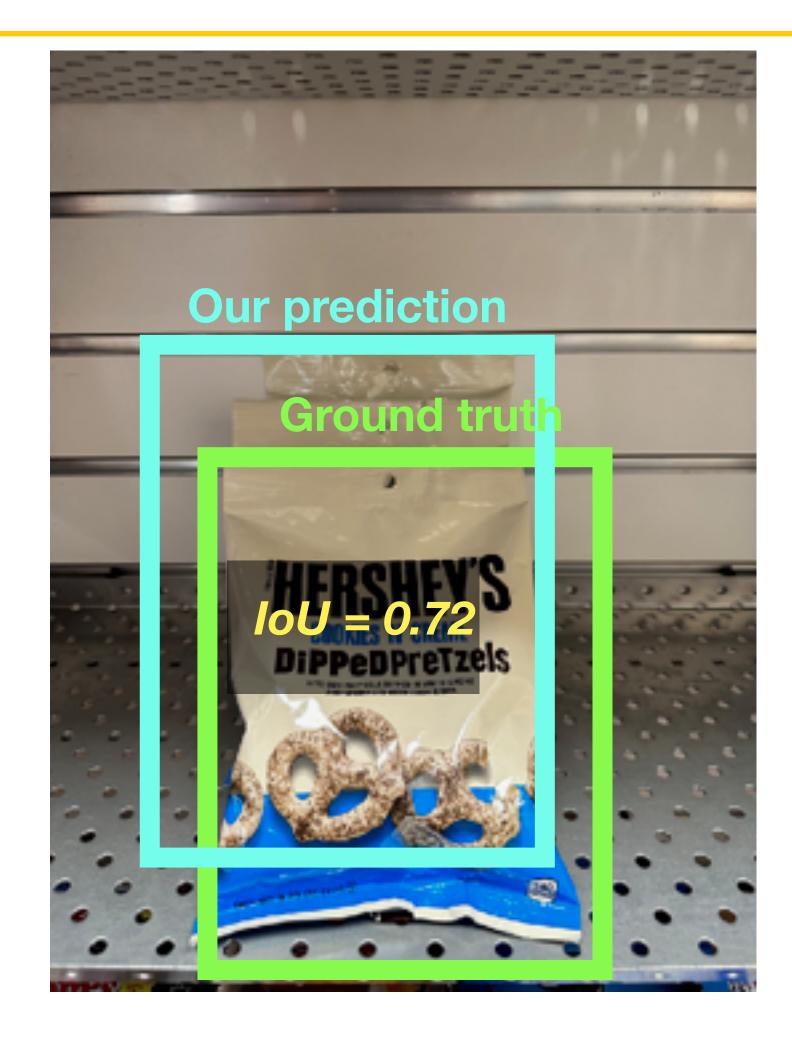
How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection

Area of Union

IoU > 0.5 is "decent", IoU > 0.7 is "pretty good",



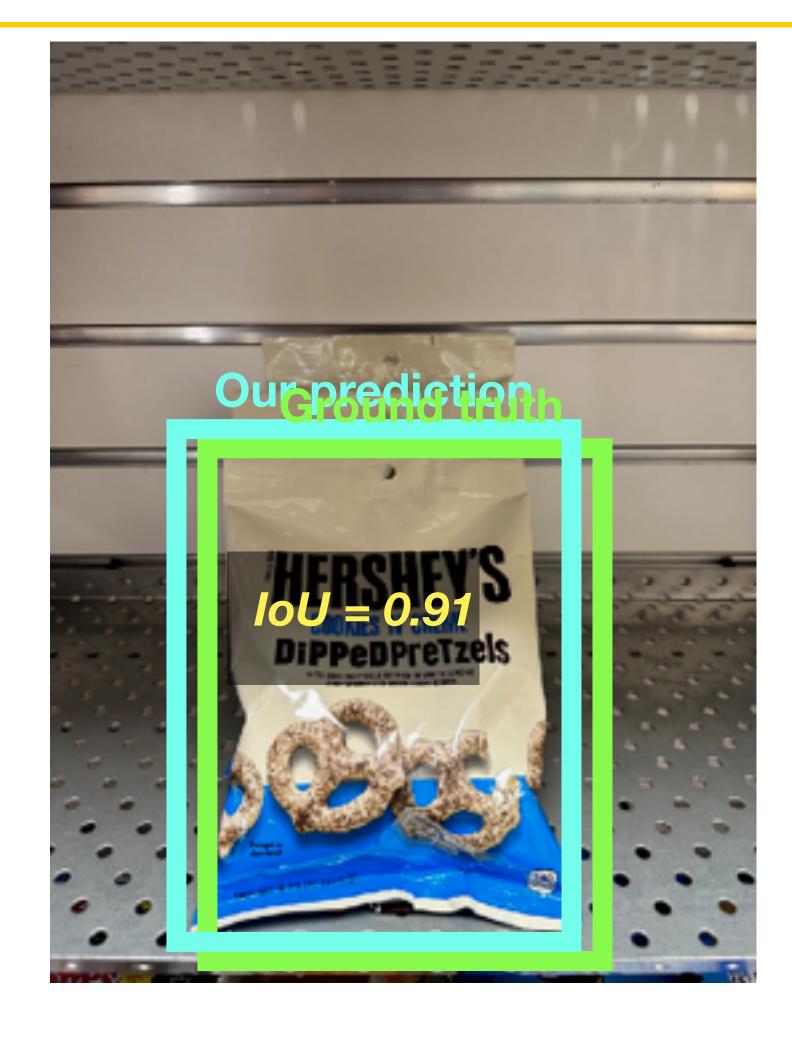
How can we compare our prediction to the ground-truth box?

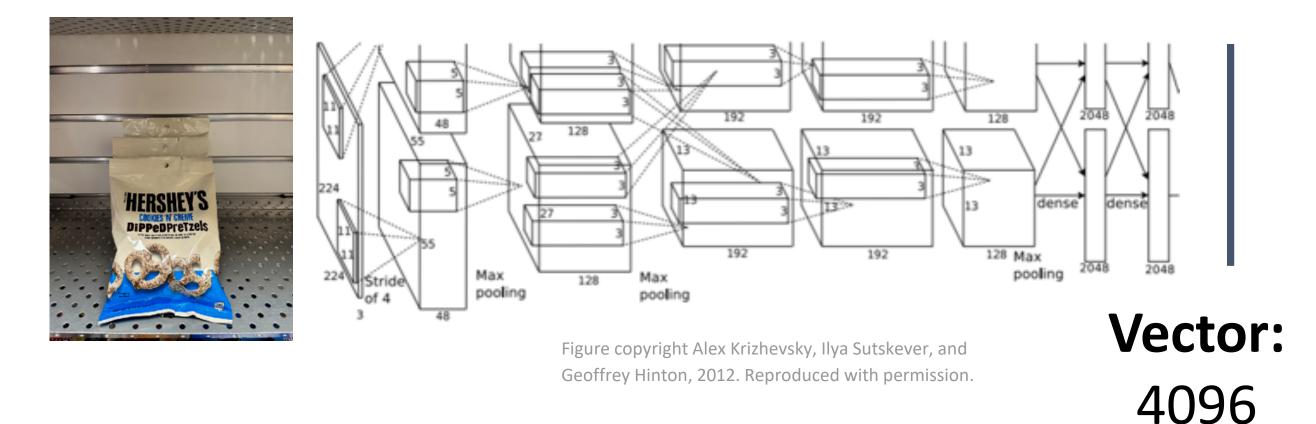
Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection

Area of Union

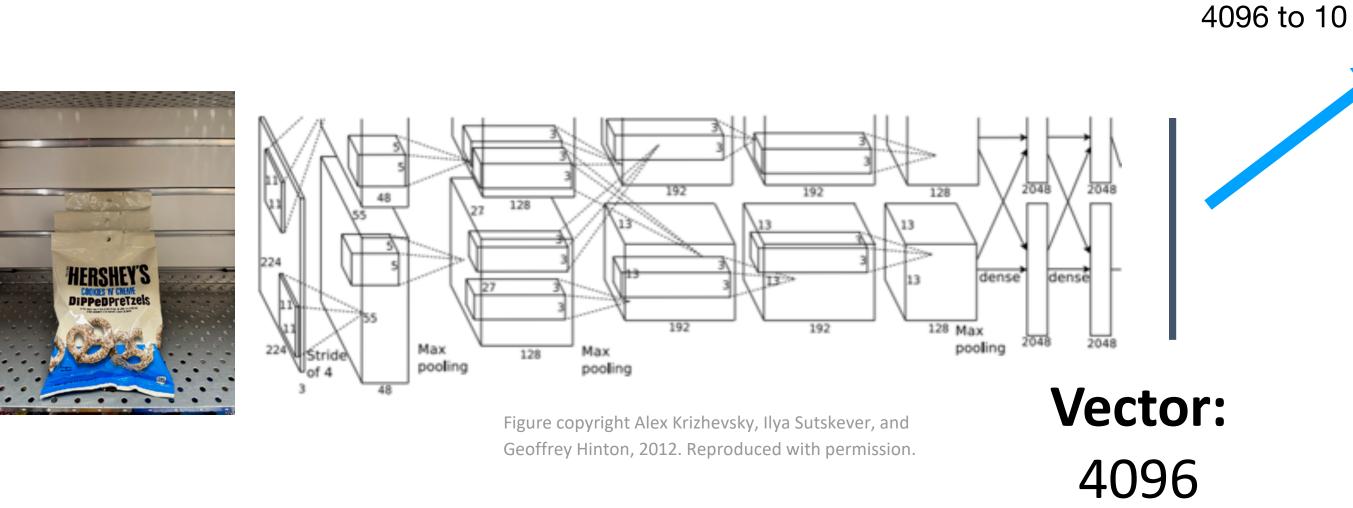
IoU > 0.5 is "decent", IoU > 0.7 is "pretty good", IoU > 0.9 is "almost perfect"





Treat localization as a regression problem!

Fully connected:



What??

Class scores:

Chocolate Pretzels: 0.9

Granola Bar: 0.02

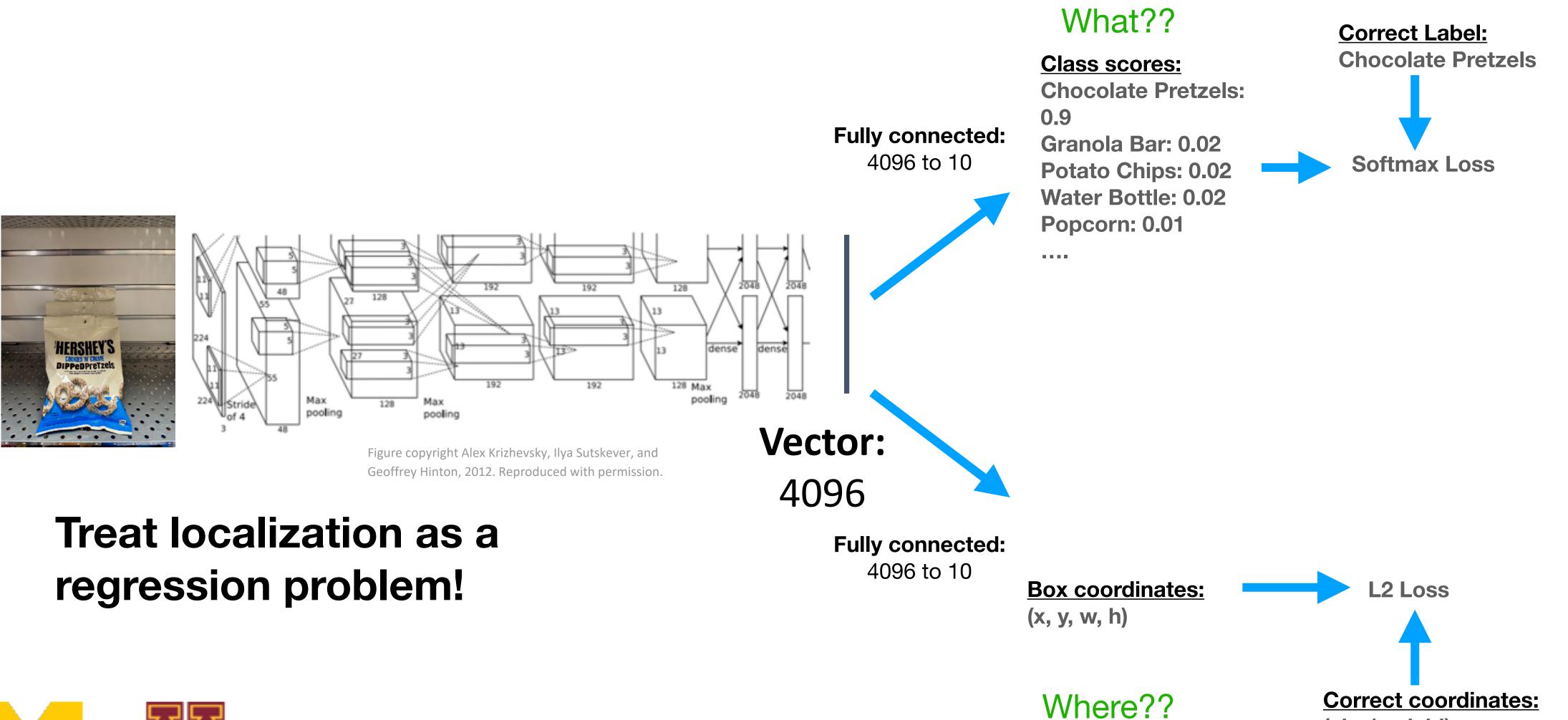
Potato Chips: 0.02

Water Bottle: 0.02 Popcorn: 0.01

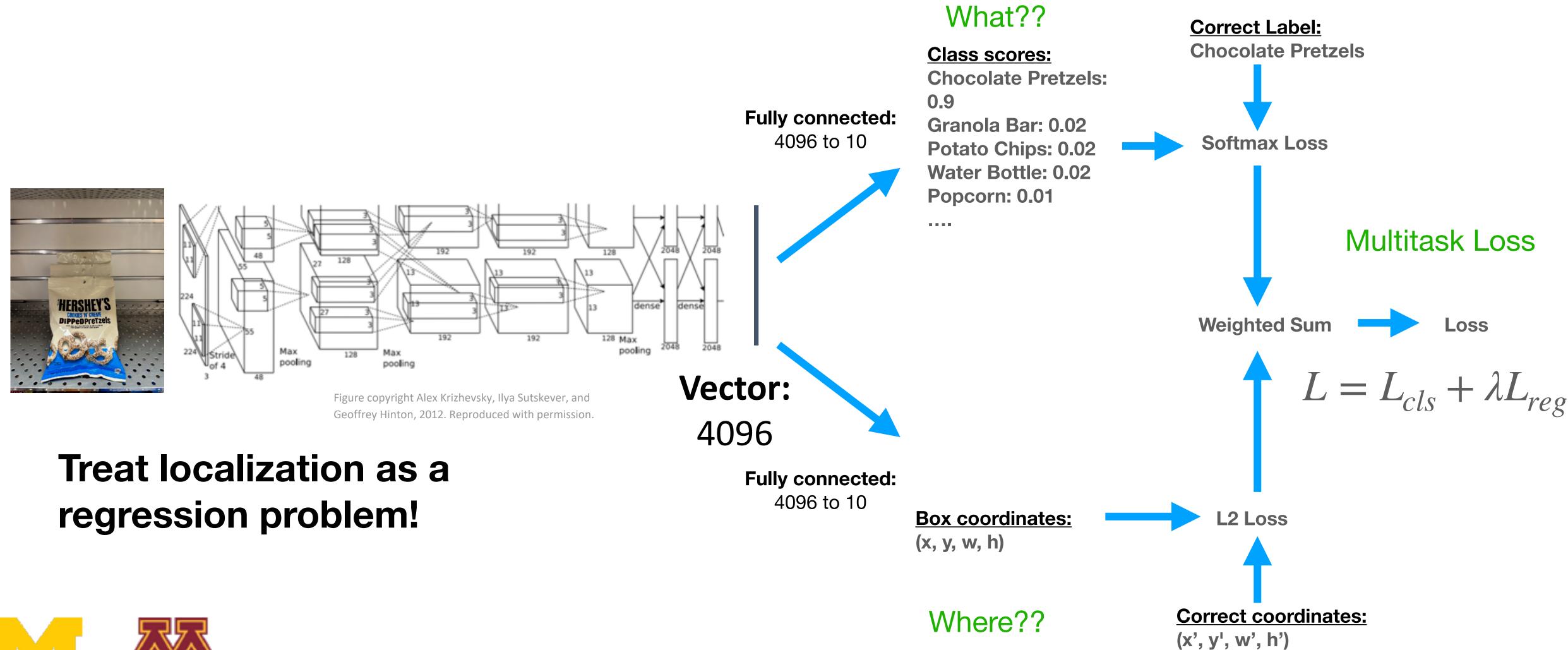
Correct Label:

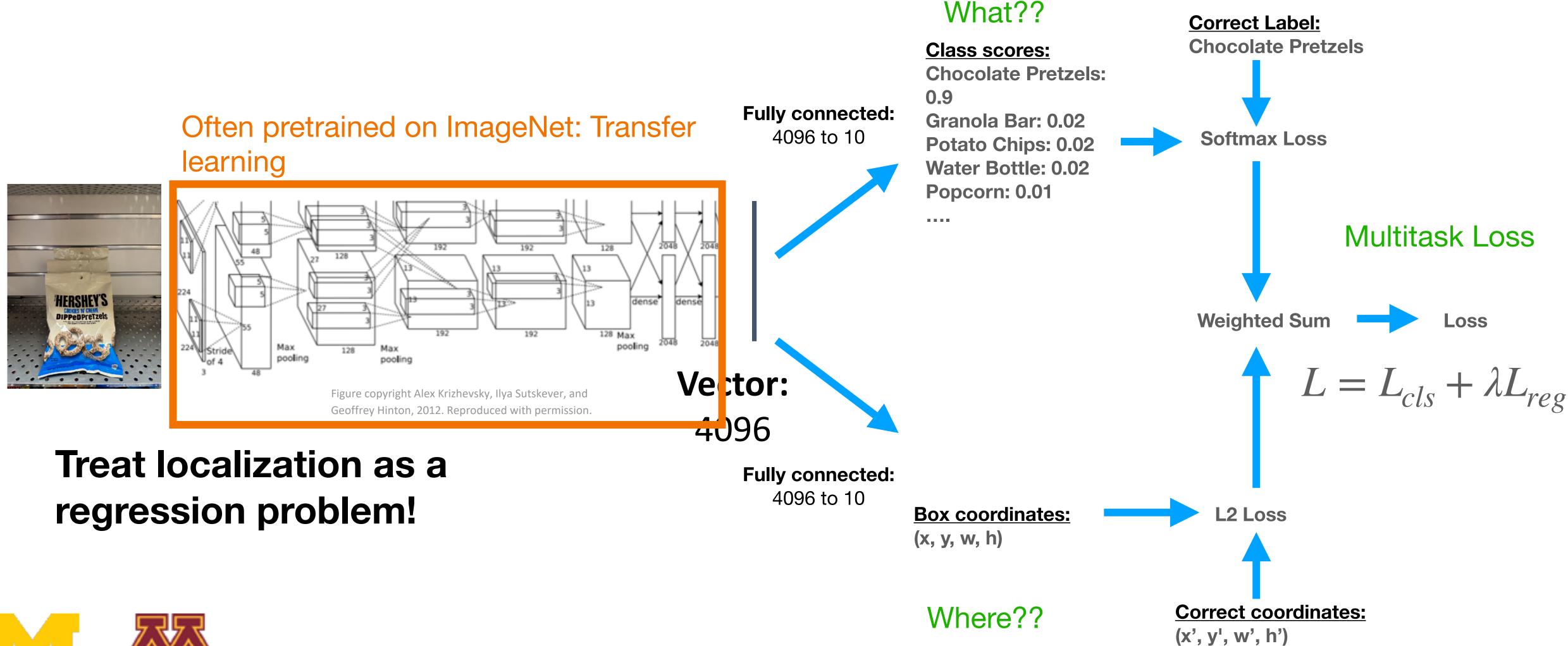
Chocolate Pretzels

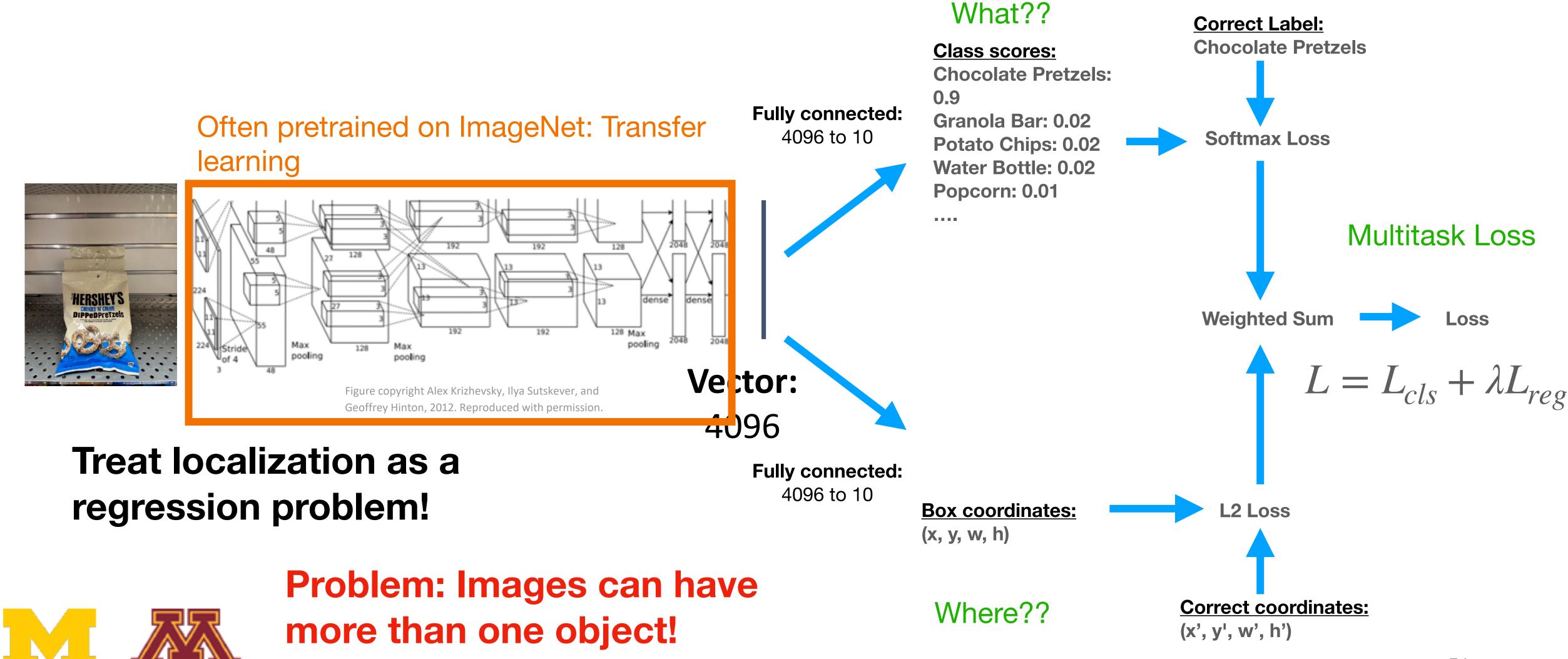
Treat localization as a regression problem!



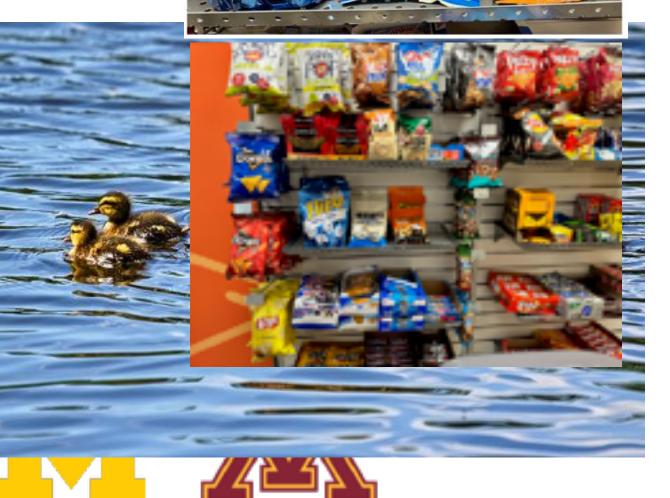
(x', y', w', h')

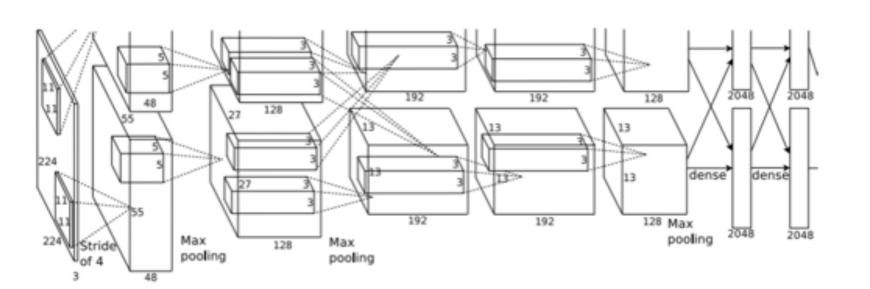


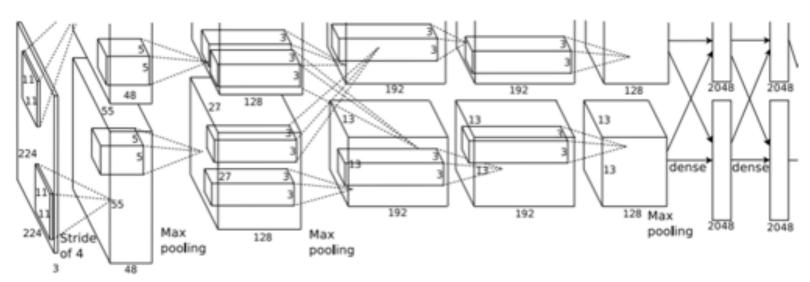


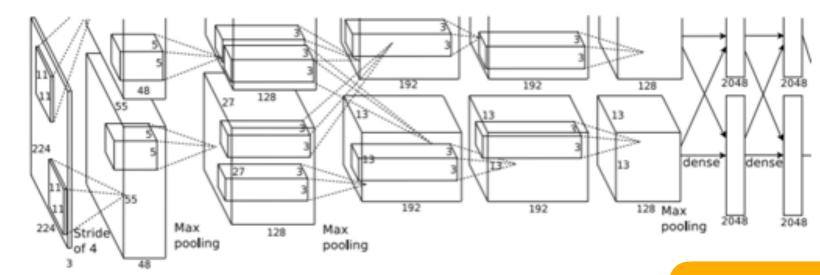


Detecting Multiple Objects









Hershey's: (x, y, w, h)

Hershey's: (x, y, w, h)

Flipz: (x, y, w, h)

Reese's (x, y, w, h)

12 numbers

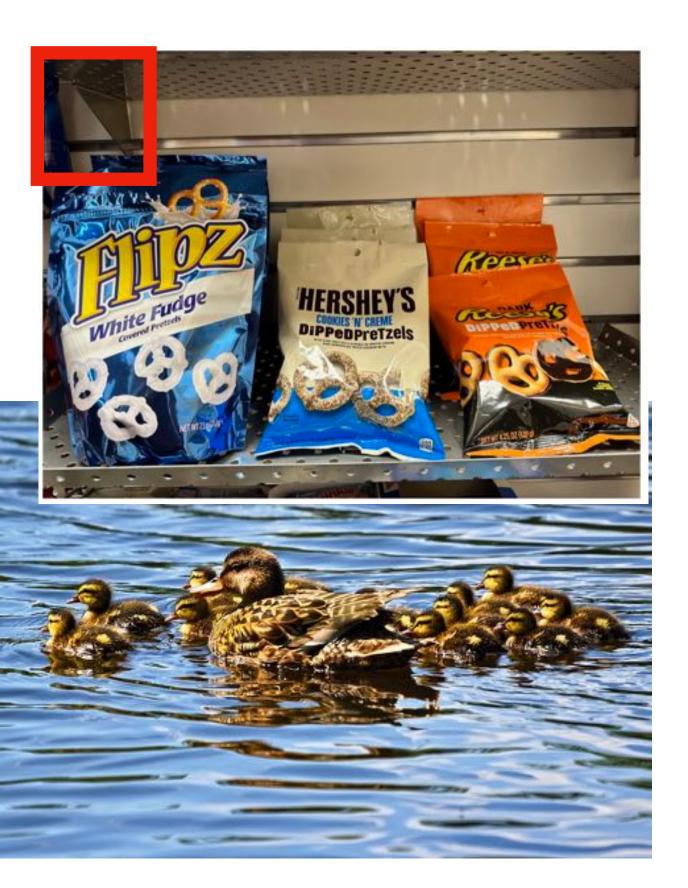
4 numbers

Chips: (x, y, w, h)

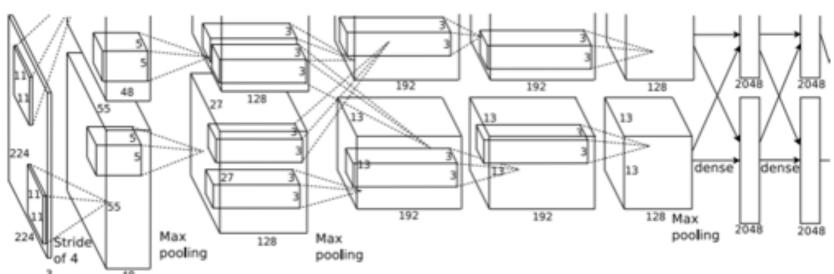
Chips: (x, y, w, h)

Many numbers!

Need different numbers of output per image



Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



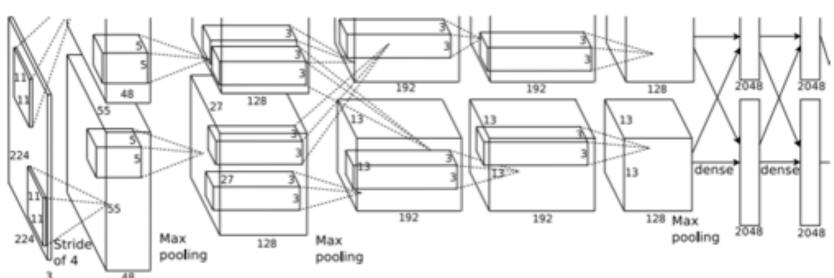
Hershey's: No

Flipz: No

Reese's: No

Background: Yes

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



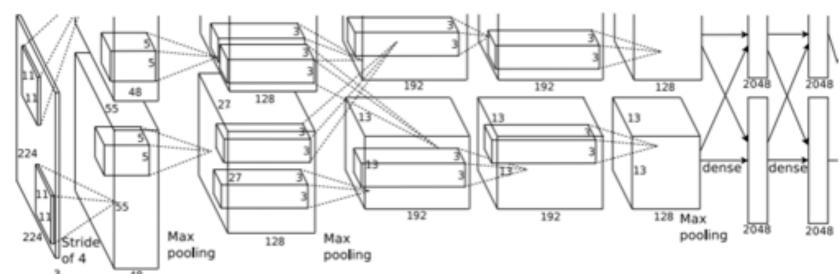
Hershey's: No

Flipz: Yes

Reese's: No

Background: No

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

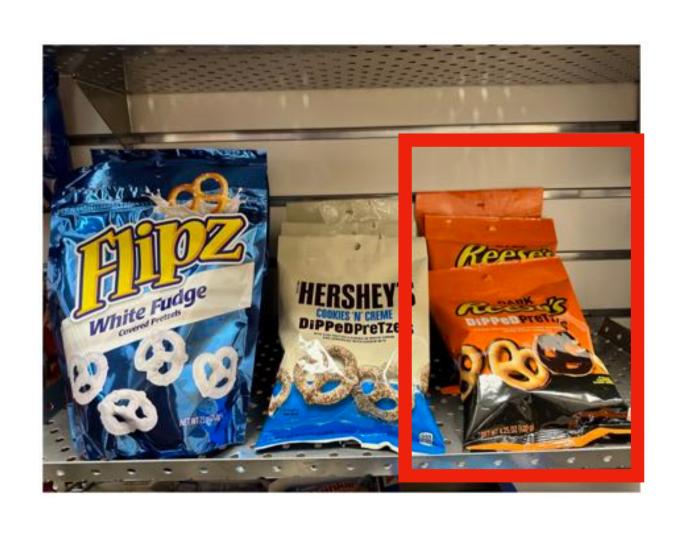


Hershey's: No

Flipz: No

Reese's: Yes

Background: No



Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

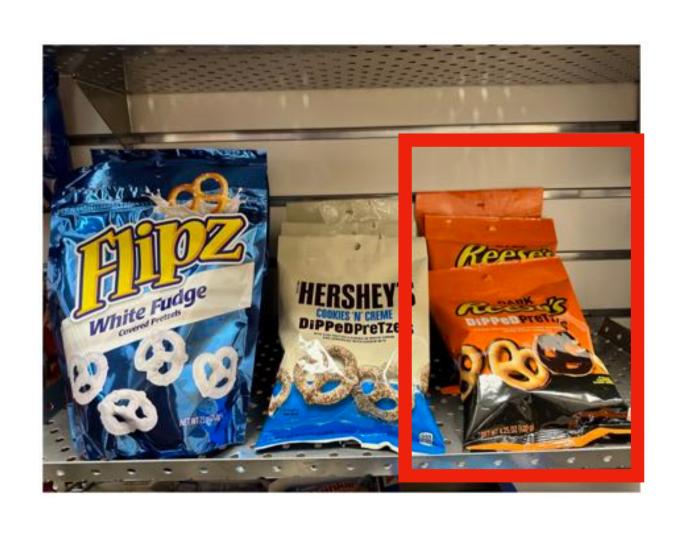
Question: How many possible boxes are there in an image of size H x W?

Consider box of size h x w: Possible x positions: W - w + 1 Possible y positions: H - h + 1 Possible positions: $(W-w+1) \times (H-h+1)$

Total possible boxes:

$$\sum_{h=1}^{H} \sum_{w=1}^{W} (W - w + 1)(H - h + 1)$$

$$=\frac{H(H+1)}{2}\frac{W(W+1)}{2}$$



Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

800 x 600 image has ~58M boxes. No way we can evaluate them all

Question: How many possible boxes are there in an image of size H x W?

Consider box of size h x w: Possible x positions: W - w + 1 Possible y positions: H - h + 1 Possible positions: $(W-w+1) \times (H-h+1)$

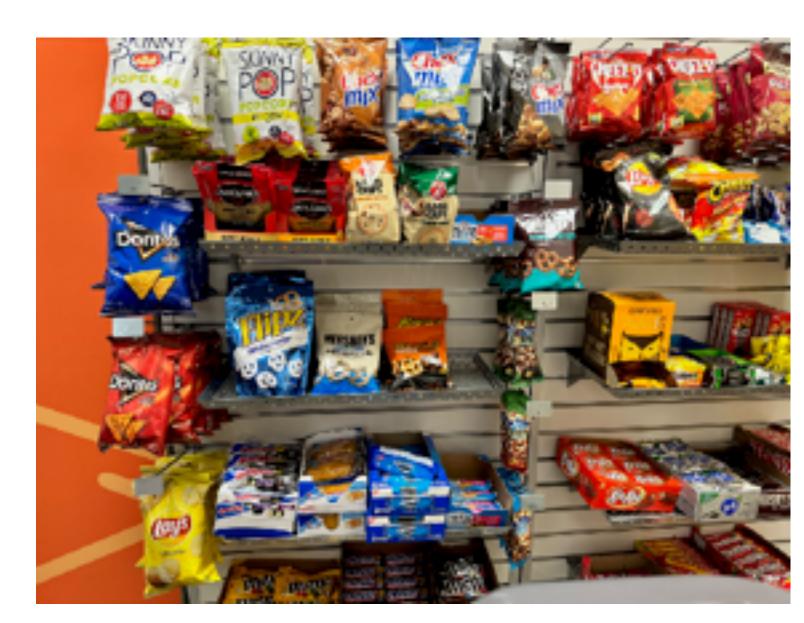
Total possible boxes:

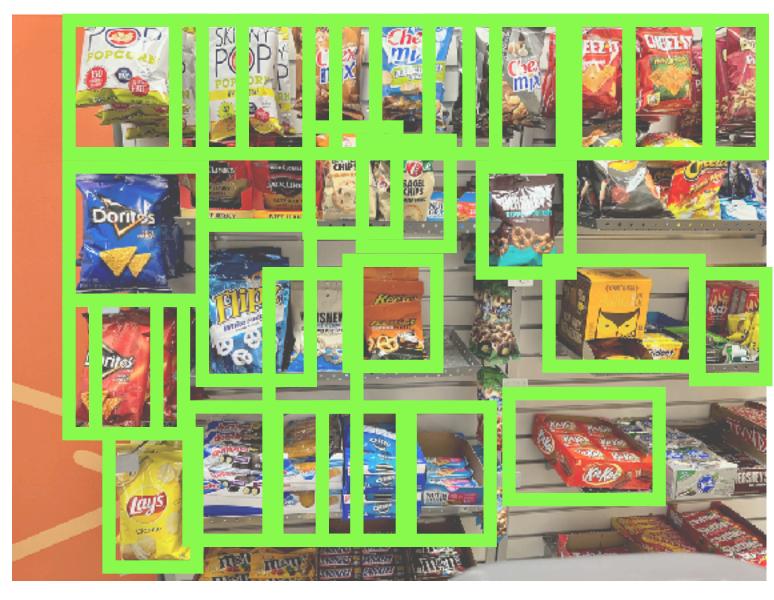
$$\sum_{h=1}^{H} \sum_{w=1}^{W} (W - w + 1)(H - h + 1)$$

$$=\frac{H(H+1)}{2}\frac{W(W+1)}{2}$$

Region Proposals

- Find a small set of boxes that are likely to cover all objects
- Often based on heuristics: e.g. look for "blob-like" image regions
- Relatively fast to run; e.g. Selective Search gives 2000 region proposals in a few seconds on CPU



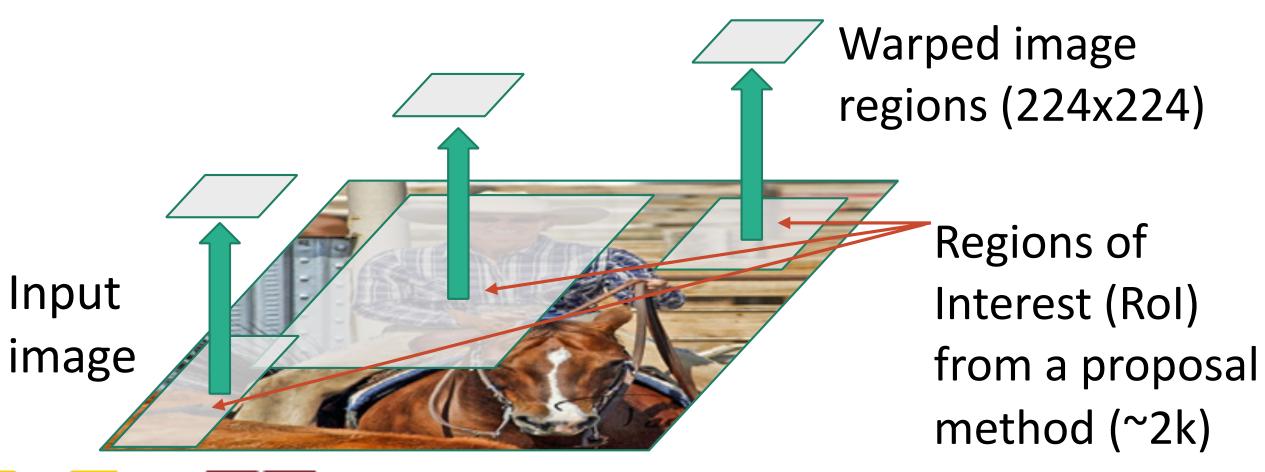


R-CNN: Region-Based CNN

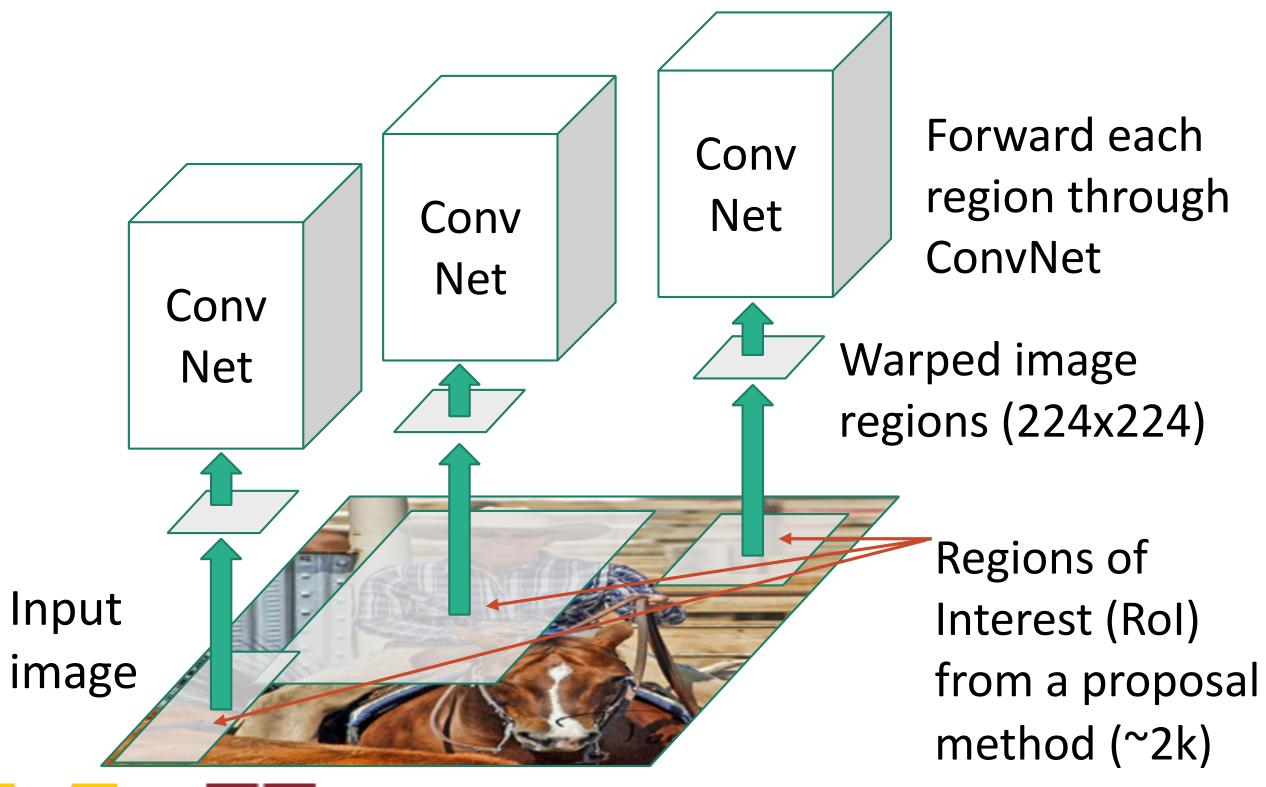
R-CNN: Region-Based CNN

Regions of Interest (RoI) from a proposal method (~2k)

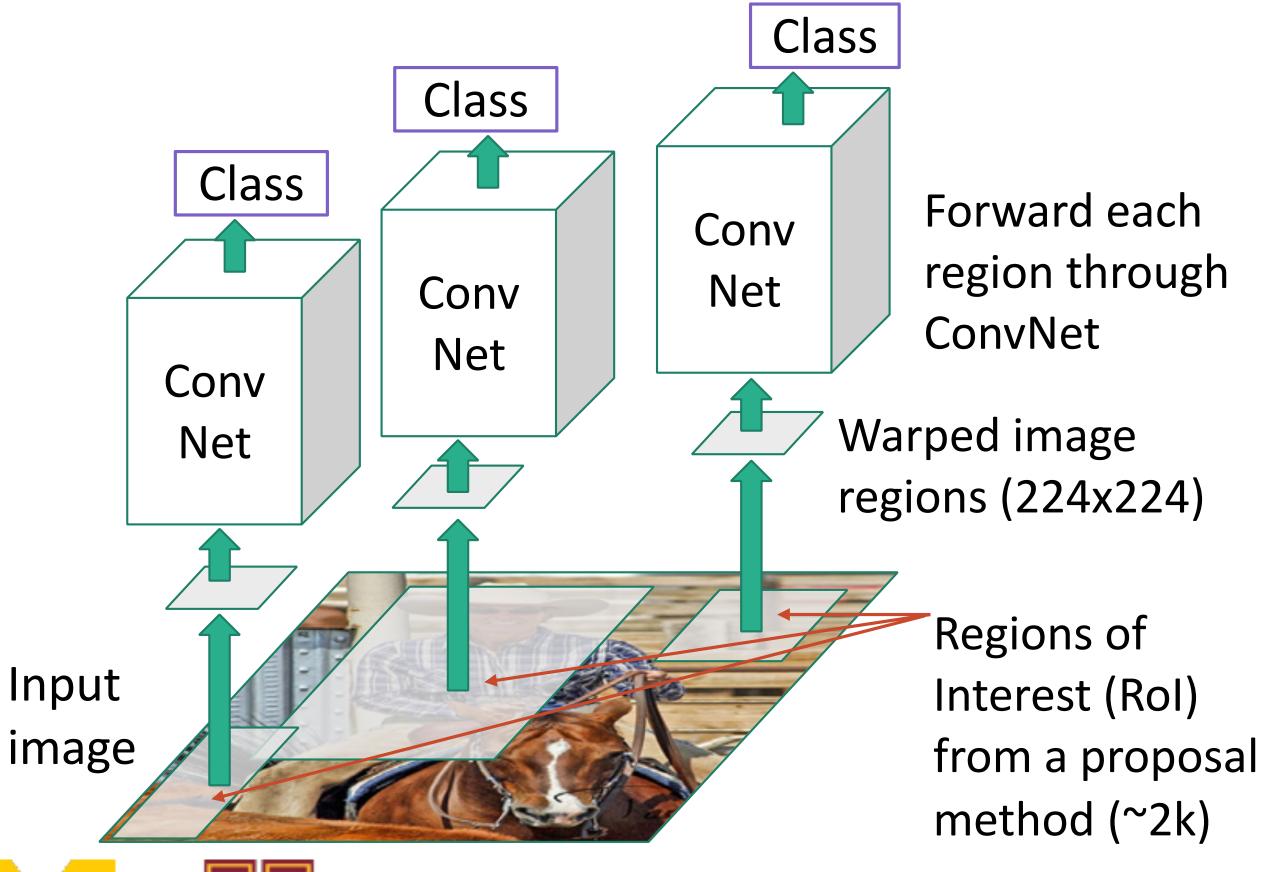
R-CNN: Region-Based CNN



R-CNN: Region-Based CNN

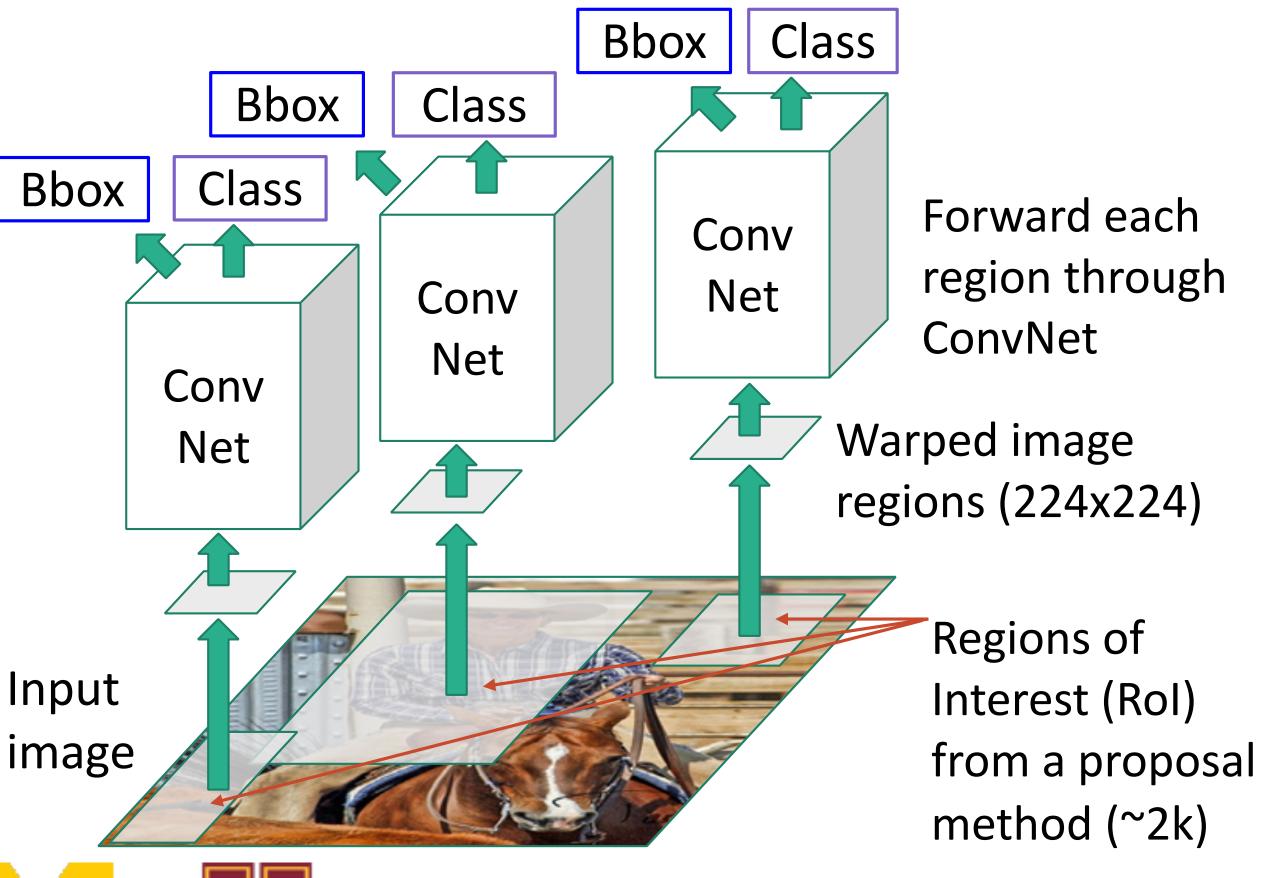


R-CNN: Region-Based CNN



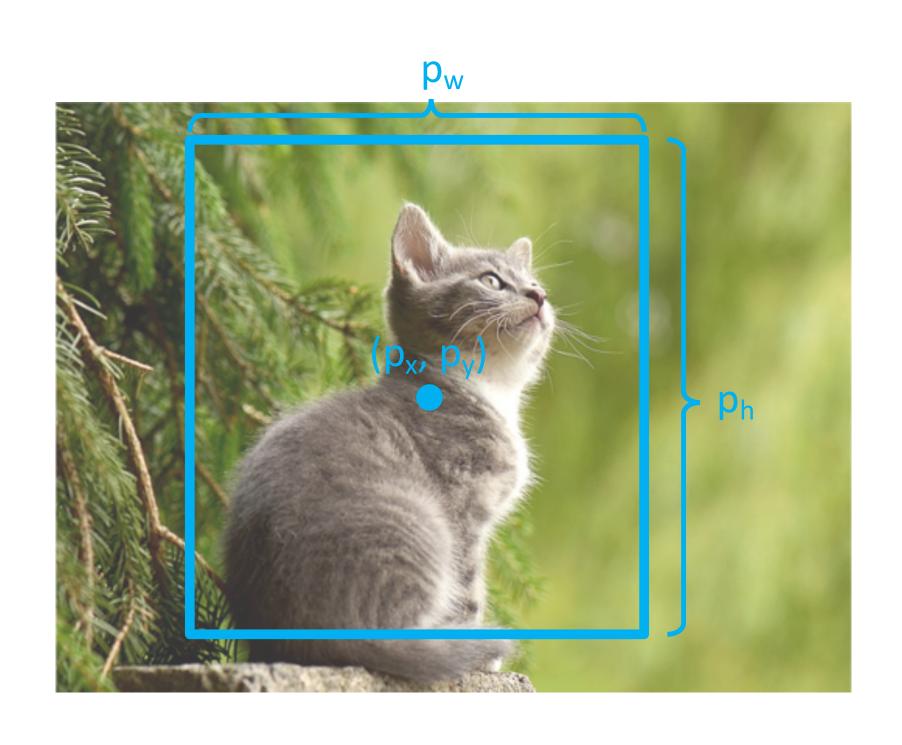
Classify each region

R-CNN: Region-Based CNN



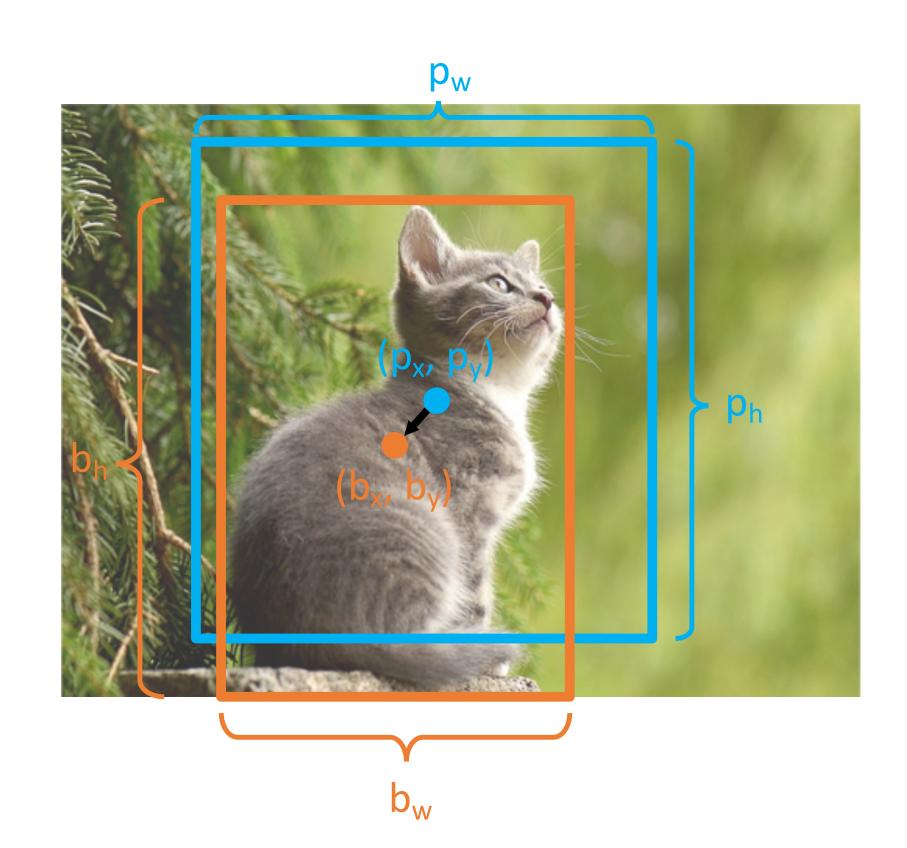
Classify each region

Bounding box regression: Predict "transform" to correct the Rol: 4 numbers (t_X, t_y, t_h, t_W)



Consider a region proposal with center (p_x, p_y) , width p_w , height p_h

Model predicts a <u>transform</u> (t_x, t_y, t_w, t_h) to correct the region proposal

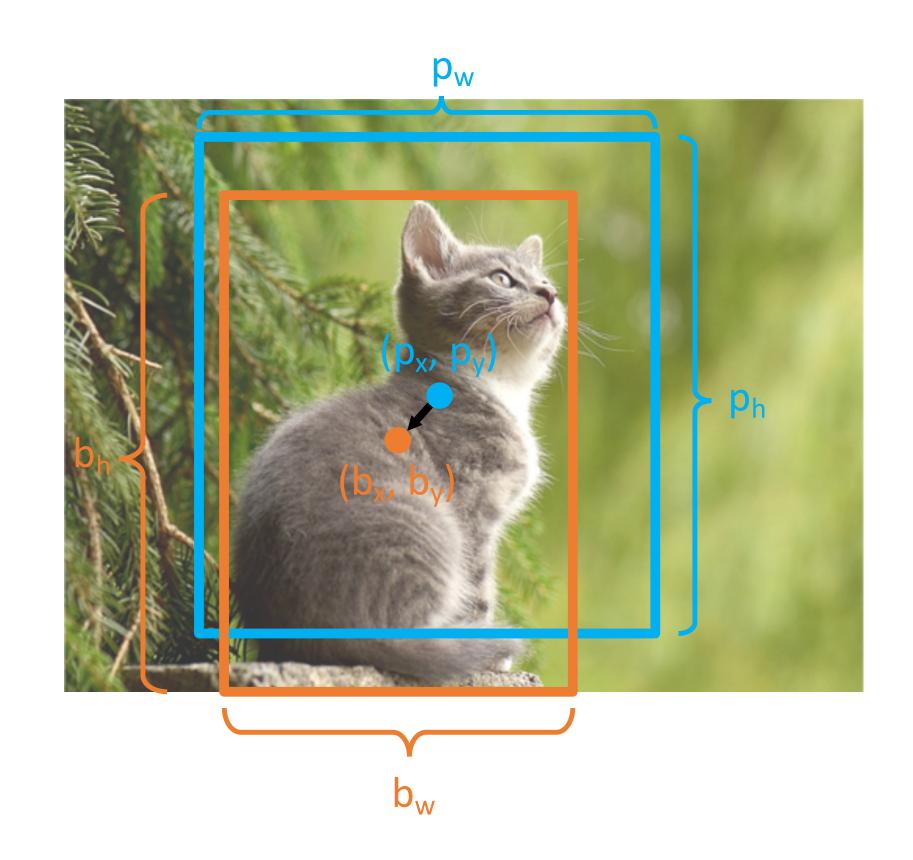


Consider a region proposal with center (p_x, p_y) , width p_w , height p_h

Model predicts a <u>transform</u> (t_x, t_y, t_w, t_h) to correct the region proposal

The output box is defined by:

$$b_x = p_x + p_w t_x$$
 Shift center by amount $b_y = p_y + p_h t_y$ relative to proposal size $b_w = p_w \exp(t_w)$ Scale proposal; exp ensures $b_h = p_h \exp(t_h)$ that scaling factor is > 0



Consider a region proposal with center (p_x, p_y) , width p_w , height p_h

Model predicts a $\underline{\text{transform}} \left(t_x, t_y, t_w, t_h \right)$ to correct the region proposal

The output box is defined by:

$$b_{x} = p_{x} + p_{w}t_{x}$$

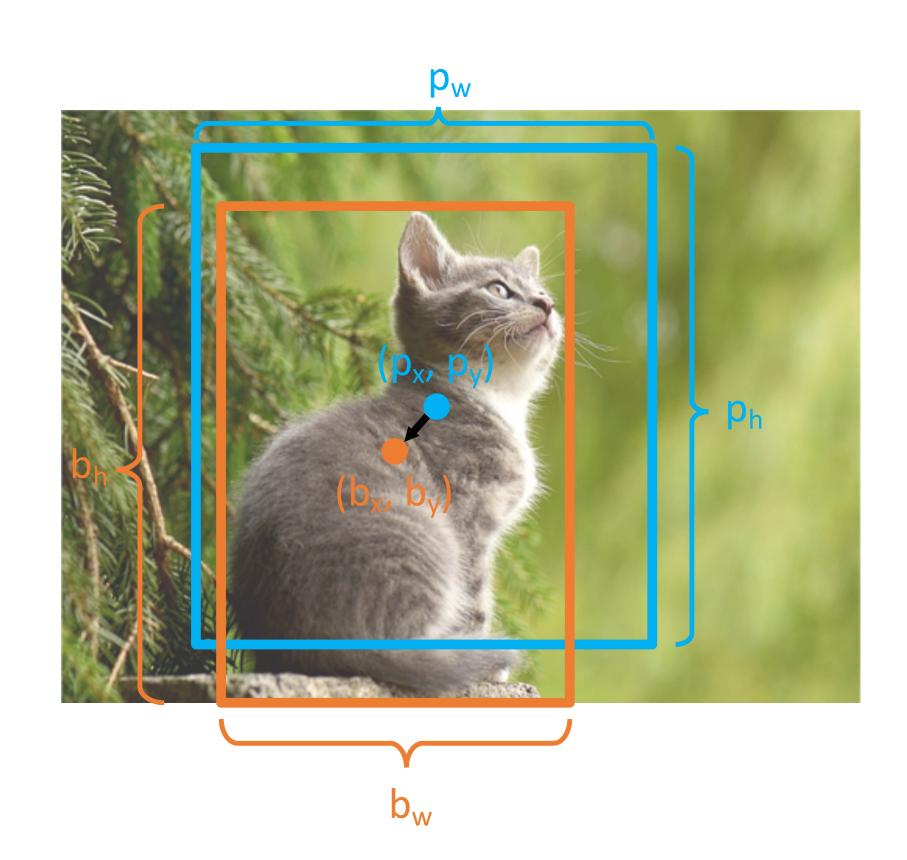
$$b_{y} = p_{y} + p_{h}t_{y}$$

$$b_{w} = p_{w} \exp(t_{w})$$

$$b_{h} = p_{h} \exp(t_{h})$$

When transform is 0, output = proposal

L2 regularization encourages leaving proposal unchanged



Consider a region proposal with center (p_x, p_y) , width p_w , height p_h

Model predicts a $\underline{\text{transform}} \left(t_x, t_y, t_w, t_h \right)$ to correct the region proposal

The output box is defined by:

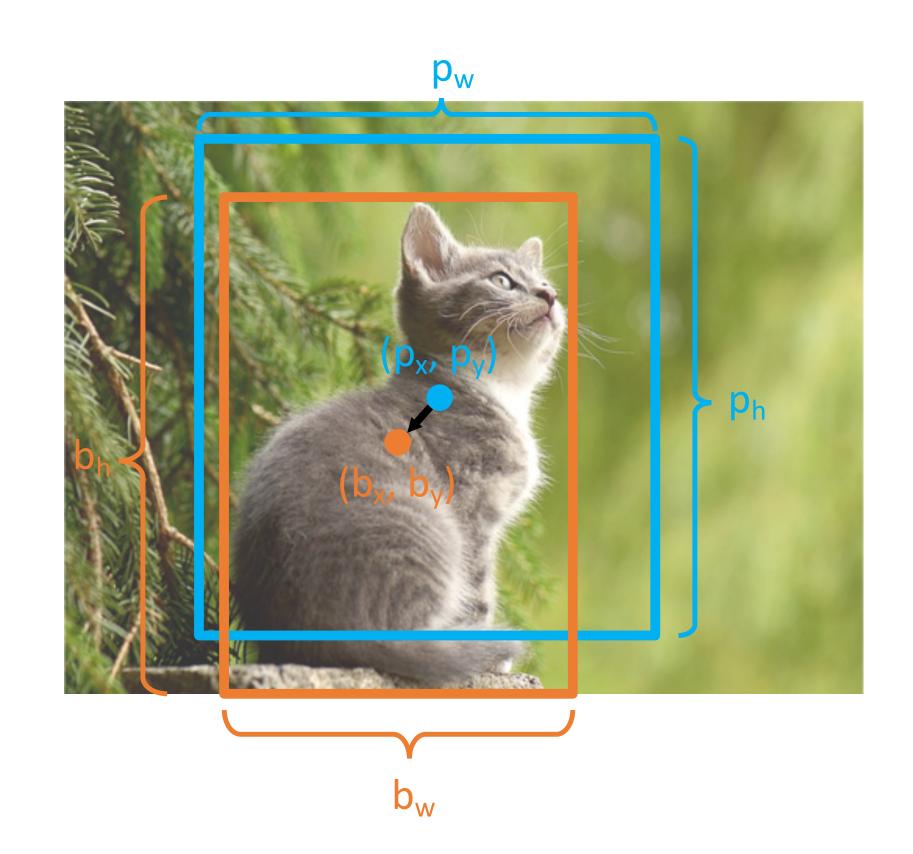
$$b_{x} = p_{x} + p_{w}t_{x}$$

$$b_{y} = p_{y} + p_{h}t_{y}$$

$$b_{w} = p_{w} \exp(t_{w})$$

$$b_{h} = p_{h} \exp(t_{h})$$

Scale / Translation invariance:
Transform encodes *relative*difference between proposal
and output; important since
CNN doesn't see absolute size
or position after cropping



Consider a region proposal with center (p_x, p_y) , width p_w , height p_h

Model predicts a $\underline{\text{transform}} \left(t_x, t_y, t_w, t_h \right)$ to correct the region proposal

The output box is defined by:

$$b_{x} = p_{x} + p_{w}t_{x}$$

$$b_{y} = p_{y} + p_{h}t_{y}$$

$$b_{w} = p_{w} \exp(t_{w})$$

$$b_{h} = p_{h} \exp(t_{h})$$

Given proposal and target output, we can solve for the transform the network should output:

$$t_x = (b_x - p_x)/p_w$$

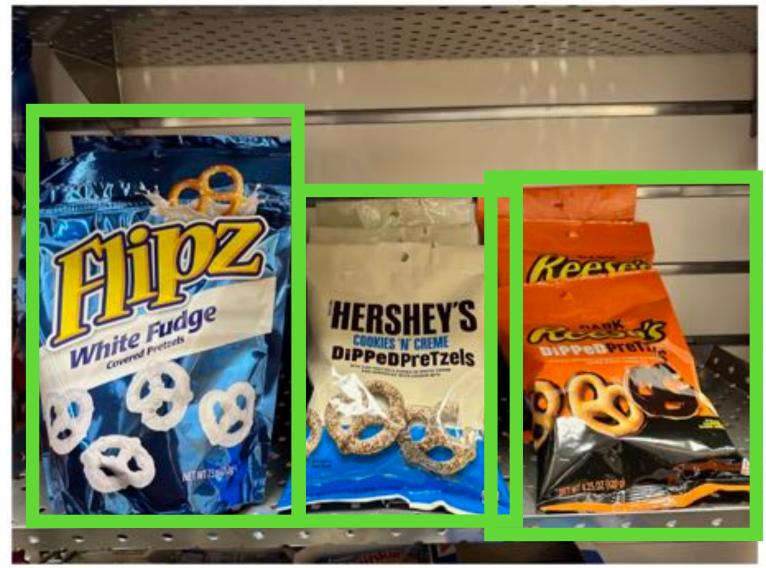
$$t_y = (b_y - p_y)/p_h$$

$$t_w = \log(b_w/p_w)$$

$$t_h = \log(b_h/p_h)$$

R-CNN: Training

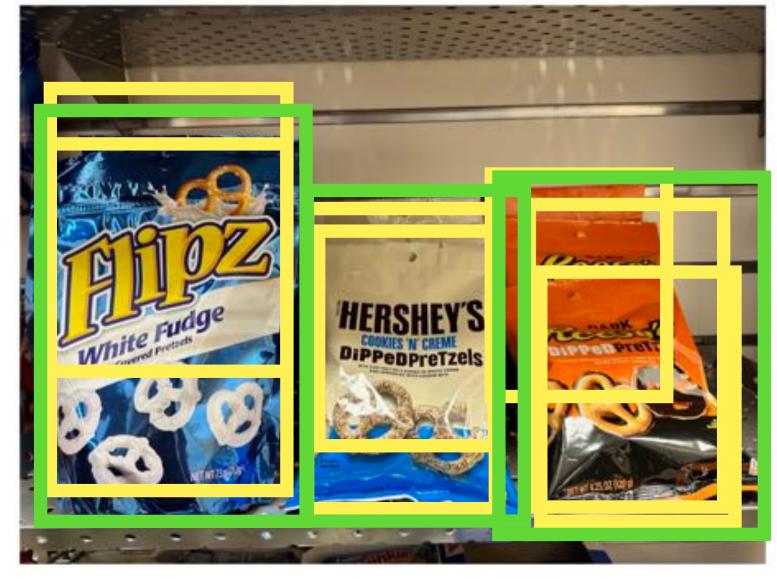
Input Image



Ground Truth

R-CNN: Training

Input Image



Ground Truth

Region Proposals

R-CNN: Training

Input Image

Ground Truth

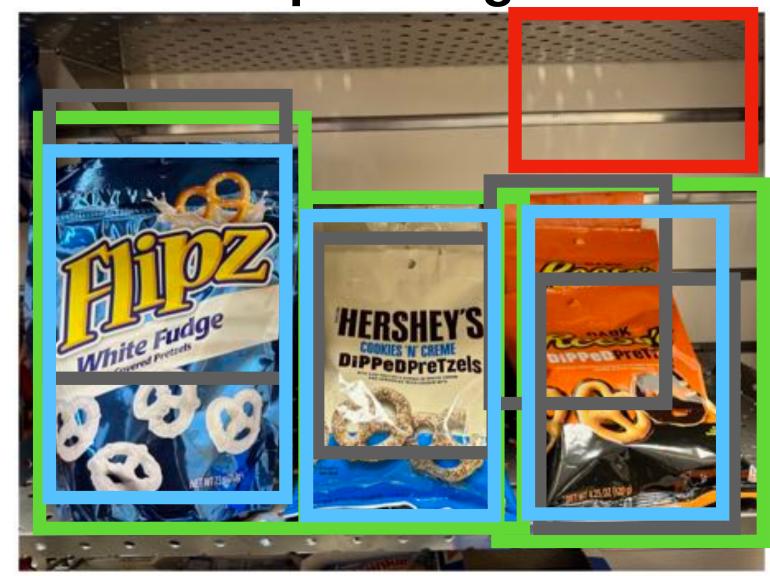
Positive

Neutral

Negative

R-CNN: Training

Input Image



Ground Truth

Positive

Neutral

Negative

Categorize each region proposal as positive, negative or neutral based on overlap with the Ground truth boxes:

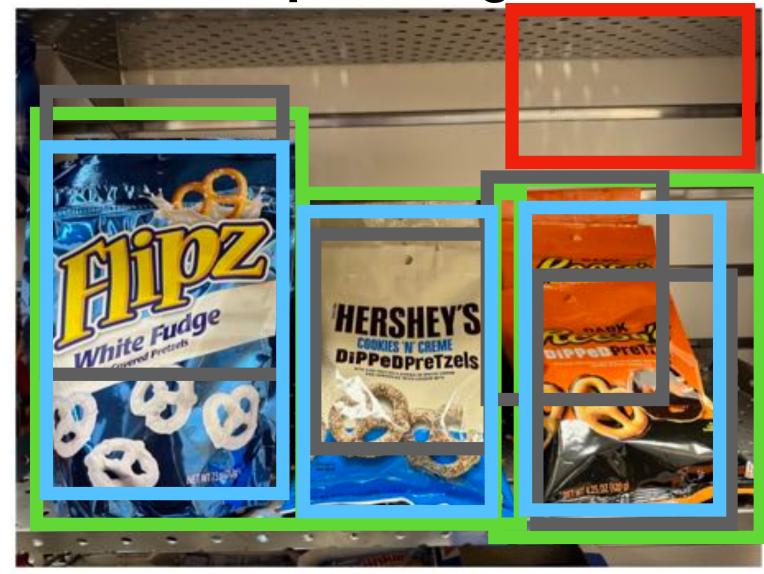
Positive: > 0.5 IoU with a GT box

Negative: < 0.3 loU with all GT boxes

Neutral: between 0.3 and 0.5 IoU with GT boxes

R-CNN: Training

Input Image



Ground Truth

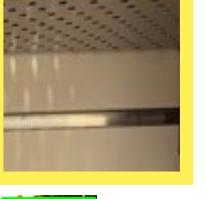
Positive

Neutral

Negative

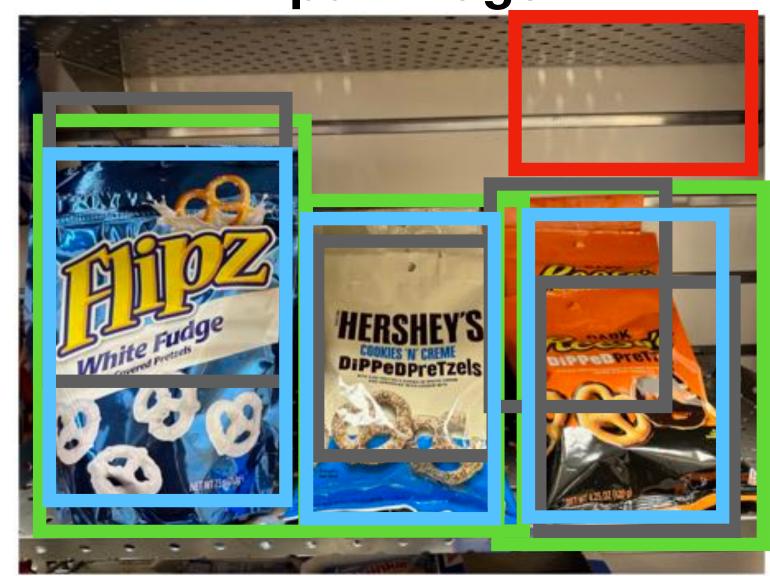
Run each region through CNN Positive regions: predict class and transform Negative regions: just predict class

Crop pixels from each positive and negative proposal, resize to 224 x 224



R-CNN: Training

Input Image



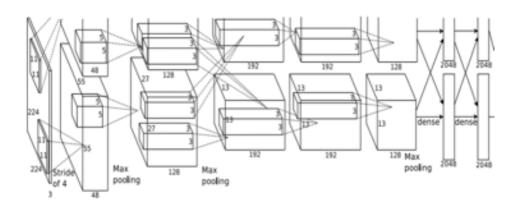
Ground Truth

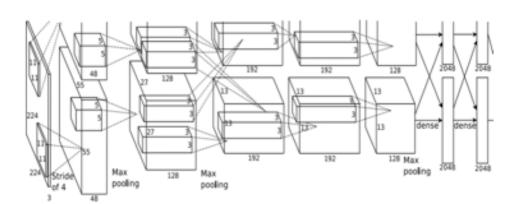
Positive

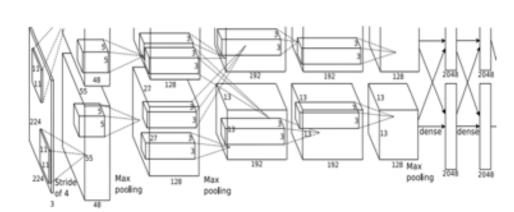
Neutral

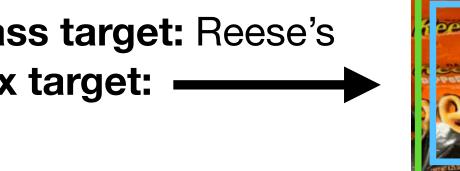
Negative

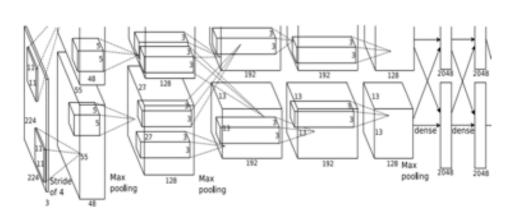
Run each region through CNN Positive regions: predict class and transform Negative regions: just predict class











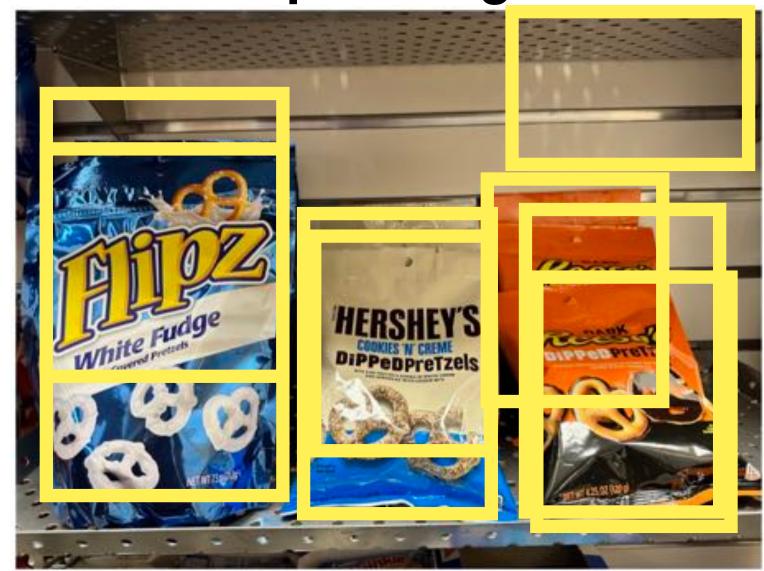
Box target: None

HERSHEY

COOKIES IN CREME
DIPPEDPRETZE

R-CNN: Test time

Input Image



Region Proposals

Run proposal method:

- 1. Run CNN on each proposal to get class scores, transforms
- 2. Threshold class scores to get a set of detections

2 Problems:

- 1. CNN often outputs overlapping boxes
- 2. How to set thresholds?

Overlapping Boxes

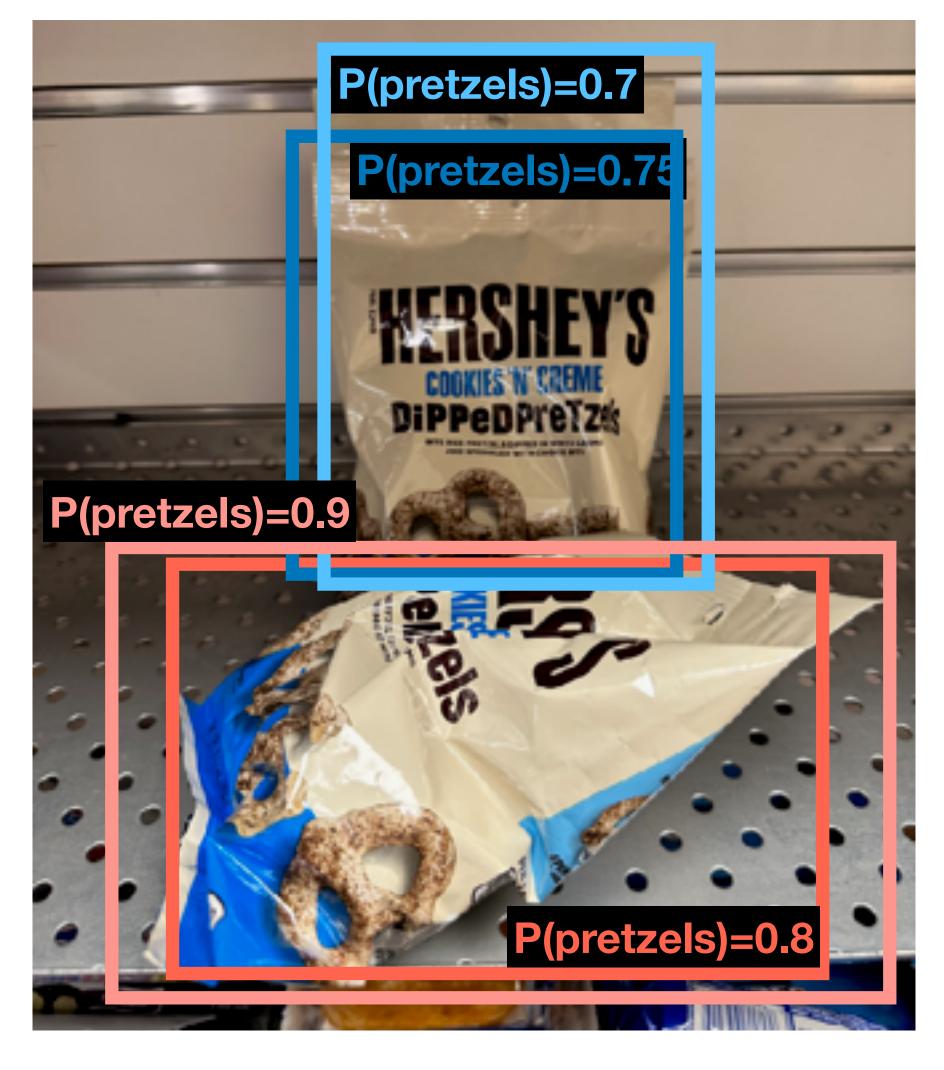
Problem: Object detectors often output many overlapping detections



Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

- 1. Select next highest-scoring box
- 2. Eliminate lower-scoring boxes with IoU> threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1



Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

- 1. Select next highest-scoring box
- 2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: Object detectors often output many overlapping detections

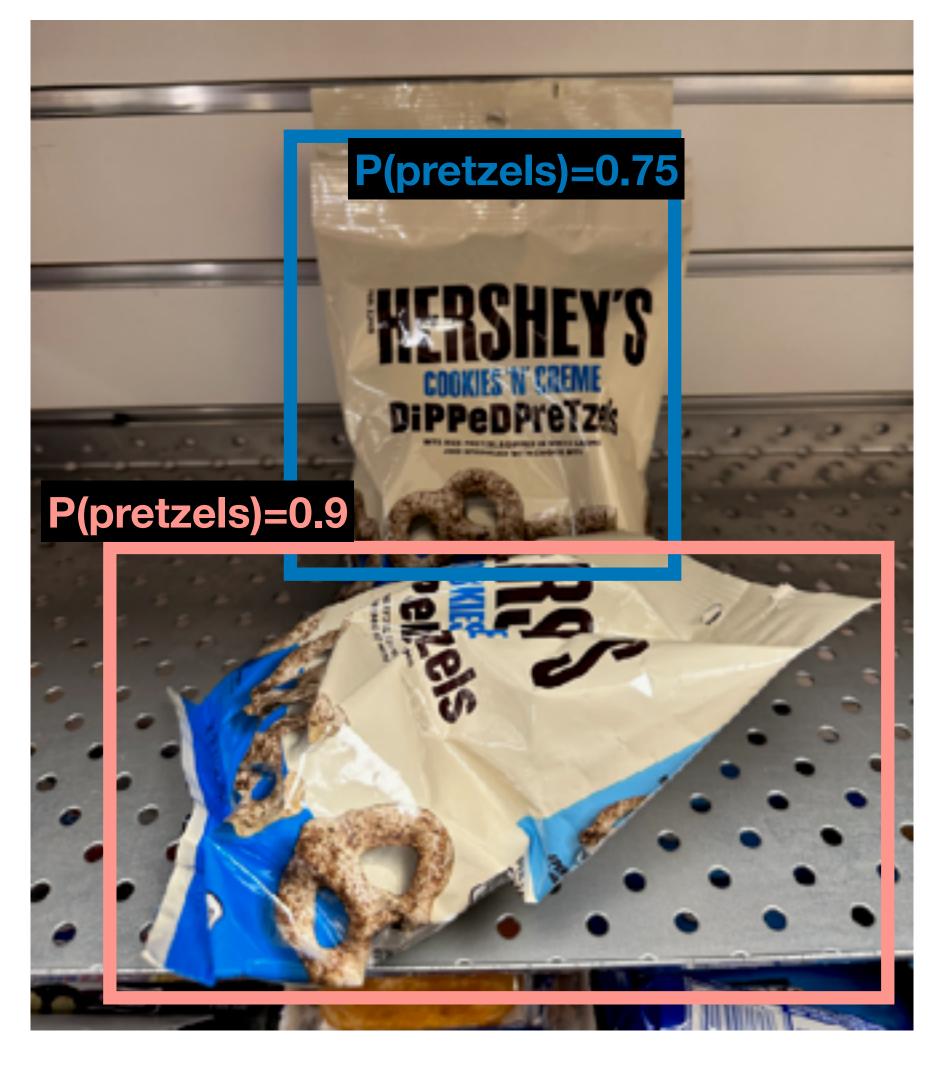
Solution: Post-process raw detections using Non-Max Suppression (NMS)

- 1. Select next highest-scoring box
- 2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

- 1. Select next highest-scoring box
- 2. Eliminate lower-scoring boxes with IoU> threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1



Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

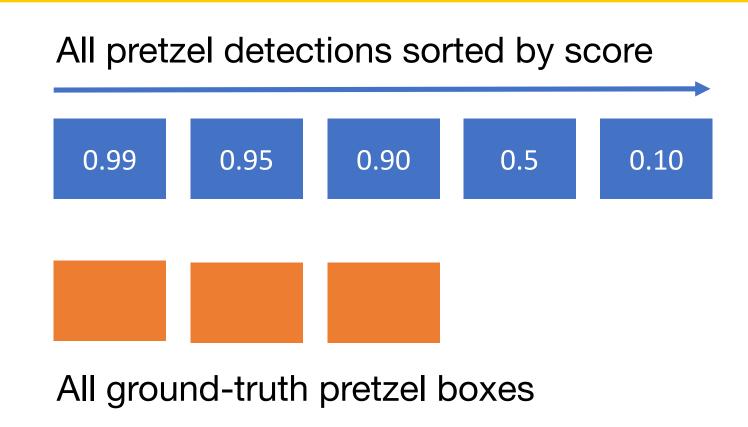
- 1. Select next highest-scoring box
- 2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: NMS may eliminate "good" boxes when objects are highly overlapping... no good solution

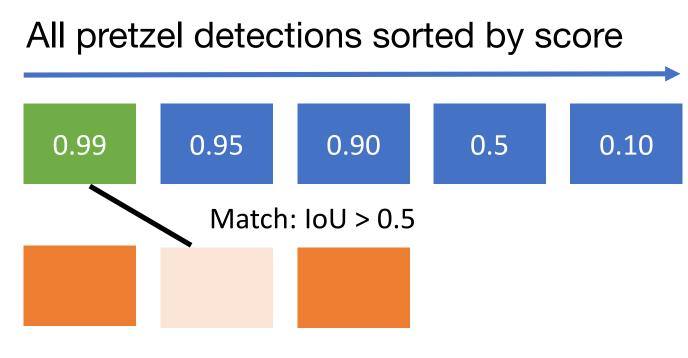
Crowd image is free for commercial use under the Pixabay license

- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve

- Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
 - 1. For each detection (highest score to lowest score)

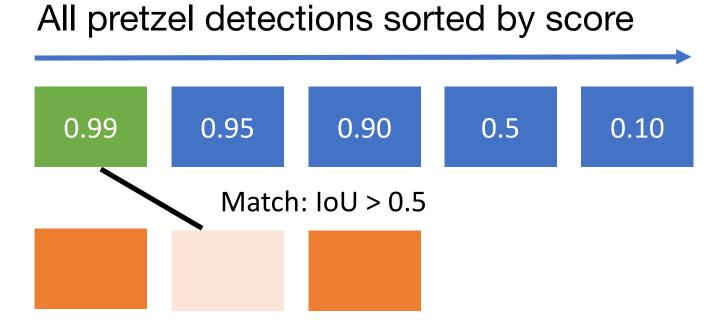


- Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
 - 1. For each detection (highest score to lowest score)
 - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
 - 2. Otherwise mark it as negative

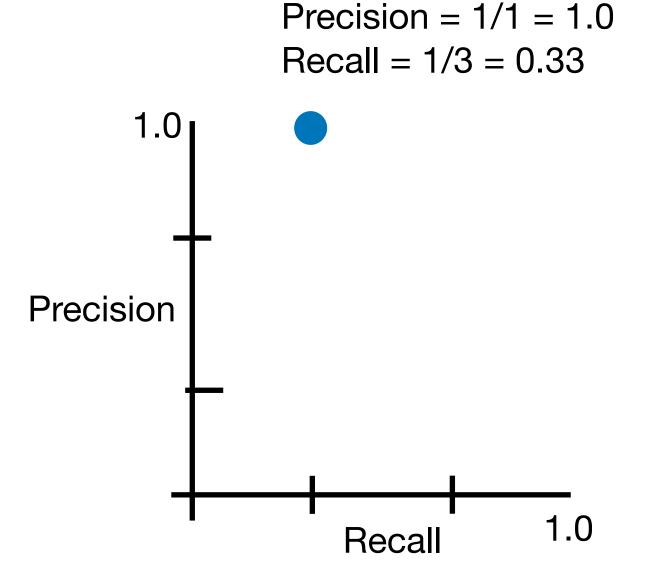


All ground-truth pretzel boxes

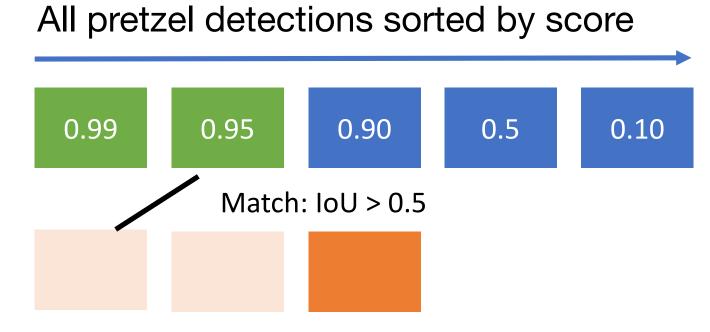
- Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
 - 1. For each detection (highest score to lowest score)
 - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
 - 2. Otherwise mark it as negative
 - 3. Plot a point on PR curve



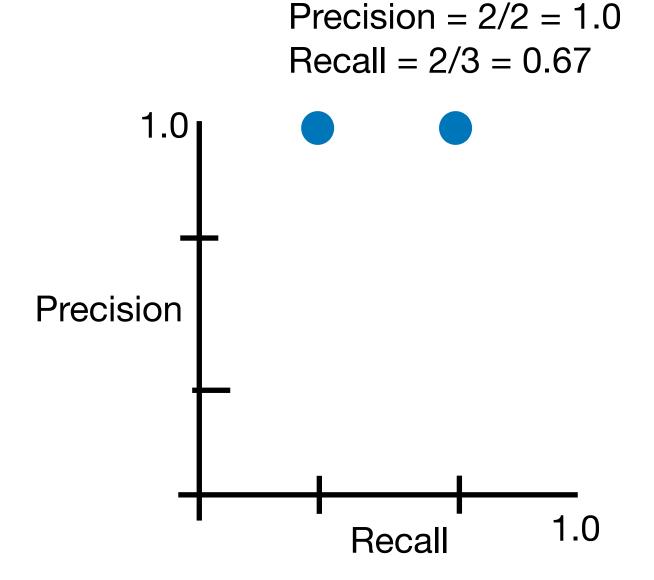
All ground-truth pretzel boxes



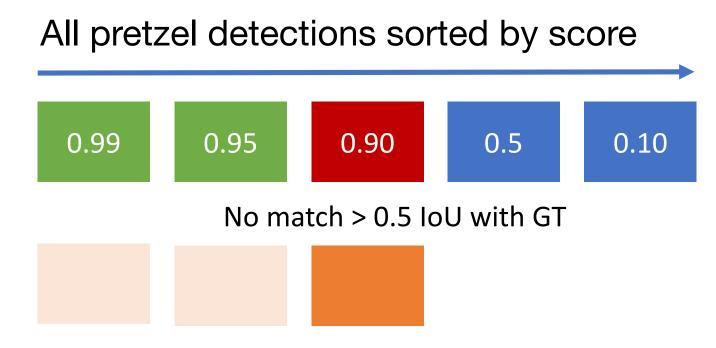
- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
 - 1. For each detection (highest score to lowest score)
 - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
 - 2. Otherwise mark it as negative
 - 3. Plot a point on PR curve

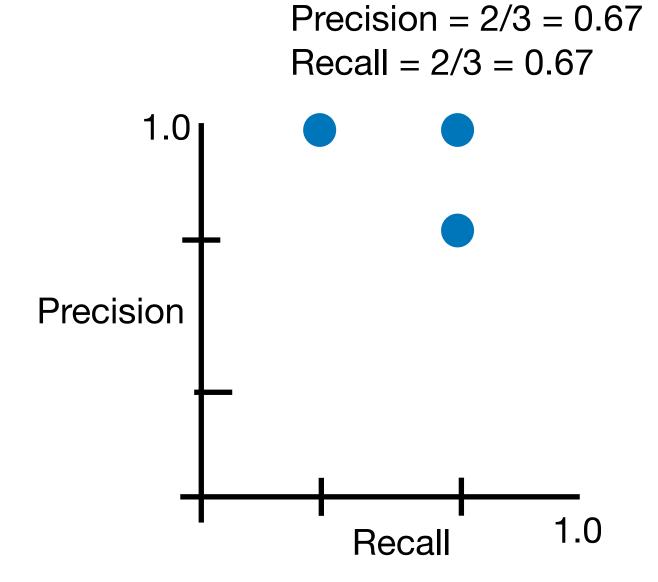


All ground-truth pretzel boxes

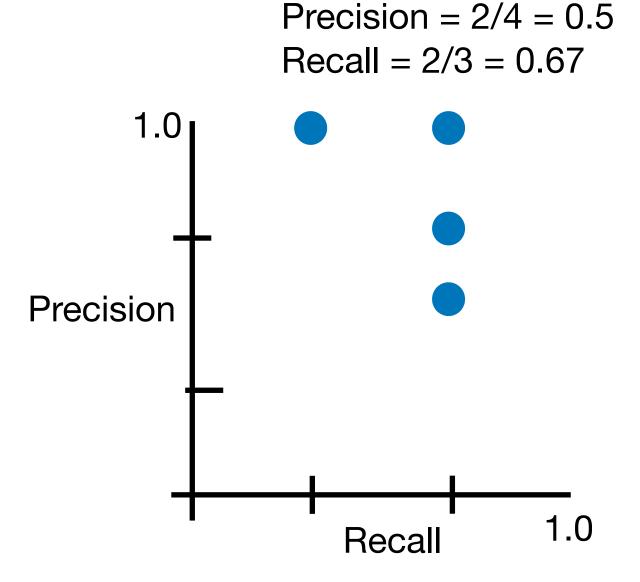


- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
 - 1. For each detection (highest score to lowest score)
 - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
 - 2. Otherwise mark it as negative
 - 3. Plot a point on PR curve



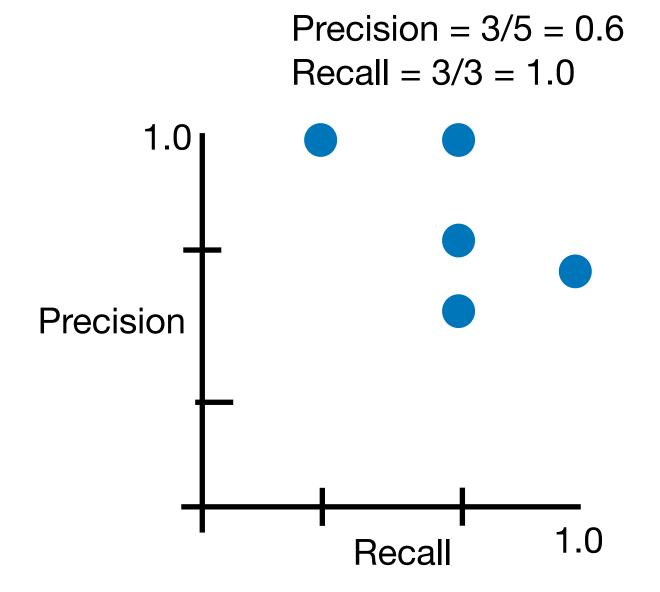


- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
 - 1. For each detection (highest score to lowest score)
 - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
 - 2. Otherwise mark it as negative
 - 3. Plot a point on PR curve

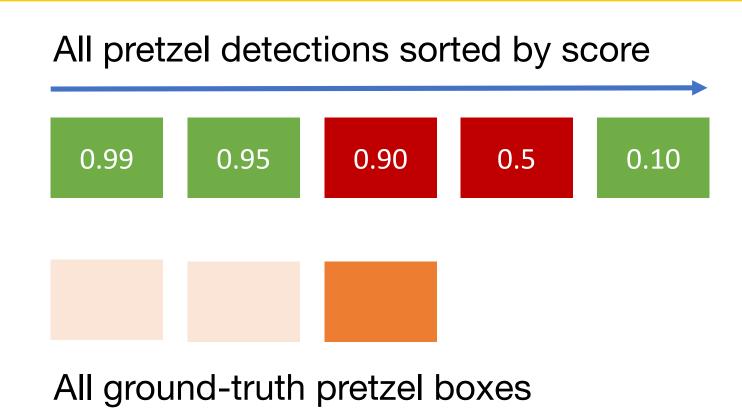


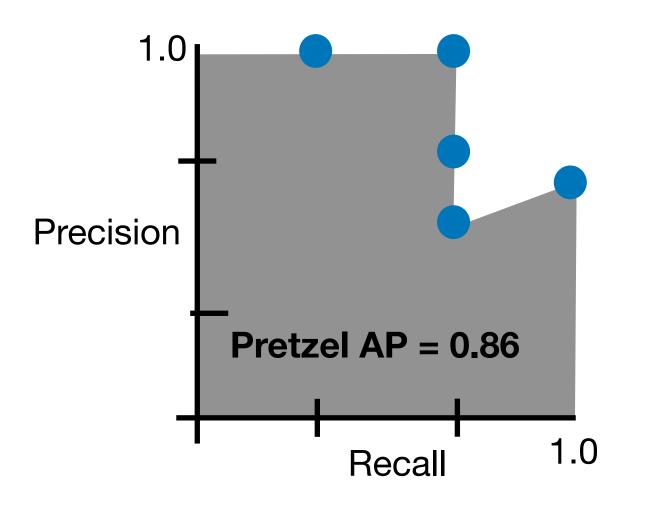
- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
 - 1. For each detection (highest score to lowest score)
 - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
 - 2. Otherwise mark it as negative
 - 3. Plot a point on PR curve

All ground-truth pretzel boxes



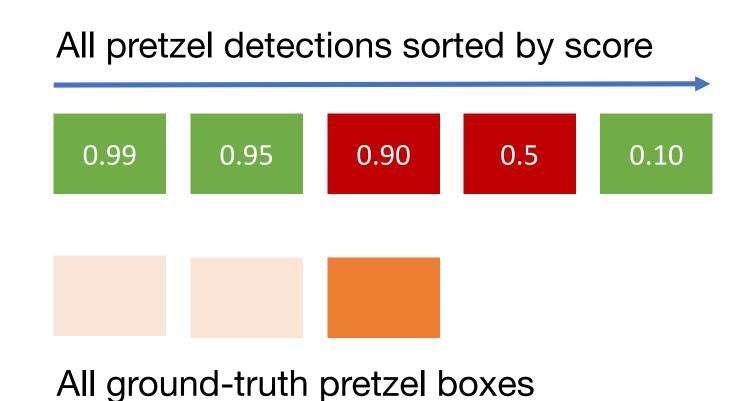
- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
 - 1. For each detection (highest score to lowest score)
 - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
 - 2. Otherwise mark it as negative
 - 3. Plot a point on PR curve
 - 2. Average Precision (AP) = area under PR curve

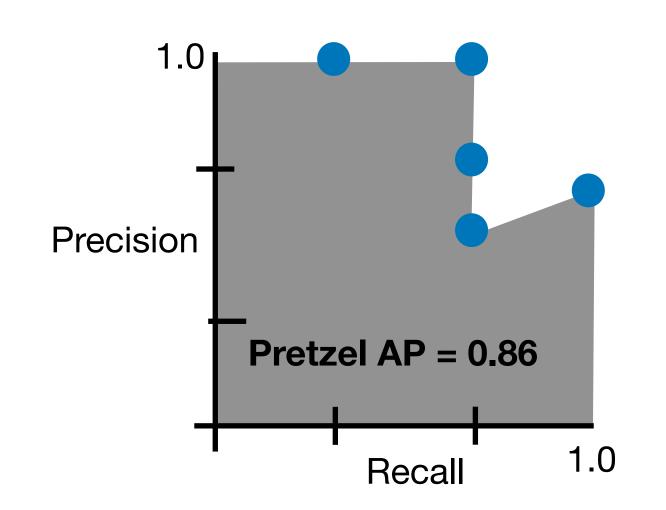




- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
 - 1. For each detection (highest score to lowest score)
 - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
 - 2. Otherwise mark it as negative
 - 3. Plot a point on PR curve
 - 2. Average Precision (AP) = area under PR curve

How to get AP = 1.0: Hit all GT boxes with IoU > 0.5, and have no "false positive" detections ranked above any "true positives"





- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
 - 1. For each detection (highest score to lowest score)
 - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
 - 2. Otherwise mark it as negative
 - 3. Plot a point on PR curve
 - 2. Average Precision (AP) = area under PR curve
- 3. Mean Average Precision (mAP) = average of AP for each category

Flipz AP = 0.60Hershey's AP = 0.85Reese's AP = 0.81mAP@0.5 = 0.75

Next Time: Object Detectors and Segmentation

