

Lecture 8 **CNN Architectures**

- Instructions and code available on the website
 - Here: <u>https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/</u> project1/
- Uses Python, PyTorch and Google Colab
- Implement KNN, linear SVM, and linear softmax classifiers
- Autograder is online!
- Due today! Thursday, February 9th 11:59 PM CT

Project 1 – Reminder

Project 2—Updates

- Will be released tonight!

FCN

Autograder will be made available by 02/13! Due Tuesday, February 21 11:59 PM CT

Implement two-layer neural network and generalize to

Fully-Connected Layers

Convolution Layers

Recap: Components of Convolutional Network

Activation Functions

S

Pooling Layers

- Consider a single layer y = Wx
- The following could lead to tough optimization:

 - Inputs x have different scaling per-element (entries in W will need to vary a lot)
- Idea: force inputs to be "nicely scaled" at each layer!

• Inputs x are not *centered around zero* (need large bias)

variance

We can normalize a batch of activations like this:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

Idea: "Normalize" the inputs of a layer so they have zero mean and unit

This is a **differentiable function**, so we can use it as an operator in our networks and backprop through it!

Input: $x \in \mathbb{R}^{N \times D}$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$
$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2$$
$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Per-channel mean, shape is D

Per-channel std, shape is D

Normalized x, shape is $N \times D$

Problem: What if zero-mean, unit variance is too hard of a constraint?

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function (in expection)

$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$\sigma_{j}^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_{j})^{2}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_{j}}{\sqrt{\sigma_{j}^{2} + \epsilon}}$$

$$y_{i,j} = \gamma_{j} \hat{x}_{i,j} + \beta_{j}$$

Per-channel mean, shape is D

Per-channel std, shape is D

Normalized x, shape is $N \times D$

Output, shape is $N \times D$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function (in expection)

Problem: Estimates depend on minibatch; can't do this at test-time

$$\sigma_{j}^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_{j})^{2}$$

$$i=1$$

$$i=1$$

$$i,j = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

 \hat{x}

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Per-channel mean, shape is D

Per-channel std, shape is D

Normalized x, shape is $N \times D$

Output, shape is $N \times D$

 $\mu_i =$

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function (in expection)

(Running) average of values seen during training

Per-channel mean, shape is D

 $\sigma_j^2 = \frac{\text{(Running) average of}}{\text{values seen during training}}$

 $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$

 $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$

Per-channel std, shape is D

Normalized x, shape is $N \times D$

Output, shape is $N \times D$

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function (in expection)

 $\mu_i^{test} = 0$

(Running) average of $\mu_i =$ values seen during training

Per-channel mean, shape is D

For each training iteration: i = 1 $\mu_j = ---x_{i,j}$ $\mu_{i}^{test} = 0.99 \mu_{i}^{test} + 0.01 \mu_{i}$

(Similar for σ)

 $\mu_i =$

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function (in expection)

(Running) average of values seen during training

Per-channel mean, shape is D

 $\sigma_j^2 = \frac{\text{(Running) average of}}{\text{values seen during training}}$

Per-channel std, shape is D

Normalized x, shape is $N \times D$

Output, shape is $N \times D$

$$\sqrt{\sigma_j^2 + \epsilon}$$
$$\gamma_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_i^2 + \epsilon}}$$

12

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer

(Running) average of values seen during training

Per-channel mean, shape is D

 $\sigma_j^2 = \frac{\text{(Running) average of}}{\text{values seen during training}}$

 $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$

 $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$

Per-channel std, shape is D

Normalized x, shape is $N \times D$

Output, shape is $N \times D$

Batch Normalization for ConvNets

Batch Normalization for fully-connected networks

 $x: N \times D$ Normalize $\mu, \sigma: 1 \times D$ $\gamma, \beta: 1 \times D$ $y = \frac{(x - \mu)}{\gamma + \beta}$ $\boldsymbol{\sigma}$

Batch Normalization for convolutional networks (Spatial Batchnorm, BatchNorm2D) $x: N \times C \times H \times W$ Normalize $\mu, \sigma: 1 \times C \times 1 \times 1$ $\gamma, \beta: 1 \times C \times 1 \times 1$ $v = \frac{(x - \mu)}{\gamma + \beta}$ $\boldsymbol{\sigma}$

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

x - E[x]

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," ICML 2015

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence - Networks become more robust to initialization - Acts as regularization during training.

- Zero overhead at test-time: can be fused with conv! - Not well-understood theoretically (yet)
- Behaves differently during training and testing: this is very common source of bugs!

Layer Normalization

Batch Normalization for fully-connected networks

Layer Normalization for fullyconnected networks Same behavior at train and test! Used in RNNs, Transformers $x: N \times D$ Normalize $\mu, \sigma: N \times 1$ $\gamma, \beta : 1 \times D$ $(x-\mu)$ $\gamma + \beta$

Instance Normalization

Batch Normalization for **convolutional** networks

Instance Normalization for **convolutional** networks Same behavior at train / test!

Comparison of Normalization Layers

DR

Group Normalization

Components of Convolutional Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Question: How should we put them together?

ImageNet Classification Challenge

ImageNet Classification Challenge

- 227 x 227 inputs
- 5 Convolutional Layers
- Max pooling
- 3 Fully-connected Layers
- ReLU nonlinearities

- Used "Local response normalization"; Not used anymore
- Trained on two GTX 580 GPUs only 3GB of memory each! Model split over two GPUs.

AlexNet

4096-4096-1000.

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440-186,624-64,896-64,896-43,264-

AlexNet citations per year (as of 1/31/2023)

Total citations: >120,000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012.

Citation Counts:

- Darwin, "On the origin of species", 1859: 60,117
- Shannon, "A mathematical theory of communication," 1948: 140,459
- Watson and Crick, "Molecular Structure of Nucleic Acids," 1953: **16,298**

	Input	t size		Layer	Output size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W
Conv1	3	227	64	11	4	2		?

	Input	t size		Layer	Output size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W
Conv1	3	227	64	11	4	2	64	?

Recall: Output channels = number of filters

	Input	t size		Layer	Output size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W
Conv1	3	227	64	11	4	2	64	56

Recall: W' = (W - K + 2P) / S + 1 $= (227 - 11 + 2 \times 2) / 4 + 1$ = 220/4 + 1 = 56

	Inpu	t size		Layer		Outpu	ut size		
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)
Conv1	3	227	64	11	4	2	64	56	?

	Input	t size		Layer		Outpu	ıt size		
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)
Conv1	3	227	64	11	4	2	64	56	784

Number of output elements = C x H' x W'

Bytes per element = 4 (for 32-bit floating point)

KB = (number of elements) x (bytes per elem) / 1024= 200704 x 4 / 1024 = 784

- $= 64 \times 56 \times 56 = 200,704$

	Inpu	t size	Layer				Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	
Conv1	3	227	64	11	4	2	64	56	784	?	

	Input	t size	Layer				Outpu	ut size		
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)
Conv1	3	227	64	11	4	2	64	56	784	23

Weight shape = $C_{out} \times C_{in} \times K \times K$ $= 64 \times 3 \times 11 \times 11$

Bias shape = $C_{out} = 64$

Number of weights = $64 \times 3 \times 11 \times 11 + 64$ = 23,296

	Inpu	t size		Layer				ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	

	Inpu	t size		Layer			Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	7

Number of floating point operations (multiply + add) = (number of output elements) * (ops per output elem) $= (C_{out} \times H' \times W') * (C_{in} \times K \times K)$ = (64 * 56 * 56) * (3 * 11 * 11) = 200,704 * 363 = 72,855,552

	Input	t size		Layer				ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	7
Pool1	64	56		3	2	0		?			

	Input	t size		Layer			Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	7
Pool1	64	56		3	2	0	64	27			

For pooling layer:

#output channels = #input channels = 64

$$W' = floor((W-K)/S+1)$$

= floor(53/2 + 1) = floor(

(27.5) = 27

	Inpu	t size		Layer				ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	7
Pool1	64	56		3	2	0	64	27	182	?	

#output elms = $C_{out} \times H' \times W'$ Bytes per elem = 4 $KB = C_{out} \times H' \times W' \times 4 / 1024$ = 64 * 27 * 27 * 4 / 1024 = 182.25

	Inpu	t size		Layer			Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	7
Pool1	64	56		3	2	0	64	27	182	0	

Pooling layers have no learnable parameters!

	Input	t size		Layer			Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	7
Pool1	64	56		3	2	0	64	27	182	0	

Floating-point ops for pooling layer $= (C_{out} \times H' \times W') \times (K \times K)$ = (64 * 27 * 27) * (3 * 3)= 419,904= 0.4 MFLOP

	Inpu	t size		Layer		Outpu	ut size				
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	7
Pool1	64	56		3	2	0	64	27	182	0	
Conv2	64	27	192	5	1	2	192	27	547	307	2
Pool2	192	27		3	2	0	192	13	127	0	
Conv3	192	13	384	3	1	1	384	13	254	664	1
Conv4	384	13	256	3	1	1	256	13	169	885	14
Conv5	256	13	256	3	1	1	256	13	169	590	1(
Pool5	256	13		3	2	0	256	6	36	0	
Flatten	256	6					9216		36	0	

- Flatten output size = $C_{in} \times H \times W$
 - = 256 * 6 * 6
 - **= 9216**

= 9216 * 4096 + 4096 = 37,725,832

FC params = $C_{in} * C_{out} + C_{out}$

	Input	t size					Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	7
Pool1	64	56		3	2	0	64	27	182	0	
Conv2	64	27	192	5	1	2	192	27	547	307	2
Pool2	192	27		3	2	0	192	13	127	0	
Conv3	192	13	384	3	1	1	384	13	254	664	1
Conv4	384	13	256	3	1	1	256	13	169	885	14
Conv5	256	13	256	3	1	1	256	13	169	590	1(
Pool5	256	13		3	2	0	256	6	36	0	
Flatten	256	6					9216		36	0	
FC6	9216		4096				4096		16	37726	3

AlexNet

FC flops = $C_{in} * C_{out}$ = 9216 * 4096 $= 37,748,736_{43}$

	Input	t size	Layer			Outpu	ut size				
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	7
Pool1	64	56		3	2	0	64	27	182	0	
Conv2	64	27	192	5	1	2	192	27	547	307	2
Pool2	192	27		3	2	0	192	13	127	0	
Conv3	192	13	384	3	1	1	384	13	254	664	1
Conv4	384	13	256	3	1	1	256	13	169	885	1
Conv5	256	13	256	3	1	1	256	13	169	590	1
Pool5	256	13		3	2	0	256	6	36	0	
Flatten	256	6					9216		36	0	
FC6	9216		4096				4096		16	37726	3
FC7	4096		4096				4096		16	16777	1
FC8	4096		1000				1000		4	4096	

How to choose this? Trial and error :(

	Inpu	t size		Layer			Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	7
Pool1	64	56		3	2	0	64	27	182	0	
Conv2	64	27	192	5	1	2	192	27	547	307	2
Pool2	192	27		3	2	0	192	13	127	0	
Conv3	192	13	384	3	1	1	384	13	254	664	1
Conv4	384	13	256	3	1	1	256	13	169	885	1
Conv5	256	13	256	3	1	1	256	13	169	590	1
Pool5	256	13		3	2	0	256	6	36	0	
Flatten	256	6					9216		36	0	
FC6	9216		4096				4096		16	37726	3
FC7	4096		4096				4096		16	16777	1
FC8	4096		1000				1000		4	4096	

	Input	t size		Layer			Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	7
Pool1	64	56		3	2	0	64	27	182	0	
Conv2	64	27	192	5	1	2	192	27	547	307	2
Pool2	192	27		3	2	0	192	13	127	0	
Conv3	192	13	384	3	1	1	384	13	254	664	1
Conv4	384	13	256	3	1	1	256	13	169	885	1
Conv5	256	13	256	3	1	1	256	13	169	590	1
Pool5	256	13		3	2	0	256	6	36	0	
Flatten	256	6					9216		36	0	
FC6	9216		4096				4096		16	37726	3
FC7	4096		4096				4096		16	16777	1
FC8	4096		1000				1000		4	4096	

Interesting trends here!

Most of the **memory usage** in the early convolution layers

Nearly all **parameters** are in the fully-connected layers

Most floating-point ops occur in the convolution layers

ImageNet Classification Challenge

ImageNet Classification Challenge

ZFNet: A Bigger AlexNet

AlexNet but: More trial and error :(

ImageNet top 5 error: 16.4% -> 11.7%

Conv1: change from (11x11 stride 4) to (7x7 stride 2)Conv3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet Classification Challenge

ImageNet Classification Challenge

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input
VGG16

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv. 512

3x3 conv. 512

3x3 conv. 51

Pool

3x3 conv. 512

3x3 conv. 512

3x3 conv, 512

Pool

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG19

AlexNet

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Network has 5 convolution **stages**: Stage 1: conv-conv-pool Stage 2: conv-conv-pool Stage 3: conv-conv-pool Stage 4: conv-conv-conv-[conv]-pool Stage 5: conv-conv-conv-[conv]-pool

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input
VGG16

Softmax

FC 1000

FC 4096

FC 4096

Pool

Pool

Pool

3x3 conv

3x3 conv,

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG19

A	lex	Ν	e	t

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

<u>Option 1:</u> Conv(5x5, C->C)

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

VGG16
Input
3x3 conv, 64
3x3 conv, 64

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv. 512

3x3 conv. 512

3x3 conv. 51

Pool

3x3 conv. 512

3x3 conv. 512

3x3 conv, 512

Pool

3x3 conv.

3x3 conv. 25

Pool

3x3 conv, 128

3x3 conv, 128

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

<u>Option 1:</u> Conv(5x5, C->C)

Params: 25C² FLOPs: 25C²HW

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Input
3x3 conv, 64
3X3 CONV, 64
1 001

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv. 512

Pool

3x3 conv. 512

3x3 conv. 512

3x3 conv, 512

Pool

Pool

3x3 conv, 128

3x3 conv. 128

3x3 conv

3x3 conv.

3x3 conv. 5⁻

Coffman
Solimax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
loout

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Option 1: Conv(5x5, C->C)

Option 2: Conv(3x3, C->

Params: 25C² FLOPs: 25C²HW

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Conv(3x3,	C->C)
Conv(3x3,	C->C)

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG16

Softmax

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG19

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

<u>Option 1:</u> Conv(5x5, C->C)

Option 2:

Conv(3x3, C-> Conv(3x3, C->

Params: 25C² FLOPs: 25C²HW Params: 18C² FLOPs: 18C²HW

>(C)
>(C)

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG16

Softmax

FC 1000

FC 4096

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv. 128
3x3 conv. 128
Pool
3x3 conv. 64
3x3 conv. 64
Input

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

Option 1: Conv(5x5, C->C)

Option 2:

Conv(3x3, C-> Conv(3x3, C->

Params: 25C² FLOPs: 25C²HW Params: 18C² FLOPs: 18C²HW

>	C)
>	C)

Softmax
ουππαλ
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Sonmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG16

Softmax
EC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 **After pool, double #channels**

Input: C x 2H x 2W Layer: Conv(3x3, C->C)

Memory: 4HWC Params: 9C² FLOPs: 36HWC²

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

Input	Input
AlexNet	VGG16

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv. 512

3x3 conv. 512

3x3 conv. 51

Pool

3x3 conv. 512

3x3 conv. 512

3x3 conv, 512

Pool

3x3 conv.

3x3 conv. 25

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv. 64

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv. 64
Input
input

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Input: C x 2H x 2W Layer: Conv(3x3, C->C) Input: 2C x H x W Layer: Conv(3x3, 2C->2C)

Memory: 4HWC Params: 9C² FLOPs: 36HWC² Memory: 2HWC Params: 36C² FLOPs: 36HWC²

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Continux							
FC 1000							
FC 4096							
FC 4096							
Pool							
3x3 conv. 512							
3x3 conv. 512							
3x3 conv, 512							
Pool							
3x3 conv, 512							
3x3 conv, 512							
3x3 conv, 512							
Pool							
3x3 conv, 256							
3x3 conv, 256							
Pool							
3x3 conv, 128							
3x3 conv, 128							
Pool							
3x3 conv, 64							
3x3 conv, 64							
Input							

VGG16

Softmax								
FC 1000								
FC 4096								
FC 4096								
Pool								
3x3 conv, 512								
3x3 conv, 512								
3x3 conv, 512								
3x3 conv, 512								
Pool								
3x3 conv, 512								
3x3 conv, 512								
3x3 conv, 512								
3x3 conv, 512								
Pool								
3x3 conv, 256								
3x3 conv, 256								
Pool								
3x3 conv, 128								
3x3 conv, 128								
Pool								
3x3 conv, 64								
3x3 conv, 64								
Input								

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Conv layers at each spatial resolution take the same amount of computation!

Input: C x 2H x 2W Layer: Conv(3x3, C->C) Input: 2C x H x W Layer: Conv(3x3, 2C->2C)

Memory: 4HWC Params: 9C² FLOPs: 36HWC² Memory: 2HWC Params: 36C² FLOPs: 36HWC²

Softmax						
FC 1000						
FC 4096						
FC 4096						
Pool						
3x3 conv, 256						
3x3 conv, 384						
Pool						
3x3 conv, 384						
Pool						
5x5 conv, 256						
11x11 conv, 96						
Input						

AlexNet

Softmax FC 1000 FC 4096 FC 4096 Pool 3x3 conv. 51 3x3 conv. 512 Pool 3x3 conv, 512 3x3 conv. 512 Pool 3x3 conv 3x3 conv. Pool 3x3 conv. 12 3x3 conv, 128 Pool 3x3 conv. 6 Input

VGG16

Softmax								
FC 1000								
FC 4096								
FC 4096								
Pool								
3x3 conv, 512								
3x3 conv, 512								
3x3 conv, 512								
3x3 conv, 512								
Pool								
3x3 conv, 512								
3x3 conv, 512								
3x3 conv, 512								
3x3 conv, 512								
Pool								
3x3 conv, 256								
3x3 conv. 256								
Pool								
3x3 conv. 128								
3x3 conv. 128								
Pool								
3x3 conv. 64								
3x3 conv. 64								

DR AlexNet vs VGG-16: Much bigger network!

AlexNet vs VGG-16 (MFLOPs)

ImageNet Classification Challenge

ImageNet Classification Challenge

GoogLeNet: Focus on Efficiency

Many innovations for efficiency: reduce parameter count, memory usage, and computation

Szegedy et al, "Going deeper with convolutions", CVPR 2015

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

Szegedy et al, "Going deeper with convolutions", CVPR 2015

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Inpu	ıt size	Layer			Outpu	ıt size				
Layer	С	H/W	Filters	Kernel	Strid	Pad	С	H/W	Memory	Params	Flop (M)
Conv	3	224	64	7	2	3	64	112	3136	9	118
Max-pool	64	112		3	2	1	64	56	784	0	2
Conv	64	56	64	1	1	0	64	56	784	4	13
Conv	64	56	192	3	1	1	192	56	2352	111	347
Max-pool	192	56		3	2	1	192	28	588	0	1

Total from 224 to 28 spatial resolution: Memory: 7.5 MB Params: 124K MFLOP: 418

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Inpu	ut size	Layer				Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Strid	Pad	С	H/W	Memory	Params	Flop (M)
Conv	3	224	64	7	2	3	64	112	3136	9	118
Max-pool	64	112		3	2	1	64	56	784	0	2
Conv	64	56	64	1	1	0	64	56	784	4	13
Conv	64	56	192	3	1	1	192	56	2352	111	347
Max-pool	192	56		3	2	1	192	28	588	0	1

Total from 224 to 28 spatial resolution: Memory: 7.5 MB Params: 124K MFLOP: 418

Szegedy et al, "Going deeper with convolutions", CVPR 2015

Compare VGG-16: Memory: 42.9 MB (5.7x) Params: 1.1M (8.9x) MFLOP: 7485 (17.8x)

GoogLeNet: Inception Module

Inception module: Local unit with parallel branches

Local structure repeated many times throughout the network

GoogLeNet: Inception Module

Inception module: Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1x1 "Bottleneck" layers to reduce channel dimension before expensive conv (we will revisit this with ResNet!)

GoogLeNet: Global Average Pooling

No large FC layers at the end!

Instead use global average pooling to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Inp	ut size	ize Layer				Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params	Flop (M)
avg-pool	1024	7		7	1	0	1024	1	4	0	0
fc	1024		1000				1000	0	0	1025	1

GoogLeNet: Global Average Pooling

No large FC layers at the end!

Instead use global average pooling to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Inp	ut size	Layer			Output size					
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params	Flop (M)
avg-pool	1024	7		7	1	0	1024	1	4	0	0
fc	1024		1000				1000	0	0	1025	1

Compare with VGG-16:

	Ιηρι	ut size	Layer			Output size					
Layer	C	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params	Flop (M)
Flatten	512	7					25088		98		
FC6	25088			4096			4096		16	102760	103
FC7	4096			4096			4096		16	16777	17
FC8	4096			1000			1000		4	4096	4

GoogLeNet: Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm, we no longer need to use this trick

ImageNet Classification Challenge

ImageNet Classification Challenge

152
layers

Next Time: Training Neural Networks

Lecture 8 **CNN Architectures**

