

Project 1—Reminder

- Instructions and code available on the website
- Here: https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/ project1/
- Uses Python, PyTorch and Google Colab
- Implement KNN, linear SVM, and linear softmax classifiers
- Autograder is online!
- Due Fuesday, February 7th, Thursday, February 9th 11:59 PM CT

Quiz 3 was today!

- Quiz 4 will be on Thursday Feb 9th!

Recap from Previous Lecture

Represent complex expressions as computational graphs

1. Forward pass: Compute outputs
2. Backward pass: Compute gradients

During the backward pass, each node in the graph receives upstream gradients and multiplies them by local gradients to compute downstream gradients

Recap from Previous Lecture

$f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}$

Problem: So far our classifiers don't respect the spatial structure of images!

Recap from Previous Lecture

$f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}$

Problem: So far our classifiers don't respect the spatial structure of images!

Solution: Define new computational nodes that operate on images!

DR

Components of Fully-Connected Networks

Fully-Connected Layers
Activation Functions

DR

Components of Convolutional Neural Networks

Fully-Connected Layers

Activation Functions

Convolution Layers

Pooling Layers

Normalization

$$
\widehat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
$$

Fully-Connected Layer

$3 \times 32 \times 32$ image \longrightarrow stretch to 3072×1

Fully-Connected Layer

$3 \times 32 \times 32$ image \longrightarrow stretch to 3072×1

The result of taking a dot product between a row of W and the input

Convolution Layer

$3 \times 32 \times 32$ image: preserve spatial structure

$3 \times 5 \times 5$ filter

Convolve the filter with the image
i.e. "slide over the image spatially, computing dot products"

Convolution Layer

$3 \times 32 \times 32$ image

Filters always extend the full depth of the input volume
$3 \times 5 \times 5$ filter

Convolve the filter with the image
i.e. "slide over the image spatially, computing dot products"

Convolution Layer

$3 \times 32 \times 32$ image

Convolution Layer

$3 \times 32 \times 32$ image
$1 \times 28 \times 28$ activation map

Convolution Layer

$3 \times 32 \times 32$ image
two $1 \times 28 \times 28$ activation map

Consider repeating with a second (green) filter
convolve (slide) over all spatial locations

Convolution Layer

$3 \times 32 x 32$ image

six $1 \times 28 \times 28$ activation map

Stack activations to get a $6 \times 28 \times 28$ output image

Convolution Layer

$3 \times 32 \times 32$ image
six $1 \times 28 \times 28$ activation map
Also 6-dim bias vector

Stack activations to get a $6 \times 28 \times 28$ output image

Convolution Layer

$3 \times 32 \times 32$ image

Stack activations to get a $6 \times 28 \times 28$ output image

DR

Convolution Layer

$2 \times 3 \times 32 \times 32$
batch of images

$2 \times 6 \times 28 \times 28$
batch of outputs

Convolution Layer

$N \times C_{\text {in }} \times \mathrm{H} \times W$ batch of images

Also Cout-dim bias vector

$N \times C_{\text {out }} \times H^{\prime} \times W^{\prime}$ batch of outputs

Stacking Convolutions

$\mathrm{N} \times 3 \times 32 \times 32$

Stacking Convolutions

Stacking Convolutions

Stacking Convolutions

Q: What happens if we stack two convolution layers?

Stacking Convolutions

Q: What happens if we stack two convolution layers?
(Recall $\mathrm{y}=\mathrm{W}_{2} \mathrm{~W}_{1} \mathrm{x}$ is a linear classifier)

First hidden layer
N x $6 \times 28 \times 28$

Second hidden layer
$N \times 10 \times 26 \times 26$

Stacking Convolutions

Q: What happens if we stack two convolution layers?
(Recall $\mathrm{y}=\mathrm{W}_{2} \mathrm{~W}_{1} \mathrm{x}$ is a linear classifier)

A: We get another convolution!

First hidden layer
N x $6 \times 28 \times 28$

Second hidden layer
N x $10 \times 26 \times 26$

Stacking Convolutions

Q: What happens if we stack two convolution layers?
(Recall $\mathrm{y}=\mathrm{W}_{2} \mathrm{~W}_{1} \mathrm{x}$ is a linear classifier)

A: We get another convolution!

6
First hidden layer
N x $6 \times 28 \times 28$

Second hidden layer
N x $10 \times 26 \times 26$

What do convolutional filters learn?

DR

What do convolutional filters learn?

Linear classifier: One template per class

What do convolutional filters learn?

MLP: Bank of whole-image templates

What do convolutional filters learn?

First-layer conv filters: local image templates (often learns oriented edges, opposing colors)

AlexNet: 96 filters, each $3 \times 11 \times 11$

First hidden layer
N x $3 \times 32 \times 32$
N x $6 \times 28 \times 28$

DR

What do convolutional filters learn?

A closer look at spatial dimensions

A closer look at spatial dimensions

Input: 7x7
Filter: 3×3

A closer look at spatial dimensions

Input: 7x7
Filter: 3×3

A closer look at spatial dimensions

Input: 7x7
Filter: 3×3

A closer look at spatial dimensions

Input: 7x7
Filter: 3×3

A closer look at spatial dimensions

Input: 7x7
Filter: 3x3
Output: 5x5

A closer look at spatial dimensions

Input: 7x7
Filter: 3×3

Output: 5x5

In general: Problem: Feature Input: W maps "shrink" Filter: K with each layer!

Output: W - K + 1

A closer look at spatial dimensions

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7
Filter: 3x3

Output: 5x5

In general: Problem: Feature Input: W Filter: K maps "shrink" with each layer!

Output: W - K + 1
Solution: padding
Add zeros around the input

A closer look at spatial dimensions

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7
Filter: 3×3

Output: 5x5

In general: Very common:
Input: W Set P = $(\mathrm{K}-1) / 2$ to Filter: K make output have
Padding: P
same size as input!
Output: W - K + 1 + 2P

Receptive Fields

For convolution with kernel size K, each element in the output depends on a K x K receptive field in the input

Input

Output

Formally, it is the region in the input space that a particular CNN's feature is affected by.

Informally, it is the part of a tensor that after convolution results in a feature.

Receptive Fields

Each successive convolution adds $K-1$ to the receptive field size
With L layers the receptive field size is $1+L^{*}(K-1)$

Receptive Fields

Each successive convolution adds $K-1$ to the receptive field size
With L layers the receptive field size is $1+L^{*}(K-1)$

Input

Problem: For large images we need many layers for each output to "see" the whole image image

Output

Receptive Fields

Each successive convolution adds $K-1$ to the receptive field size
With L layers the receptive field size is $1+L^{*}(K-1)$

Input

Problem: For large images we need many layers

Output for each output to "see" the whole image image

Solution: Downsample inside the network

Strided Convolution

Input: 7×7
Filter: 3×3
Stride: 2

Strided Convolution

Input: 7×7
Filter: 3×3
Stride: 2

Strided Convolution

Input: 7x7
Filter: 3×3
Output: 3x3

Stride: 2

Strided Convolution

Input: 7x7
Filter: 3×3 Output: 3×3
Stride: 2
In general:
Input: W
Filter: K
Padding: P
Stride: S
Output: (W-K + 2P) / S + 1

Convolution Example

Input volume: $3 \times 32 \times 32$
105×5 filters with stride 1 , pad 2

Q: What is the output volume size?

Convolution Example

Input volume: $3 \times 32 \times 32$
105×5 filters with stride 1, pad 2

Q: What is the output volume size?
$\left(32-5+2^{*} 2\right) / 1+1=32$ spatially
So, $10 \times 32 \times 32$ output

Convolution Example

Input volume: $3 \times 32 \times 32$
105×5 filters with stride 1, pad 2

Output volume size: $10 \times 32 \times 32$
Q: What is the number of learnable parameters?

Convolution Example

Input volume: $3 \times 32 \times 32$
105×5 filters with stride 1, pad 2

Output volume size: $10 \times 32 \times 32$
Q: What is the number of learnable parameters?
Parmeters per filter: $\left(3^{*} 5^{*} 5\right)+1=76$

10 filters, so total is $10 * 76=760$

Convolution Example

Input volume: $3 \times 32 \times 32$
105×5 filters with stride 1 , pad 2

Output volume size: $10 \times 32 \times 32$
Number of learnable parameters: 760
Q: What is the number of multiply-add operations?

Convolution Example

Input volume: $3 \times 32 \times 32$
105×5 filters with stride 1 , pad 2

Output volume size: $10 \times 32 \times 32$
Number of learnable parameters: 760
Q: What is the number of multiply-add operations?
$10 * 32 * 32=10,240$ outputs, each from inner product

of two $3 \times 5 \times 5$ tensors, so total $=75 * 10,240=\mathbf{7 6 8 , 0 0 0}$

Example: 1x1 Convolution

Example: 1x1 Convolution

Stacking 1×1 conv layers gives MLP operating on each input position

Convolution Summary

Input: $\mathrm{C}_{\text {in }} \times \mathrm{H} \times \mathrm{W}$
Hyperparameters:

- Kernel size: $\mathrm{K}_{\mathrm{H}} \times \mathrm{K}_{\mathrm{W}}$
- Number filters: Cout $_{\text {out }}$
- Padding: P
- Stride: S

Weight matrix: $\mathrm{C}_{\text {out }} \times \mathrm{C}_{\text {in }} \times \mathrm{K}_{\mathrm{H}} \times \mathrm{K}_{\mathrm{W}}$ giving $C_{\text {out }}$ filters of size $C_{\text {in }} \times K_{H} \times K_{W}$
Bias vector: $\mathrm{C}_{\text {out }}$
Output size: $\mathrm{C}_{\text {out }} \times \mathrm{H}^{\prime} \times \mathrm{W}^{\prime}$ where:

- $H^{\prime}=(H-K+2 P) / S+1$
- $W^{\prime}=(W-K+2 P) / S+1$

Convolution Summary

Input: $\mathrm{C}_{\text {in }} \times \mathrm{H} \times \mathrm{W}$
Hyperparameters:

- Kernel size: $\mathrm{K}_{\mathrm{H}} \times \mathrm{K}_{\mathrm{W}}$
- Number filters: Cout $_{\text {out }}$
- Padding: P
- Stride: S

Weight matrix: $\mathrm{C}_{\text {out }} \times \mathrm{C}_{\text {in }} \times \mathrm{K}_{\mathrm{H}} \times \mathrm{K}_{\mathrm{W}}$ giving $C_{\text {out }}$ filters of size $C_{\text {in }} \times K_{H} \times K_{W}$ Bias vector: $\mathrm{C}_{\text {out }}$
Output size: $\mathrm{C}_{\text {out }} \times \mathrm{H}^{\prime} \times \mathrm{W}^{\prime}$ where:

- $H^{\prime}=(H-K+2 P) / S+1$
- $W^{\prime}=(W-K+2 P) / S+1$

Common settings:
$\mathrm{K}_{\mathrm{H}}=\mathrm{K}_{\mathrm{w}}$ (Small square filters)
$P=(K-1) / 2$ ("Same" padding)
$C_{\text {in }}, C_{\text {out }}=32,64,128,256$ (powers of 2)
$\mathrm{K}=3, \mathrm{P}=1, \mathrm{~S}=1$ ($3 \times 3 \mathrm{conv}$)
$\mathrm{K}=5, \mathrm{P}=2, \mathrm{~S}=1$ (5×5 conv)
$\mathrm{K}=1, \mathrm{P}=0, \mathrm{~S}=1$ (1×1 conv)
$K=3, P=1, S=2$ (Downsample by 2)

Other types of convolution

So far: 2D Convolution

Other types of convolution

So far: 2D Convolution

1D Convolution
Input: $\mathrm{C}_{\text {in }} \times \mathrm{W}$
Weights: $\mathrm{C}_{\text {out }} \times \mathrm{C}_{\text {in }} \times \mathrm{K}$

Other types of convolution

So far: 2D Convolution

3D Convolution

Input: $\mathrm{C}_{\mathrm{in}} \times \mathrm{H} \times \mathrm{W} \times \mathrm{D}$
Weights: $\mathrm{C}_{\text {out }} \times \mathrm{C}_{\text {in }} \times \mathrm{K} \times \mathrm{KxK}$

PyTorch Convolution Layer

Conv2d

```
CLASS torch.nn.Conv2d(in_channels,out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode='zeros')
```

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $\left(N, C_{\text {in }}, H, W\right)$ and output ($\left.N, C_{\text {out }}, H_{\text {out }}, W_{\text {out }}\right)$ can be precisely described as:

$$
\operatorname{out}\left(N_{i}, C_{\text {out }_{j}}\right)=\operatorname{bias}\left(C_{\text {out }_{j}}\right)+\sum_{k=0}^{C_{\text {in }}-1} \operatorname{weight}\left(C_{\text {out }_{j}}, k\right) \star \operatorname{input}\left(N_{i}, k\right)
$$

PyTorch Convolution Layer

Conv2d

```
CLASS torch.nn.Conv2d(in_channels,out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode='zeros')
```


Conv1d

CLASS torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
 [SOURCE] \mathcal{O}

Conv3d

CLASS torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

DR

Components of Convolutional Neural Networks

Fully-Connected Layers

Activation Functions

Pooling Layers

Normalization

$$
\widehat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
$$

DR

Pooling Layers: Another way to downsample

Hyperparameters:
Kernel size
Stride
Pooling function

Max Pooling

Single depth slice

Max Pooling

Single depth slice

x	1	1	2	4	Max pooling with 2×2 kernel size stride of 2		
	5	6	7	8		6	8
	3	2	1	0		3	4
	1	2	3	4			
				y	Introduces invariance to small spatial shifts		
					No learnable parameters!		

Pooling Summary

Input: C x H x W
Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Common settings:
$\max , \mathrm{K}=2, \mathrm{~S}=2$
max, $K=3, S=2$ (AlexNet)

Output: C $\times \mathrm{H}^{\prime} \times \mathrm{W}^{\prime}$ where

- $H^{\prime}=(H-K) / S+1$
- $W^{\prime}=(W-K) / S+1$

Learnable parameters: None!

DR

Components of Convolutional Neural Networks

Fully-Connected Layers

Convolution Layers

Pooling Layers

Activation Functions

Normalization

Convolutional Neural Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	

DR

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C out $=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	

DR

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C $\left.{ }_{\text {out }}=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (Cout $=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, $\mathrm{S}=2)$	$20 \times 14 \times 14$	
Conv (C		
ReLU $=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
	$50 \times 14 \times 14$	

DR

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C out $=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C $\left.\mathrm{Cout}^{=}=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
ReLU	$50 \times 14 \times 14$	
MaxPool(K=2, S=2)	$50 \times 7 \times 7$	

DR

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C out $=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C out $=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
ReLU	$50 \times 14 \times 14$	
MaxPool $(\mathrm{K}=2, \mathrm{~S}=2)$	$50 \times 7 \times 7$	
Flatten	2450	

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C $\left.{ }_{\text {out }}=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C $\left.{ }_{\text {out }}=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
ReLU	$50 \times 14 \times 14$	
MaxPool(K=2, S=2)	$50 \times 7 \times 7$	
Flatten	2450	
Linear (2450 -> 500)	500	2450×500
ReLU	500	

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C out $=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C $\mathrm{out}=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
ReLU	$50 \times 14 \times 14$	
MaxPool(K=2, S=2)	$50 \times 7 \times 7$	
Flatten	2450	
Linear (2450 -> 500)	500	2450×500
ReLU	500	
Linear (500 -> 10)	10	500×10

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C out $=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C $\left.{ }_{\text {out }}=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
ReLU	$50 \times 14 \times 14$	
MaxPool(K=2, S=2)	$50 \times 7 \times 7$	
Flatten	2450	
Linear (2450 -> 500)	500	2450×500
ReLU	500	
Linear (500 -> 10)	10	500×10

As we progress through the network:
Spatial size decreases (using pooling or striped convolution)

Number of channels increases (total "volume" is preserved!)

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C $\left.{ }_{\text {out }}=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C out $=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
ReLU	$50 \times 14 \times 14$	
MaxPool(K=2, S=2)	$50 \times 7 \times 7$	
Flatten	2450	
Linear (2450 -> 500)	500	2450×500
ReLU	500	
Linear (500 -> 10)	10	500×10

As we progress through the network:
Spatial size decreases (using pooling or striped convolution)

Number of channels increases (total "volume" is preserved!)

Some modern architectures break this trend-stay tuned!

Problem: Deep Networks very hard to train

DR

Components of Convolutional Neural Networks

Fully-Connected Layers

Convolution Layers

Activation Functions

Normalization

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
$$

Batch Normalization

Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance
Why? Helps reduce "internal covariate shift", improves optimization results

We can normalize a batch of activations using:

$$
\hat{x}=\frac{x-E[x]}{\sqrt{\operatorname{Var}[x]}}
$$

Batch Normalization

Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance
Why? Helps reduce "internal covariate shift", improves optimization results

We can normalize a batch of activations using:

$$
\hat{x}=\frac{x-E[x]}{\sqrt{\operatorname{Var}[x]}}
$$

This is a differentiable function, so we can use it as an operator in our networks and backdrop through it!

DR

Summary: Components of Convolutional Network

Fully-Connected Layers

Convolution Layers

Activation Functions

Normalization

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
$$

DR

Summary: Components of Convolutional Network

Problem: What is the right way to combine all these components?

Next time: CNN Architectures

Final Project Overview

- Research-oriented final project
- Instead of a final exam!

Can be completed in teams of 2-3 people

- Objectives
- Gain experience reading literature
- Reproduce published results
- Propose a new idea and test the results!

Final Project Tasks

1. [Graded] Final Project Proposal document submission (2\%)
2. [Graded] In-class topic-paper(s) presentation (4\%)
3. In-class final project pitch
4. In-class final project checkpoint
5. [Graded] Reproduce published results (12\%)

- Algorithmic extension to obtain results with new idea, technique or dataset

6. [Graded] Video Presentation + Poster (4\%)
7. [Graded] Final Report (2\%)

Calendar updates

March

April

Su Mo Tu We Th Fr Sa

