

包萢

Project 1—Reminder

- Instructions and code available on the website
- Here: https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/ project1/
- Uses Python, PyTorch and Google Colab
- Implement KNN, linear SVM, and linear softmax classifiers
- Autograder might be delayed!
- Due Tuesday, February 7th 11:59 PM CT

Quiz 2 was today

Quiz 3 will be on 02/07, coming Tuesday
 Quiz 4 will be on 02/09, next Thursday

Recap from Previous Lecture

Feature transform + Linear classifier allows nonlinear decision boundaries

Neural Networks as learnable feature transforms

Recap from Previous Lecture

From linear classifiers to fully-connected networks

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

Linear classifier: One template per class

Neural networks: Many reusable templates

Recap from Previous Lecture

From linear classifiers to fully-connected networks

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

Space Warping

Universal approximation

Problem: How to compute gradients?

$s=W_{2} \frac{\text { ReLU activation }}{\max \left(0, W_{1} x+b_{1}\right)}+b_{2}$
Nonlinear score function
$L_{i}=\sum_{\substack{j \neq y_{i}}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Per-element data loss
$R(W)=\sum_{k} W_{k}^{2}$
L2 regularization
$L\left(W_{1}, W_{2}, b_{1}, b_{2}\right)=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\underbrace{\lambda R\left(W_{1}\right)+\lambda R\left(W_{2}\right)}_{\delta L}$ Total loss
If we can compute $\frac{\delta L}{\delta W_{1}}, \frac{\delta L}{\delta W_{2}}, \frac{\delta L}{\delta b_{1}}, \frac{\delta L}{\delta b_{2}}$ then we can optimize with SGD

(Bad) Idea: Derive $\nabla_{W} L$ on paper

$$
\begin{aligned}
& s=f(x ; W)=W x \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& \quad=\sum_{j \neq y_{i}} \max \left(0, W_{j,:} x-W_{y_{i}:} x+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda \sum_{k} W_{k}^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} x-W_{y_{i j}:} x+1\right)+\lambda \sum_{k} W_{k}^{2} \\
& \nabla_{W} L=\nabla_{W}\left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} x-W_{y_{i}:} x+1\right)+\lambda \sum_{k} W_{k}^{2}\right)
\end{aligned}
$$

Problem: Very tedious with lots of matrix calculus

Problem: What if we want to change the loss? E.g. use softmax instead of SVM? Need to re-derive from scratch. Not modular!

Problem: Not feasible for very complex models!

Better Idea: Computational Graphs

Deep Network (AlexNet)

Backpropagation: Simple Example

$$
f(x, y, z)=(x+y) \cdot z
$$

Backpropagation: Simple Example

$$
\begin{aligned}
& f(x, y, z)=(x+y) \cdot z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

Backpropagation: Simple Example

$$
\begin{aligned}
& f(x, y, z)=(x+y) \cdot z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

Backpropagation: Simple Example

$$
f(x, y, z)=(x+y) \cdot z
$$

$$
\text { e.g. } x=-2, y=5, z=-4
$$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$$
f(x, y, z)=(x+y) \cdot z
$$

$$
\text { e.g. } x=-2, y=5, z=-4
$$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$$
f(x, y, z)=(x+y) \cdot z
$$

$$
\text { e.g. } x=-2, y=5, z=-4
$$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$$
f(x, y, z)=(x+y) \cdot z
$$

$$
\text { e.g. } x=-2, y=5, z=-4
$$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$f(x, y, z)=(x+y) \cdot z$
e.g. $x=-2, y=5, z=-4$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$f(x, y, z)=(x+y) \cdot z$
e.g. $x=-2, y=5, z=-4$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$f(x, y, z)=(x+y) \cdot z$
e.g. $x=-2, y=5, z=-4$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$$
\begin{aligned}
& f(x, y, z)=(x+y) \cdot z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$$
\begin{aligned}
& f(x, y, z)=(x+y) \cdot z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$f(x, y, z)=(x+y) \cdot z$
e.g. $x=-2, y=5, z=-4$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$f(x, y, z)=(x+y) \cdot z$
e.g. $x=-2, y=5, z=-4$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$f(x, y, z)=(x+y) \cdot z$
e.g. $x=-2, y=5, z=-4$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$f(x, y, z)=(x+y) \cdot z$
e.g. $x=-2, y=5, z=-4$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$$
f(x, y, z)=(x+y) \cdot z
$$

$$
\text { e.g. } x=-2, y=5, z=-4
$$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$f(x, y, z)=(x+y) \cdot z$
e.g. $x=-2, y=5, z=-4$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$f(x, y, z)=(x+y) \cdot z$
e.g. $x=-2, y=5, z=-4$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: Simple Example

$f(x, y, z)=(x+y) \cdot z$
e.g. $x=-2, y=5, z=-4$

1. Forward pass: Compute outputs

$$
q=x+y \quad f=q \cdot z
$$

2. Backward pass: Compute derivatives

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Local Properties of Backpropagation

Local Properties of Backpropagation

Another example

$$
f(x, w)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
$$

Another example

$$
f(x, w)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
$$

wo

Another example

Another example

Another example

Another example

$$
f(x, w)=\frac{1}{1 . \text { Forward pass: Compute outputs }}
$$

2. Backward pass: Compute gradients

Another example

$$
f(x, w)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
$$

$$
1 \quad \text { 1. Forward pass: Compute outputs }
$$

wo
2. Backward pass: Compute gradients

$$
w 1-3.00
$$

$$
\begin{gathered}
\text { Local Gradient } \\
\frac{\partial}{\partial x}\left[\frac{1}{x}\right]=-\frac{1}{x^{2}}
\end{gathered}
$$

$$
\begin{gathered}
2-3.00 \\
\times 1-2.00 \\
\text { w2 }
\end{gathered}
$$

Another example

$$
f(x, w)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
$$

$$
1 \quad \text { 1. Forward pass: Compute outputs }
$$

wo

$$
w 1-3.00
$$

(2

Another example

$$
f(x, w)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
$$

$$
1 \quad \text { 1. Forward pass: Compute outputs }
$$

wo
2. Backward pass: Compute gradients
w1-3.00

> Local Gradient $\frac{\partial}{\partial x}\left[e^{x}\right]=e^{x}$

Another example

$$
f(x, w)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
$$

$$
1 \quad \text { 1. Forward pass: Compute outputs }
$$

wo
2. Backward pass: Compute gradients
(

$$
\begin{gathered}
\text { Local Gradient } \\
\frac{\partial}{\partial x}[-1 \cdot x]=-1
\end{gathered}
$$

Another example

$$
f(x, w)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
$$

wo
w1 -3.00

$$
\begin{gathered}
\text { Local Gradient } \\
\frac{\partial}{\partial x}[x+y]=1 \quad \frac{\partial}{\partial y}[x+y]=1
\end{gathered}
$$

Another example

$$
f(x, w)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
$$

1. Forward pass: Compute outputs
(*
2. Backward pass: Compute gradients

$$
\frac{\partial}{\partial x}[x+y]=1 \quad \frac{\partial}{\partial y}[x+y]=1
$$

$$
\begin{array}{c|c|c|}
\hline \text { w2 } 2.3 .00 & \\
\hline 0.20 & \begin{array}{c}
\text { Downstream } \\
\text { Gradient }
\end{array} & \begin{array}{c}
\text { Upstream } \\
\text { Gradient }
\end{array} \\
\hline
\end{array}
$$

Another example

$$
f(x, w)=\frac{1}{\text { 1. Forward pass: Compute outputs }}
$$

Another example

$f(x, w)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

1. Forward pass: Compute outputs
2. Backward pass: Compute gradients

$$
\frac{\partial}{\partial x}[x \cdot y]=y \quad \frac{\partial}{\partial y}[x \cdot y]=x
$$

Another example

Another example

w1

Sigmoid local $\frac{\partial}{\partial x}[\sigma(x)]=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)$

$$
\begin{aligned}
& \begin{array}{l}
f(x, w)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}} \\
=\sigma\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)
\end{array} \\
& \text { 1. Forward pass: Compute outputs } \\
& \text { 2. Backward pass: Compute gradients } \\
& \sigma(x)=\frac{1}{1+e^{-x}} \quad \begin{array}{l}
\text { Computational graph is not } \\
\text { unique: we can use primitives } \\
\text { that have simple local gradients }
\end{array}
\end{aligned}
$$

Another example

$$
\begin{aligned}
& f(x, w)=\frac{1}{1+\text { 1. Forward pass: Compute outputs }} \\
& \text { 2. Backward pass: Compute gradients } \\
& \sigma(x)=\frac{1}{1+e^{-x}} \quad \begin{array}{l}
\text { Computational graph is not } \\
\text { unique: we can use primitives } \\
\text { that have simple local gradients }
\end{array}
\end{aligned}
$$

$\begin{aligned} & \text { Sigmoid local } \\ & \text { gradient: }\end{aligned} \frac{\partial}{\partial x}[\sigma(x)]=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)$

Patterns in Gradient Flow

add gate: gradient distributor

add gate: gradient distributor

copy gate: gradient adder

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

DR

Backprop Implementation: "Flat" gradient code

DR

Backprop Implementation: "Flat" gradient code

DR

Backprop Implementation: "Flat" gradient code

Backward pass:
Compute gradients

DR

Backprop Implementation: "Flat" gradient code

Backward pass:

Compute gradients

"Flat" Backprop: Do this for Project 1 \& 2

Forward pass:
 Compute outputs

Backward pass:
 Compute gradients

```
##############################################################################
# TODO:
# Implement a vectorized version of the gradient for the structured SVM
# loss, storing the result in dW
#
# Hint: Instead of computing the gradient from scratch, it may be easier
# to reuse some of the intermediate values that you used to compute the
# loss.
M
dmargins = #
dscores = #
dW = #
#############################################################################
#
                                    END OF YOUR CODE
                                    #
```

```
##############################################################################
# TODO:
# Implement a vectorized version of the structured SVM loss, storing the #
# result in loss
#############################################################################
# Replace "pass" statement with your code
num_classes = W.shape[1]
num_train = X.shape[0]
score = #
corru+.class_score = #
margin =
data_loss =
reg_loss = #
```



```
##########,|###############rn##########n,4#######################################
################+4###################+############################################
```


Backprop Implementation: Modular API

Graph (or Net) object (rough pseudo code)

```
class ComputationalGraph(object):
    #...
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
        gate.backward() # little piece of backprop (chain rule applied)
        return inputs_gradients
```


Example: PyTorch Autograd Functions

(x, y, z are scalars)

```
class Multiply(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, y):
        ctx.save_for_backward(x, y)
        z = x * y
        return z
    @staticmethod
    def backward(ctx, grad_z):
        x, y = ctx.saved_tensors
        grad_x = y * grad_z # dz/dx * dL/dz
        grad_y = x * grad_z # dz/dy * dL/dz
        return grad_x, grad_y
```


So far: backprop with scalars

 What about vector-valued functions?
Recap: Vector Derivatives

$x \in \mathbb{R}, y \in \mathbb{R}$
Regular derivative:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}
$$

If x changes by a small amount, how much will y change?

Recap: Vector Derivatives

$x \in \mathbb{R}, y \in \mathbb{R}$
 $x \in \mathbb{R}^{N}, y \in \mathbb{R}$

Regular derivative:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}
$$

If x changes by a small amount, how much will y change?

Derivative is Gradient:

$$
\begin{gathered}
\frac{\partial y}{\partial x} \in \mathbb{R}^{N}, \\
\left(\frac{\partial y}{\partial x}\right)_{i}=\frac{\partial y}{\partial x_{i}}
\end{gathered}
$$

For each element of x,
if it changes by a small
amount then how
much will y change?

Recap: Vector Derivatives

$x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}
$$

If x changes by a small amount, how much will y change?
$x \in \mathbb{R}^{N}, y \in \mathbb{R}$
Derivative is Gradient:

$$
\begin{gathered}
\frac{\partial y}{\partial x} \in \mathbb{R}^{N}, \\
\left(\frac{\partial y}{\partial x}\right)_{i}=\frac{\partial y}{\partial x_{i}}
\end{gathered}
$$

For each element of x, if it changes by a small amount then how much will y change?
$x \in \mathbb{R}^{N}, y \in \mathbb{R}^{M}$
Derivative is Jacobian:

$$
\begin{gathered}
\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \\
\left(\frac{\partial y}{\partial x}\right)_{i, j}=\frac{\partial y_{j}}{\partial x_{i}}
\end{gathered}
$$

For each element of x, if it changes by a small amount then how much will each element of y change?

Backprop with Vectors

Backprop with Vectors

Backprop with Vectors

For each element of z, how

Backprop with Vectors

For each element of z, how

DR

Backprop with Vectors

Backprop with Vectors

4D input x :
$\left[\begin{array}{c}1\end{array}\right] \longrightarrow$
$[-2]$
$[3]$
$[-1]$

4D output y:

Backprop with Vectors

4D input x :
$\left[\begin{array}{c}1\end{array}\right] \longrightarrow$
$[-2]$
$[3]$
$[-1]$

4D output y :

$\left.\begin{array}{rl}\mathrm{f}(\mathrm{x})=\max (0, \mathrm{x}) \\ \text { (elementwise) }\end{array}\right] \longrightarrow\left[\begin{array}{ll}\longrightarrow\end{array}\right]$

Backprop with Vectors

4D input x :

4D output y :

Backprop with Vectors

Backprop with Vectors

Backprop with Vectors

4D input x :

4D output y:

[dy/dx] [dL/dy]
4D dL/dy:

4D dL/dx:
Jacobian is sparse: offdiagonal entries all zero! Never explicitly form Jacobian; instead use implicit multiplication $\begin{array}{lll}{[4]} \\ {[0]}\end{array} \leftarrow\left(\frac{\partial L}{\partial x}\right)_{i}=\left\{\begin{array}{lll}\left(\frac{\partial L}{\partial y}\right)_{i}, & \left.\text { if } x_{i}>0 \leftarrow[4] \longleftarrow-1\right] \longleftarrow & \text { Upstream } \\ {[5]} \\ 0, & \text { otherwise } & \leftarrow[5] \longleftarrow[9] \longleftarrow\end{array}\right.$

Backprop with Matrices (or Tensors)

Backprop with Matrices (or Tensors)

For each element of z, how
much does it influence L?

Backprop with Matrices (or Tensors)

For each element of z, how
much does it influence L?

DR

Backprop with Matrices (or Tensors)

Example: Matrix Multiplication

$$
\begin{aligned}
& \mathrm{y}: ~[\mathrm{~N} \times \mathrm{M}]
\end{aligned}
$$

Example: Matrix Multiplication

$\mathrm{x}:[\mathrm{N} \times \mathrm{D}] \quad \mathrm{w}:[\mathrm{D} \times \mathrm{M}]$		Matrix Multiply $y=x w$$y_{i, j}=\sum_{k} x_{i, k} w_{k, j}$	y : [$\mathrm{x} \times \mathrm{M}$]	
		$\left[\begin{array}{lllll}-1 & -1 & 2 & 6\end{array}\right]$		
$\left[\begin{array}{ccc}2 & 1 & -3\end{array}\right]$	[$\begin{array}{llll}3 & 2 & 1 & -1]\end{array}$		$\left[\begin{array}{llll}5 & 2 & 11 & 7\end{array}\right]$	
$\left[\begin{array}{lll}-3 & 4 & 2\end{array}\right]$	$\left[\begin{array}{llll} 2 & 1 & 3 & 2 \end{array}\right]$		dL/dy: [$\mathrm{N} \times \mathrm{M}$]	
	$\text { [} 3 \text { 2 } 2 \text { 1-2] }$		$\left[\begin{array}{cccll}2 & 3 & -3 & 9\end{array}\right]$	
$\mathrm{dL} / \mathrm{dx}:[\mathrm{N} \times \mathrm{D}] \quad \square$			$\left[\begin{array}{lllll}-8 & 1 & 4 & 6\end{array}\right]$	
[? ? ?				
[? ? ?]				

Example: Matrix Multiplication

Example: Matrix Multiplication

Example: Matrix Multiplication

Example: Matrix Multiplication

$$
\begin{aligned}
& \mathrm{dL} / \mathrm{dx}_{1,1} \\
& =\left(d y / d x_{1,1}\right) \cdot(d L / d y) \\
& \\
& \mathrm{y}_{1,1}=\mathrm{x}_{1,1} \mathrm{w}_{1,1}+\mathrm{x}_{1,2} \mathrm{w}_{2,1}+\mathrm{x}_{1,3} \mathrm{w}_{3,1}
\end{aligned}
$$

Example: Matrix Multiplication

$$
\begin{aligned}
& \mathrm{dL} / \mathrm{dx}_{1,1} \\
& =\left(d y / d x_{1,1}\right) \cdot(d L / d y) \\
& d y / d x_{1,1} \\
& \mathrm{dy}_{1,1} / \mathrm{dx}_{1,1} \begin{array}{ll}
\hline 3 & \begin{array}{ll}
3
\end{array} \\
& {[? ? ?]}
\end{array} \\
& \mathrm{y}_{1,1}=\mathrm{x}_{1,1} \mathrm{w}_{1,1}+\mathrm{x}_{1,2} \mathrm{w}_{2,1}+\mathrm{x}_{1,3} \mathrm{w}_{3,1} \\
& \Rightarrow \mathrm{dy}_{1,1} / \mathrm{dx}_{1,1}=\mathrm{w}_{1,1}
\end{aligned}
$$

Example: Matrix Multiplication

$$
\begin{aligned}
& \mathrm{dL} / \mathrm{dx}_{1,1} \\
& =\left(d y / d x_{1,1}\right) \cdot(d L / d y) \\
& \begin{array}{c}
\\
d y / d x_{1,1} \\
\\
d y_{1,2} / d x_{1,1} \\
{[3 ? ? ? ? ?]} \\
\\
\\
\end{array}
\end{aligned}
$$

Example: Matrix Multiplication

$$
\begin{aligned}
& \mathrm{dL} / \mathrm{dx}_{1,1} \\
& =\left(d y / d x_{1,1}\right) \cdot(d L / d y) \\
& \begin{array}{r}
d y / d x_{1,1} \\
\mathrm{dy}_{1,2} / \mathrm{dx}_{1,1} \\
{[3[? ? ?]} \\
{[? ? ? ?]}
\end{array} \\
& y_{1,2}=x_{1,1} w_{1,2}+x_{1,2} w_{2,2}+x_{1,3} w_{3,2}
\end{aligned}
$$

Example: Matrix Multiplication

$$
\begin{aligned}
& \mathrm{dL} / \mathrm{dx}_{1,1} \\
& =\left(d y / d x_{1,1}\right) \cdot(d L / d y) \\
& \mathrm{dy} / \mathrm{dx}_{1,1} \\
& \begin{array}{r}
\mathrm{dy}_{1,2} / \mathrm{dx}_{1,1} \\
{[32 ? ? ?]} \\
{[? ? ? ?]}
\end{array} \\
& \mathrm{y}_{1,2}=\mathrm{x}_{1,1} \mathrm{w}_{1,2}+\mathrm{x}_{1,2} \mathrm{w}_{2,2}+\mathrm{x}_{1,3} \mathrm{w}_{3,2} \\
& =>\mathrm{dy}_{1,2} / \mathrm{dx}_{1,1}=\mathrm{w}_{1,2}
\end{aligned}
$$

Example: Matrix Multiplication

$$
\begin{aligned}
& \mathrm{dL} / \mathrm{dx}_{1,1} \\
& =\left(d y / d x_{1,1}\right) \cdot(d L / d y) \\
& \left.\begin{array}{cc}
& d y / d x_{1,1} \\
\mathrm{dy}_{1,2} / \mathrm{dx}_{1,1} & {\left[\begin{array}{cccc}
3 & 2 & 1-1
\end{array}\right]} \\
& {[? ~ ? ~ ? ~ ? ~}
\end{array}\right]
\end{aligned}
$$

Example: Matrix Multiplication

$$
\begin{aligned}
& \mathrm{dL} / \mathrm{dx}_{1,1} \\
& =\left(d y / d x_{1,1}\right) \cdot(d L / d y) \\
& d y / d x_{1,1} \\
& \begin{array}{r}
\mathrm{dy}_{1,2} / \mathrm{dx}_{1,1}\left[\begin{array}{cccc}
3 & 2 & 1 & -1
\end{array}\right] \\
{[? ? ? ?]}
\end{array} \\
& y_{2,1}=x_{2,1} w_{1,1}+x_{2,2} w_{2,1}+x_{2,3} w_{3,1}
\end{aligned}
$$

Example: Matrix Multiplication

$$
\begin{aligned}
& \mathrm{dL} / \mathrm{dx}_{1,1} \\
& =\left(d y / d x_{1,1}\right) \cdot(d L / d y) \\
& \text { Local Gradient Slice: } \\
& \mathrm{dy} / \mathrm{dx}_{1,1} \\
& \begin{array}{r}
\mathrm{dy}_{1,2} / \mathrm{dx}_{1,1} \quad\left[\begin{array}{llll}
3 & 2 & 1 & -1
\end{array}\right] \\
\left.\left[\begin{array}{l}
0
\end{array}\right] ? ?\right]
\end{array} \\
& y_{2,1}=x_{2,1} w_{1,1}+x_{2,2} w_{2,1}+x_{2,3} w_{3,1} \\
& =>\mathrm{dy}_{2,1} / \mathrm{dx}_{1,1}=0
\end{aligned}
$$

Example: Matrix Multiplication

Example: Matrix Multiplication

Example: Matrix Multiplication

Example: Matrix Multiplication

Example: Matrix Multiplication

Example: Matrix Multiplication

$$
\begin{aligned}
& \text { [} 0 \text { 16-9] } \\
& {\left[\begin{array}{lll}
-24 & 9 & -30
\end{array}\right]} \\
& \mathrm{dL} / \mathrm{dx}_{\mathrm{i}, \mathrm{j}} \\
& =\left(d y / d x_{i, j}\right) \cdot(d L / d y) \\
& =\left(w_{\mathrm{j}, \mathrm{l}}\right) \cdot\left(\mathrm{dL} / \mathrm{dy} \mathrm{y}_{\mathrm{i}}\right)
\end{aligned}
$$

Example: Matrix Multiplication

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 16 & -9
\end{array}\right]} \\
& d L / d x=(d L / d y) w^{\top} \\
& \text { [} N \times D] \quad[N \times M][M \times D] \\
& d L / d x_{i, j} \\
& =\left(\mathrm{dy} / \mathrm{dx}_{\mathrm{i}, \mathrm{j}}\right) \cdot(\mathrm{dL} / \mathrm{dy}) \\
& =\left(w_{j,:}\right) \cdot\left(d L / d y_{i, j}\right)
\end{aligned}
$$

Example: Matrix Multiplication

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 16 & -9
\end{array}\right]} \\
& {\left[\begin{array}{lll}
-24 & 9 & -30
\end{array}\right]} \\
& d \mathrm{~L} / \mathrm{dx}=(\mathrm{dL} / \mathrm{dy}) \mathrm{w}^{\top} \\
& {[\mathrm{N} \times \mathrm{D}] \quad[\mathrm{N} \times \mathrm{M}][\mathrm{M} \times \mathrm{D}]} \\
& d L / d w=x^{\top}(d L / d y) \\
& \text { Easy way to remember: } \\
& \text { It's the only way the } \\
& \text { shapes work out! } \\
& \text { [DxM] [DxN][NxM] }
\end{aligned}
$$

Backpropagation: Another View

$\underset{\substack{\text { Chain } \\ \text { rule }}}{\partial L} \quad \frac{\partial L}{\partial x_{0}}=\left(\frac{\partial x_{1}}{\partial x_{0}}\right)\left(\frac{\partial x_{2}}{\partial x_{1}}\right)\left(\frac{\partial x_{3}}{\partial x_{2}}\right)\left(\frac{\partial L}{\partial x_{3}}\right)$

Backpropagation: Another View

Matrix multiplication is associative: we can compute products in any order

$$
\begin{aligned}
\underset{\text { chaile }}{\text { Chain }}
\end{aligned} \quad \begin{aligned}
\frac{\partial L}{\partial x_{0}}= & \left(\frac{\partial x_{1}}{\partial x_{0}}\right)\left(\frac{\partial x_{2}}{\partial x_{1}}\right)\left(\frac{\partial x_{3}}{\partial x_{2}}\right)\left(\frac{\partial L}{\partial x_{3}}\right) \\
& {\left[\mathrm{D}_{0} \times \mathrm{D}_{1}\right]\left[\mathrm{D}_{1} \times \mathrm{D}_{2}\right]\left[\mathrm{D}_{2} \times \mathrm{D}_{3}\right] }
\end{aligned}
$$

Reverse-Mode Automatic Differentiation

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

$$
\begin{aligned}
\underset{\substack{\text { Chain } \\
\text { rule }}}{\frac{\partial L}{\partial x_{0}}}= & \left(\frac{\partial x_{1}}{\partial x_{0}}\right)\left(\frac{\partial x_{2}}{\partial x_{1}}\right)\left(\frac{\partial x_{3}}{\partial x_{2}}\right)\left(\frac{\partial L}{\partial x_{3}}\right) \\
& {\left[\mathrm{D}_{0} \times \mathrm{D}_{1}\right]\left[\mathrm{D}_{1} \times \mathrm{D}_{2}\right]\left[\mathrm{D}_{2} \times \mathrm{D}_{3}\right]\left[\mathrm{D}_{3}\right] }
\end{aligned}
$$

Reverse-Mode Automatic Differentiation

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

$$
\underset{\substack{\text { Chain }}}{\text { rule }} \quad \frac{\partial L}{\partial x_{0}}=\left(\frac{\partial x_{1}}{\partial x_{0}}\right)\left(\frac{\partial x_{2}}{\partial x_{1}}\right)\left(\frac{\partial x_{3}}{\partial x_{2}}\right)\left(\frac{\partial L}{\partial x_{3}}\right)
$$

$$
\begin{aligned}
& \text { Compute grad of scalar output } \\
& \text { w/respect to all vector inputs }
\end{aligned} \quad\left[D_{0} \times D_{1}\right]\left[D_{1} \times D_{2}\right]\left[D_{2} \times D_{3}\right] \quad\left[D_{3}\right]
$$

Reverse-Mode Automatic Differentiation

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { Chain } \\
\text { rule }
\end{array} \frac{\partial L}{\partial x_{0}}=\left(\frac{\partial x_{1}}{\partial x_{0}}\right)\left(\frac{\partial x_{2}}{\partial x_{1}}\right)\left(\frac{\partial x_{3}}{\partial x_{2}}\right)\left(\frac{\partial L}{\partial x_{3}}\right) \begin{array}{l}
\text { What if we want } \\
\text { grads of scalar } \\
\text { input w/respect }
\end{array} \\
& \begin{array}{l}
\text { compute grad of scalar output } \\
\text { w/respector to all vector inputs }
\end{array}
\end{aligned}
$$

Forward-Mode Automatic Differentiation

$\left.\underset{\substack{\text { Chain } \\ \text { rule }}}{\partial x_{3}} \frac{\partial x_{0}}{\partial a}\right)\left(\frac{\partial x_{1}}{\partial x_{0}}\right)\left(\frac{\partial x_{2}}{\partial x_{1}}\right)\left(\frac{\partial x_{3}}{\partial x_{2}}\right)$
$\left[\mathrm{D}_{0}\right]\left[\mathrm{D}_{0} \times \mathrm{D}_{1}\right]\left[\mathrm{D}_{1} \times \mathrm{D}_{2}\right]\left[\mathrm{D}_{2} \times \mathrm{D}_{3}\right]$

Forward-Mode Automatic Differentiation

Computing products left-to-right avoids matrix-matrix products; only needs matrix-vector

$$
\begin{array}{r}
\text { Chain } \\
\text { rule }
\end{array} \begin{array}{r}
\frac{\partial x_{3}}{\partial a}=\left(\frac{\partial x_{0}}{\partial a}\right)\left(\frac{\partial x_{1}}{\partial x_{0}}\right)\left(\frac{\partial x_{2}}{\partial x_{1}}\right)\left(\frac{\partial x_{3}}{\partial x_{2}}\right) \\
\\
{\left[D_{0}\right]\left[D_{0} \times D_{1}\right]\left[D_{1} \times D_{2}\right]\left[D_{2} \times D_{3}\right]}
\end{array}
$$

Summary

Represent complex expressions as computational graphs

Forward pass computes outputs

Backward pass computes gradients

During the backward pass, each node in the graph receives upstream gradients and multiplies them by local gradients to compute downstream gradients

Summary

Backprop can be implemented with "flat" code where the backward pass looks like forward pass reversed

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
    grad_L = 1.0
    grad_s3 = grad_L * (1 - L) * L
    grad_w2 = grad_s3
    grad_s2 = grad_s3
    grad_s0 = grad_s2
    grad_s1 = grad_s2
    grad_w1 = grad_s1 * x1
    grad_x1 = grad_s1 * w1
    grad_w0 = grad_s0 * x0
    grad_x0 = grad_s0 * w0
```

Backprop can be implemented with a modular API, as a set of paired forward/backward functions

```
class Multiply(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, y):
        ctx.save_for_backward(x, y)
        z = x * y
        return z
    @staticmethod
    def backward(ctx, grad_z):
        x, y = ctx.saved_tensors
        grad_x = y * grad_z # dz/dx * dL/dz
        grad_y = x * grad_z # dz/dy * dL/dz
        return grad_x, grad_y
```


DR

Summary

$f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}$

Problem: So far our classifiers don't respect the spatial structure of images!

Next time: Convolutional Neural Networks

农

