DeepRob

Lecture 4
"% Regularization + Optimization
.~ University of Michigan and University of Minnesota

\\\\\\\\\

é'. . .
u ! -
4 &=
* -
n .

L\H == Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course 1

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Project 1—Reminder

* |nstructions and code available on the website
* Here: https://rpm-lab.qithub.io/CSCI5980-Spr23-DeepRob/projects/

projecti/

» Uses Python, PyTorch and Google Colab
* Implement KNN, linear SVM, and linear softmax classifiers

* Autograder will be available soon!
* Due Tuesday, February 7th 11:59 PM CT

L\,

https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project1/
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project1/
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project1/

Project 1—Dataset

Progress Robot Object Perception Samples Dataset

10 classes

32x32 RGB images

50k training images (5k per class)
10k test images (1k per class)

potted meat _can

mug

large marker |

Chen et al., “ProgressLabeller: Visual Data Stream Annotation
for Training Object-Centric 3D Perception”, IROS, 2022.

How was this dataset created?

ProgressLabeller: Visual Data Stream Annotation for Training
Object-Centric 3D Perception

Xiaotong Chen Huijie Zhang Zeren Yu Stanley Lewis Odest Chadwicke Jenkins

Rough Pose Estimates 6D pose annotation through Fine-tuned Pose Pose-based Robot
from Pretrained Model interactive interface Estimates Grasping

ldea:

1. Record video of scene

2. Human labels object pose in selected frames

Human 3. Pose labels propagate to (large number
Annotator of) remaining frames

https://arxiv.org/abs/2203.00283

Gradescope Quizzes

Let me know if you have issues accessing

Quiz links available through gradescope course 481744

Time limit of 15 min once quiz is opened

Each available to take from 7:.00AM—2:30PM CT on quiz days
Covers material from previous lectures and graded projects

Quiz 1 was today!

Quiz 2 (or survey form) will be to select the top 3 areas of interest in the
papers. This selection will be due on 01/31 2:30PM CT

L\, 5

Recap—Linear Classifiers

Algebraic Viewpoint

f(x,W) = Wx

Streteh piwels Into column

R

G

4 01 20
13 21 oo

025 02 93

W 5.4

%3

oL

3y

Visual Viewpoint

One template

per class
master :omato
chcf craclncr Juoar mustarg
bottle
ﬁsh gclabn meat
can mar f

Geometric Viewpoint

Hyperplanes
cutting up space

Mug template

“ Mug score
INCregses
this way

on thes line

DR
Recap—Loss Functions Quantify Preferences

We have some dataset of (x, y)

We have a score function: s=f(;W,b)=Wx+b

We have a loss function: : -
Linear classifier

expl Sy .
Softmax: L; = —log (y‘) 1% . 1
Z] eXp(Sj) score func lOﬂ:uf(mi’ W)l data loss TE
= '
SVM: L; = Zjiy. maX(O, Sj — Sy, Tt 1) Ti T
l l il yi

L3\ 7

DR
Recap—Loss Functions Quantify Preferences

Q: How do we find the best W,b?

We have some dataset of (x, y)

We have a score function: s=f(;W,b)=Wx+b

We have a loss function: : -
Linear classifier

exp\ Sy .
Softmax: L; = —log Ly‘) 1% -
Z] eXp(Sj) — lon:uf(mi’ W)l data loss ’—E
r—
SVM: L; = Zjiy. maX(O, Sj — Sy, Tt 1) Lif T
l l il yi

L3\, 8

DR

Recap—Loss Functions Quantify Preferences

Problem: Loss functions encourage
good performance on training data

We have some dataset of (x, v) but we care about test data

We have a score function: s=f(;W,b)=Wx+b

We have a loss function: : -
Linear classifier

exp\ Sy .
Softmax: L; = —log Ly‘) 14 — 1
Z] exp (S]) score func loﬂ:uf(mi, W) data loss ’—E
SVM: L; = Zjiy. maX(O, Sj — Sy, Tt 1) Ti| T
l l il yi.

L3\, 9

Regularization + Optimization

Overfitting

A model is overfit when it performs too well on the training
data, and has poor performance for unseen data

Loss = §.87e-02
Example: Linear classifier with 1D - Accuracy = 1.0

inputs, 2 classes, and softmax loss : ‘\ o
} - ply=0Q|x)
S; = WX + b, : \ ply=1}x
24 ¢ xwithy=0
€xp(Sl) ' \n with y=1]
Pi =
exp(sy) + exp(s;) -
Jd s 1 -) o “,. =) i —v —
L=-— ZOg(py) ! . . ‘

L\,

Overfitting

A model is overfit when it performs too well on the training
data, and has poor performance for unseen data

Loss = 8.87e-02 Loss = 7.06e-04 Loss = 6.3]1e-13
Accuracy = 1.0 Accuracy = 1.0 Accuracy = 1.0
10 1§ BRI o 10 ¢ P 10 1 , A -
n
08 | 08 N ,‘ 08
/= ply=0]x) | = ply=0|x) — ply=0|x)
L / 26 1 ‘ 86 1
ply=1]x) ply=1|x) ply=1|x)
24 | ¢ xwthy=0 | __ | * ¢ xwithy=0 | _ o xwithy=0
¢ xwithyw=l ,' ¢ xwithyw=l * xwithy=l
a2 a2 / a2
- -‘-'-‘ ‘- ,"" ‘
a9 T e e a4 —e - e @ a®41 e - e o
4 2 ¢ 2 ! 4 2 ¢ 2 ! 4 2 ¢ 2 !

X X X
Both models have perfect accuracy on the training data! Low loss, but unnatural “cliff”

M between the training points
12

10 1

(;*‘

o4

Overfitting

A model is overfit when it performs too well on the training
data, and has poor performance for unseen data

Loss = §.87e-02

Accuracy = 1.0

_—

mesm m o

ply=0|x)
ply=1|x)

¢ xwithy=0
¢ xwithy=]

4

X

4

10 1

e 1

|’§4

o4

01:1

03:1

Loss = 7.06e-04
Accuracy = 1.0

—

=

— ply=0|x)
ply=1|x)
¢ xwithy=0
¢ xwithy=]

-

» .- . - L 4
4 s . 'y 4

X

10 9

or i

g6

o4

a2 1

03:1

Loss = 6.3]1e-13
Accuracy = 1.0

— - .

b b

— ply=0|x)
ply=1|x)

¢ xwithy=0
¢ xwthy=~]l

4 : : 2 4
Al

Overconfidence in regions with no training data could give poor generalization

L\,

13

DR
Regularization: Beyond Training Error

L(W) =

ZL(f(W),y

Data loss: Model predictions
should match training data

14

DR
Regularization: Beyond Training Error

1 N |—> Hyperparameter giving

regularization strength
LW) = = 2 Li(fox, W), 3) + AR(W)
=1

Regularization: Prevent the model

Data loss: Model predictions from doing too well on training data

should match training data

DR
Regularization: Beyond Training Error

I—» Hyperparameter giving
regularization strength
Z L{(fix, W), y) + AR(W)

Regularization: Prevent the model
from doing too well on training data

L(W) =

Data loss: Model predictions
should match training data

Simple examples:
L2 reqularization: R(W) = Z W,

L1 regularization: R(W) = Z | Wil

L\,

DR

Regularization: Beyond Training Error

1 N
LW) = = 2 Li(fox, W), 3) + AR(W)
=1

Data loss: Model predictions
should match training data

Simple examples:
L2 regularization: R(W) = Z W,
k,l

L1 regularization: R(W) = Z | Wil
k.l

L\,

I—» Hyperparameter giving

regularization strength

Regularization: Prevent the model
from doing too well on training data

More complex:

Dropout

Batch normalization

Cutout, Mixup, Stochastic depth, etc...

DR
Regularization: Prefer Simpler Models

Example: Linear classifier with 1D exp(s;)
inputs, 2 classes, and softmax loss pD; = : Regularizatign term causes
exp(sy) + exp(s,) loss to increase for model
— 2 ' '
L =—log(p,) +J 2 w? with sharp cliff
Loss = 2.05¢-03 Loss = 5.96e-03 ; Loss = 5.95e-01
Accuracy = 1.0 Accuracy = 1.0 Accuracy = 1.0
- \ — ply=0Q|x) - \‘ — ply=0|x) - — ply=0Q|x)
' \ — ply=1]x) ' — ply=1]x) ' — ply=1]x)
aa ¢ xwithy=0 s) ¢ xwithy=0 ae | ¢ xwithy=0
. \ ¢ xwithy=] ‘ \ ¢ xwithy=] l ¢ xwithy=]
4 s ; Py 4 4 s ; Fy 4 4 s ; sy 4

18

DR
Regularization: Expressing Preferences

X = [1,1’1,1] |2 Regularizatzion
wy = [1,0,0,0] KW = ; 4

w, = [0.25,0.25,0.25,0.25]

WTX — WTX — 1 nge predictions, so data loss
1 2 will always be the same

L\,

DR
Regularization: Expressing Preferences

X = [1,1’1,1] |2 Regularizatzion
Wl — [1909090] R(W) B Z Wk’l

k,l
W2 — [025,025,025,025] !‘_fpqueeagdulstzitz”ation prefers weights to be

WITX — WZTX — | Same predictions, so data loss

will always be the same

L\, .

Finding a good W

1 N
LW) = — 2 LG W)y + ZROW)
=1

Loss function consists of data loss to fit the training
data and regularization to prevent overfitting

21

DR

Optimization

w* = arg min L(w)

The valley image and the walking man image are in CCO 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://www.publicdomainpictures.net/en/free-download.php?image=walking-man&id=139314
https://creativecommons.org/publicdomain/zero/1.0/

DR

ldea #1: Random Search (bad idea!)

bestloss = float("inT")
for num in xrange(1000):
W = np.random.randn(16, 3073) * 0.0001
loss = L(X train, Y train, W)
if loss < bestloss:
bestloss = loss
Destw = W
print "in attempt %d the loss was %f, best &%f' % (num, loss, bestloss)

24

DR

ldea #1: Random Search (bad idea!)

scores = Wbest.dot(Xte cols)
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5 % accuracy on CIFAR-10! not bad!
(SOTA is ~95%)

25

ldea #2: Follow the slope

The valley image and the walking man image are in CCO 1.0 public domain

26

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://www.publicdomainpictures.net/en/free-download.php?image=walking-man&id=139314
https://creativecommons.org/publicdomain/zero/1.0/

DR

ldea #2: Follow the slope

In 1-dimension, the derivative of a function gives the slope:

df .. Jx+h)—fx)

— = lim
dx h—0 h

In multiple dimensions, the gradient is the vector of (partial
derivatives) along each dimension

The slope in any direction is the dot product of the direction with the
gradient. The direction of steepest descent is the negative gradient.

L\,

Current W-:

10.34,

-1.11,

0.78,

0.12,

0.59,

2.81,

-3.1,

-1.9,

0.33, ...]
loss 1.25347

L\,

Gradient

ES

m)) D "D O "D "D "~

AN |

AN |

AN |

AN |

AN |

AN |

AN |

AN |

A~ |

|
|
E

dL

dW

28

DR

Current W:

10.34,

-1.11,

0.78,

0.12,

0.59,

2.81,

-3.1,

-1.9,

0.33, ...]
loss 1.25347

L\,

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.59,

2.81,

-3.1,

-1.9,

0.33, ...]

loss 1.25322

Gradient

ES

A~ |

m)) D "D O "D "D "~

AN |

AN |

AN |

AN |

AN |

AN |

AN |

AN |

|
|
E

dL

dW

29

DR

Current W:

10.34,

-1.11,

0.78,

0.12,

0.59,

2.81,

-3.1,

-1.9,

0.33, ...]
loss 1.25347

L\,

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.59,

2.81,

-3.1,

-1.9,

0.33, ...]

loss 1.25322

dL
dW

Gradient
[-2.5,
?,

?,

(1.25322 - 1.25347)/
0.0001

=-2.5
& S) =)
— = lim
dx h—0 h
2.]

30

DR

Current W:

10.34,

-1.11,

0.78,

0.12,

0.59,

2.81,

-3.1,

-1.9,

0.33, ...]
loss 1.25347

L\,

W + h (second dim):

10.34,

-1.11 + 0.0001,
0.78,

0.12,

0.59,

2.81,

-3.1,

-1.5,

0.33, ...]

loss 1.25353

Gradient

[

m)) D "D O "D "D "~

N
o

A | A | A | A | A | A | A |
A |

AN |

|
|
E

dL

dW

31

DR

Current W:

10.34,

-1.11,

0.78,

0.12,

0.59,

2.81,

-3.1,

-1.9,

0.33, ...]
loss 1.25347

L\,

W + h (second dim):

10.34,

-1.11 + 0.0001,
0.78,

0.12,

0.59,

2.81,

-3.1,

-1.5,

0.33, ...]

loss 1.25353

dL
Gradient
dW
[-2.5,
0.6,

?,

?,
(1.25353 - 1.25347)/
0.0001

= 0.6
df _ . fath) = [
— = 11111

dx h—0 h

32

DR

Current W:

10.34,

-1.11,

0.78,

0.12,

0.59,

2.81,

-3.1,

-1.9,

0.33, ...]
loss 1.25347

L\,

W + h (third dim):

10.34,

-1.11,

0.78 + 0.0001,
0.12,

0.59,

2.81,

-3.1,

-1.5,

0.33, ...]

loss 1.25353

Gradient AL
dW
[-2.5,
0.6,
0.0,

?,

?,
(1.25347 - 1.25347)/
0.0001

= 0.0

A St) -
— = 1M

dx h—(h

33

DR

Current W:

10.34,

-1.11,

0.78,

0.12,

0.59,

2.81,

-3.1,

-1.9,

0.33, ...]
loss 1.25347

L\,

W + h (third dim):

10.34,

-1.11,

0.78 + 0.0001,
0.12,

0.59,

2.81,

-3.1,

-1.5,

0.33, ...]

loss 1.25353

dL
dW

Gradient

-2.5,
0.6,

0.0,
?

“J

?

“J

Numeric Gradient:
- Slow: O(#dimensions)
- Approximate

DR

. oss Is a function of W

2L+ZW2

L, = ZmaX(Os — 5, + 1)

7Y

/7 Use calculus to compute an
s = flx, W) = Wx analytic gradient

Want V L

dL

Current W: Gradient pTmT
[0.34, [-2.5,
-1.11, 0.6,
0.78, 0.0,
0.12, ar. _ some function of data and W 0.2,
0.55, aW 0.7
> \ -0.5,
-3.1, 1.1,
-1.5, 1.3,
0.33, ...] 2.1, ..]
loss 1.25347

L\,

36

Current W:

10.34,

-1.11,

0.78,

0.12,

0.59,

2.81,

-3.1,

-1.9,

0.33, ...]
loss 1.25347

L\,

Gradient
-2.5,
0.6,
0.0,
dL .
= some function of data and W 0.2,
dW
0.7,
\ -0.5,
JI 1.1,
In practice we will compute e 13
using back propagation; 2.1, ...]

see Lecture 6

dL

dW

37

Computing Gradients

Numeric gradient: approximate, slow, easy to write
* Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

—

def grad check sparse(f, x, analytic grad, num checks~l0, h=le-7):

sanple a4 fev random elexments and oanly return numerical
in this dimensions.

L\,

38

Computing Gradients

Numeric gradient: approximate, slow, easy to write
* Analytic gradient: exact, fast, error-prone

toxrch.autograd. gradcheck(func, inputs, eps=1e-06, atol=1e-05, rtol=0.601,

, , [SOURCE] 4’
raise_exception=True, check_sparse_nnz=False, nondet_ tol=0.0)

Check gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs
that are of floating point type and with requires_grad=True.

The check between numerical and analytical gradients uses allclose().

L\, .

Computing Gradients

Numeric gradient: approximate, slow, easy to write
* Analytic gradient: exact, fast, error-prone

toxch.autograd. gradgradcheck (func, inputs, grad _outputs=None, eps=le-06, atol=le~
05, rtol=0.001, gen_non_contig grad outputs=False, raise_exception=True,
nondet_tol=0.0)

Check gradients of gradients computed via small finite differences against analytical gradients w.r.t. tensors in
inputs and grad_outputs that are of floating point type and with requires_grad=True.

This function checks that backpropagating through the gradients computed to the given grad_outputs are
correct.

L\, .

Gradient Descent

* |teratively step in the direction of the negative gradient (direction of local

steepest descent)

Vanilla gradient descent

w = initialize_weights()

for t in range(num_steps):
dw = compute_gradient(loss_fn, data, w)
w —= learning_rate * dw

Hyperparameters:

- Weight initialization method
- Number of steps

- Learning rate

» W_ 2

Negative gradient
direction

Original W

41

Gradient Descent

* |teratively step in the direction of the negative gradient (direction of local
steepest descent)

Vanilla gradient descent

w = initialize_weights()

for t in range(num_steps):
dw = compute_gradient(loss_fn, data, w)
w —= learning_rate * dw

Hyperparameters:

- Weight initialization method
- Number of steps

- Learning rate

DR

Batch Gradient Descent

1 N
LW) = — ; L(x;, v W) + AR(W)

1 N
Vi L(W) = — Y Vi L(x, v, W) + AV R(W)
N =1

Full sum expensive
when N is large!

43

DR
Stochastic Gradient Descent (SGD)

Full sum expensive

1 N
L(W) = N Z L(x;,y;, W) + AR(W) when N is large!
=1

Approximate sum using

1 Al minibatch of examples
V(W) = D Vi, v, W) + AV R(W) 32/64/128 common
=1
Stochastic gradient descent Hyperparameters:
w = initialize weights() - Weight initialization
for t in range(num_steps): - Number of steps

minibatch = sample_data(data, batch_size)
dw = compute_gradient(loss_fn, minibatch, w)
w —= learning_rate *x dw

- Learning rate
- Batch size
- Data sampling

L\, .

DR

Stochastic Gradient Descent (SGD)

L(W) = = ()~ [L(x,y, W)]| + AR(W) Think of loss as an expectation
) Pdata over the full data distribution
1 il Pdata
~—) L,y W) + AR(W) . .
N “ Approximate expectation
i=1 via sampling

ViwL(W) = VyE o, [L&Y, W)+ AR(W)

N
2), VoL, y, W) + V, AR(W)
=1

L\,

Interactive Web Demo

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

W(0,0] W[0,1] b[O] Feaw'l Fanee'l I - B ilene | Fdeed Fivasd
yorven 20l Tro) | Ixpad || w [} sto) |[era) || st2)
! § ~ -

2.30 1 2.00 0.00 1 0.99 11 0.4C 0 [:.95 «0.30 .60
~0,17(| 0,24 | | 0.33 f —y e [— e ——
v v \J 0.8 | 0.23C 0 2.“1 2.9%0 | 1 1.60

W(1,0) W(1,1) b(1] : g : 2 -}
A AR) : 0 2.29 | |-2.10| |=0.40
| [-a.00| 5. e
200 leol los0) To ool [o.0e | [= || [oaad| [=2-50] [F2ee
J L ~ R B -
v: v 1 || ex] | -2.90] [~2.30
W(2,0) W(2,1) b[2] Ji | L 2
= i B . 2 . -1.21{ 1.70| | =2.80
3.00 -1.09% -0.50 - =~ = 3 —
ot | Bt [Bt 4 a Bl 1.50 2.00
v: v e = =
0.8% . -Q.OS' 1.90 1.60
| .n aad .0 <ol | IR s »a |
Step size: 0.09976 0. 464 | -0.50] IR k‘1-92 L.70 | i=1.20
Single parameter update
:)!--' 153 '
Start repeated update Reaulariza 'y . 3%
0% o9 '
Stop repeated update
Randomize parameters L2 Regularization strength: 0,.10000

46

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Problems with SGD

DR

Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient decent do?

e o

Loss function has high condition number: ratio of largest to smallest singular value of
the Hessian matrix is large

L\,

DR

Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient decent do?

Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value of
the Hessian matrix is large

L\,

49

Problems with SGD

What if the loss function has a
local minimum or saddle point?

L ocal
Minimum

50

Problems with SGD

L ocal
Minimum

What if the loss function has a
local minimum or saddle point?

Zero gradient, gradient descent gets stuck

L\,

51

Problems with SGD

Our gradients come from mini batches so
they can be noisy!

1 N
LW) = — ; Lx;,y;, W) + AR(W)

52

Problems with SGD

What if the loss function has a
local minimum or saddle point?

Batched gradient descent always
computes same gradients

SGD computes noisy gradients,
may help to escape saddle points

L\,

L ocal
Minimum

53

DR

SGD + Momentum

SGD SGD + Momentum
W =w,—aVLw) Vi1 = pv;+ VLW
Wi = W= OV

for t in range(num_steps):
dw = compute_gradient(w)
w —= learning_rate * dw

v = 0

for t in range(num_steps):
dw = compute_gradient (w)
vV = rho x v + dw
w —= learning_rate *x v

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho = 0.9 or 0.99

\Z{_{M}_gj\l Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013 54

DR
SGD + Momentum

SGD + Momentum

Wir1 = W — Vi

v = 0
for t in range(num_steps):
dw = compute_gradient (w)

Momentum update:

Velocity
Actual step

Gradient v = rho * v + dw
Combine gradient at current point W == learnng_rare % v
with velocity to get step used to - Build up “velocity” as a running mean of gradients
update weights - Rho gives “friction”; typically rho = 0.9 or 0.99

\M[Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013 55

DR
SGD + Momentum

SGD + Momentum SGD + Momentum
Viv1r = PVe — aVL(Wt) Vi1 = PV + VL(Wt)
Wiel = Wi T Vigi Wir1 = Wy = AV
G i's v = 0

for t in range(num_steps):
dw = compute_gradient (w)
vV = rho x v + dw
w —= learning_rate *x v

for t in range(num_steps):
dw = compute_gradient(w)
v = rho * v — learning_rate *x dw
W += V

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of w

M] Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013 56

SGD + Momentum

Gradient Noise

Local Minima Saddle Points

e N\

Poor Conditioning

s >

Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013 57

— (D = SGD+Momentum

SGD + Momentum

Momentum update;

Velocity
Actual step

Gradient

Combine gradient at current point
with velocity to get step used to
update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/kA2),”, 1983”
Nesterov, “Introductory lectures on convex optimization: a basic course,” 2004

Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

58

Nesterov Momentum

Momentum update; Nesterov Momentum

Gradient

Velocity velocity

Actual step Actual step

Gradient

Combine gradient at current point
with velocity to get step used to
update weights

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to get
actual update direction

Nesterov, “Introductory lectures on convex optimization: a basic course,” 2004

M Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k"2),”, 1983
Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013 59

DR
Nesterov Momentum

Annoying, usually we
Vo =PV —a V L(Wt 4 pvt) want to update in terms of w,, V L(w,)

Wi = Wt Vg Gradient

Velocity

Actual step

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to get
actual update direction

60

DR

Nesterov Momentum

Vi = pv,—aVLw,+ pv,)
Wi = Wet Vi

Change of variables Wt =w, + pv,
and rearrange:

Vi = pv,— aVL(w,)
W1 =W, —pv,+ (1 + PV

=W, + Vv + PV — V)

L\,

Annoying, usually we
want to update in terms of w,, V L(w,)

v = 0
for t in range(num_steps):
dw = compute_gradient(w)

old v = v
v = rho x v — learning_rate * dw
w —=rho x old v — (1 + rho) *x v

61

Nesterov Momentum

— SGD+Momentum

—— Nesterov

62

AdaGrad

grad_squared = 0
for t in range(num_steps):

dw = compute _gradient(w)
grad_squared += dw * dw

w —= learning_rate * dw / (grad_squared.sqrt() + le-7)

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

“Per-parameter learning rates” or "adaptive learning rates”

M Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011

63

AdaGrad

grad_squared = 0 Problem: AdaGrad will
for t in range(num_steps): slow over many iterations
dw = compute gradient(w)
w —= learning_rate * dw / (grad_squared.sqrt() + le-7)

——

Progress along “steep” directions is damped;
progress along “flat” directions is accelerated

Q: What happens with AdaGrad?

\M Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011 64

RMSProp: “Leaky AdaGrad”

grad_squared = 0
for t in range(num_steps):

dw = compute_gradient(w) AdaGrad
grad_squared += dw * dw
w —= learning_rate * dw / (grad_squared.sqrt() + le-7)

grad_squared = 0 RI\/ISProp

for t in range(num_steps):
dw = compute_gradient(w)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dw * dw
w —= learning_rate * dw / (grad_squared.sqrt() + le-7)

L\,

RMSProp: “Leaky AdaGrad”

— SGD+*MOomentum

e RMSProp

66

DR
Adam (almost): RMSProp + Momentum

momentl 0
moment2 0
for t in range(1, num_steps + 1): # Start at t =1
dw = compute _gradient(w)
momentl = betal * momentl + (1 - betal) * dw
moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
w == learning_rate * momentl / (moment2.sqgrt() + 1le-7)

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

67

DR
Adam (almost): RMSProp + Momentum

momentl = @

moment2 = @ Adam
for t in range(1l, num_steps + 1): # Start at t =1
dw = compute_gradient(w) Momentum

momentl = betal * momentl + (1 - betal) * dw
moment2 = beta2 *x moment2 + (1 - beta2) * dw * dw

w -= |learning_rate * momentl|/ (moment2.sqgrt() + le-7)

v = 0
for t in range(num_steps):
dw = compute_gradient(w)
vV = rho x v + dw
-= learning_rate *x v

SGD+Momentum

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

DR

Adam (almost): RMSProp + Momentum

momentl = @

moment2 = 0 Adam

for t in range(1l, num_steps + 1): # Start at t =1
dw = compute_gradient(w) Momentum
[moment2 = beta2 * moment2 + (1 - beta2) * dw * dw] AdaGrad / RMSProp
W —= Iﬁﬁiﬁiﬁgliiiﬁlilﬁﬁﬁgii! / (moment2.sqrt() + le-7)

grad_squared = 0@

for t in range(num_steps): RI\/ISPI‘Op

dw = compute_gradient(w)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dw * dw

w —= learning_rate * dw / (grad_squared.sqrt() + le-7)

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

69

DR

Adam (almost): RMSProp + Momentum

momentl = 0@
moment2 = @ Adam
for t in range(l, num_steps + 1): # Start at t =1
dw = compute_gradient(w) Momentum
momentl = betal * momentl + (1 - betal) * dw
moment2 = beta2 x moment2 + (1 - beta2) * dw * dw AdaGrad / RMSPrOp

w -= learning_rate * momentl / (moment2.sqrt() + le-7)

Q: What happens at t=17
(Assume beta2 = 0.999)

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

70

DR

Adam (almost): RMSProp + Momentum

momentl = 0@

moment2 0

for t in range(l, num_steps + 1): # Start at t
dw = compute gradient(w)

= 1

momentl = betal * momentl + (1 - betal) * dw Momentum
moment2 = beta2 * moment2 + (1 - beta2) * dw * dw

momentl_unbias = momen ~ betal »*
moment2 unbias = moment2 / (1 - beta2 *x t)

AdaGrad / RMSProp

w -= learning_rate * momentl_unbias / (moment2_unbias.sqrt() + 1e-7) Bias correction

Bias correction for the fact that first
and second moment estimates start at
Zero

Adam with betal = 0.9,

beta?2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
IS a great starting point for many models!

M Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015 71

DR

Adam: Very common in Practice!

We train all models using Adam [”?] with learning rate

Following 10—4 and batch size 32 for 1 million iterations;

common practice, the network is trained end-to-end using stochastic gradient descent with the Adam
optimizer [22].

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurlPS 2019 Johnson, Gupta, and Fei-Fei, CVPR 2018

For gradient descent, we use

We train for 25 h . ! :
i et Adam [29] with a learning rate of 107 and default hyperparameters. All models

using Adam [27] with learning rate 10— and 32 images per _ . : |
batch on 8 Tesla V100 GPUs. are trained with batch size 12.

Gkioxari, Malik, and Johnson, ICCV 2019 Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

Adam with betal = 0.9,
with a batch size of 64 for 200 epochs

using Adam [22] with an initial learning rate of 0.001. beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
Gupta, Johnson, et al, CVPR 2018 IS a great starting point for many models!

72

SGD

SGD+Momentum

RMSProp

Adam

73

Optimization Algorithm Comparison

Tracks second

Tracks first Leaky : :
: moments Bias correction for
Algorithm moments : second :
(Adaptive moment estimates
(Momentum) : moments
learning rates)
SGD X X X X
SGD+Momentum V4 X X X
Nesterov V4 X X X
AdaGrad X V4 X X
RMSProp X v v X
Adam V4 v v v

L\,

74

L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

LW) = LyqW) + Ly (W) Lw)=L, (w)+A|wl|’

g, = VL(w,) g =VLw)=VL, (w)+2iw,
s, = optimizer(g,) s, = optimizer(g,)

Wir1 = W — &5 Wir1 = Wp — &5

L2 Regularization and Weight Decay are
equivalent for SGD, SGD+Momentum so people Optimization Algorithm
often use the terms interchangeably!

L(W) — Ldata(w)

But they are not the same for adaptive methods g, = V Ld (W)
(AdaGrad, RMSProp, Adam, etc) [data’ "1
s, = optimizer(g,) +2.w,

M Wip1 = W, — &5

Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019

75

DR

AdamW: Decouple Weight Decay

Algorithm 2 'Adam with L; regularization and Adam with decoupled weight decay (AdamW)

b,

12:
13
14;

L\,

gi‘.(‘n iy = “_““], ‘;! = .Y, ‘r.v = DY) ¢ =]“‘ A € l{

- initialize ume step t « 0, parameter vector &, € R, first moment vector m,—q + 0. second moment

vector v, g ¢+ 0, schedule muluplier 1,0 € R

AdamW should probably be your “default”
optimizer for new problems

é. 0, 1 ~ g7 ('l’"; '!\‘-': ol & +A0¢-,)

until sropping criterion is met
retum optimized parameters 6,

76
Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019

Loss

So far: First-order Optimization

w1

DR

Loss

So far: First-order Optimization

1. Use gradient to make linear approximation
2. Step to minimize the approximation

%

w1

/8

DR

Loss

Second-order Optimization

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

\

w1

79

DR

Loss

Second-order Optimization

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas of
low curvature

N ¢ ‘

w1

80

DR

Second-order Optimization

Second-order Taylor Expansion:

L(w) = L(wy) + (w — WO)TVWL(WO) + %(w — WO)THWL(WO)(W — W)

Solving for the critical point we obtain the Newton parameter update;

VV>I< — WO — HWL(WO)_l VWL(W())

Hessian has O(NA2) elements
Inverting takes O(NA3)

M N = (Tens or Hundreds of) Millions

Q: Why is this impractical?

81

DR

Second-order Optimization
W™ = wy — HWL(WO)_1 V., L(w)

- Quasi-Newton methods (BGFS most popular): instead of inverting the
Hessian ((O(n"3)), approximate inverse Hessian with rank 1 updates over
time (O(n\2) each).

- L-BFGS (Limited memory BFGS): Does not form/store the full inverse
Hessian

L\,

DR
Second-order Optimization: L-BFGS

- Usually works very well in full batch, deterministic mode i.e. if you have
a single, deterministic f(x) then L-BFGS will probably work very nicely.

- Does not transfer very well to mini-batch setting. Gives bad results.
Adapting second-order methods to large-scale, stochastic setting is an

active area of research.

M Le et al, “On optimization methods for deep learning,” ICML 2011
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations,” ICLR 2017

In practice:

* Adam is a good default choice iIn many cases

SGD+Momentum can outperform Adam but may require
more tuning.

 |f you can afford to do full batch updates then try out L-BFGS
(and don’t forget to disable all sources of noise)

L\,

84

Summary

Use Linear Models for image
classification problems.

Use Loss Functions to express
preferences over different choices
of weights.

Use Regularization to prevent
overfitting to training data.

Use Stochastic Gradient Descent
to minimize our loss functions and
train the model.

L\,

v =0
Tor t

dw = compute_gradient(w)

V =

W —=

— K —
— , —_—
tom
acker sugar soup mustarg — e Mug template
X box can bottie & :;r’«. - on this line

L=~ log(Zepr) Softmax

L = Z max(0,s; = —s, +1) SVM

JFYi
1 N
i=1
in range(num_steps):

rho x v + dw
learning_rate * v

85

Next time: Neural Networks

DeepRob

Lecture 4
"% Regularization + Optimization
.~ University of Michigan and University of Minnesota

\\\\\\\\\

é'. . .
u ! -
4 &=
* -
n .

L\H == Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course 87

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

