

Lecture 3 **Linear Classifiers**

Project 0

- Instructions and code available on the website

projects/project0/

Due tonight! January 24th, 11:59 PM CT

Here: <u>https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/</u>

Project 1

Calendar	
Week 1	
Jan 17:	Course Introduction PROJECT 0 OUT UMich discussion link - Intro to Python, Pyth
Jan 19:	LEC 2 Image Classification
Week 2	
Jan 24:	PROJECT O DUE PROJECT 1 DUT
Jan 28:	LEG 4 Regularization + Optimization
Week 3	
Jan 31:	LEC S Neural Networks
Feb 02:	LEC 6 Backpropagation

Instructions and code will be available on the website today. Classification using K-Nearest Neighbors and Linear Models

Gradescope Quizzes

- Quiz links will be published at 7am on the day of lecture.
 - This will start from next lecture on 01/26
- The quiz will close before that day's lecture time i.e.
 2:30pm
- Time limit of 15 min once quiz is opened
 Covers material from previous lectures and graded
- Covers material from prev projects

Recap: Image Classification—A Core Computer Vision Task

Input: image

Output: assign image to one of a fixed set of categories

Chocolate Pretzels

Granola Bar

Potato Chips

Water Bottle

Popcorn

Recap: Image Classification Challenges

Viewpoint Variation & Semantic Gap

Illumination Changes

Intraclass Variation

Recap: Machine Learning—Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

DR

Example training set

Linear Classifiers

Building Block of Neural Networks

Linear classifiers

This image is <u>CC0 1.0</u> public domain

Progress Robot Object Perception Samples Dataset

Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

Recall PROPS

10 classes 32x32 RGB images **50k** training images (5k per class) **10k** test images (1k per class)

A video link will be posted to the website today discussing about PROPS dataset that you will use for P1

Parametric Approach

Array of **32x32x3** numbers (3072 numbers total)

W parameters or weights

→ f(x,W)

10 numbers giving class scores

Parametric Approach—Linear Classifier

Array of 32x32x3 numbers (3072 numbers total)

Parametric Approach—Linear Classifier

Array of 32x32x3 numbers (3072 numbers total)

(3072,) (10,) (10, 3072) → f(x,W)

10 numbers giving class scores

parameters or weights

Parametric Approach—Linear Classifier

Array of **32x32x3** numbers (3072 numbers total)

parameters or weights

(3072,) f(x,W) = Wx + b(10,) (10,) (10, 3072)**10** numbers giving f(x,W) class scores

Stretch pixels into column

Input image (2, 2)

Example for 2x2 Image, 3 classes (crackers/mug/sugar)

f(x,W) = Wx + b

Stretch pixels into column

Input image (2, 2)

0.2	-0.5	
1.5	1.3	
0	0.25	

W

Example for 2x2 Image, 3 classes (crackers/mug/sugar)

Stretch pixels into column

Input image (2, 2)

0.2	-0.5	
1.5	1.3	
0	0.25	

Linear Classifier—Algebraic Viewpoint

Linear Classifier—Bias Trick

Stretch pixels into column

Add extra one to data vector; bias is absorbed into last column of weight matrix

DR

				٦	
			56		
0.1	2.0	1.1	231		-96.8
2.1	0.0	3.2			437.9
0.2	-0.3	-1.2	24	_	61.95
(3.5)		2		(3,)	
			1	(5,)	

Linear Classifier—Predictions are Linear

- f(x, W) = Wx (ignore bias)
- f(cx, W) = W(cx) = c * f(x, W)

Linear Classifier—Predictions are Linear

- f(x, W) = Wx (ignore bias)
- f(cx, W) = W(cx) = c * f(x, W)

Interpreting a Linear Classifier

Algebraic Viewpoint

f(x,W) = Wx + b

Interpreting a Linear Classifier

<u>Algebraic Viewpoint</u>

DR

Interpreting a Linear Classifier

master chef can

DR

Interpreting a Linear Classifier

Stretch pixels into column				
231	0.2	-0.5	0.1	2.0
image	1.5	1.3	2.1	0.0
	0	0.25	0.2	-0.3
, 2)		V	V (3,	4)

Interpreting a Linear Classifier—Visual Viewpoint

DR Interpreting a Linear Classifier—Visual Viewpoint

Linear classifier has one "template" per category

0.25 0.2

0

Interpreting a Linear Classifier—Geometric Viewpoint

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

255

t

f(x,W) = Wx + b

255

Array of **32x32x3** numbers (3072 numbers total)

f(x,W) = Wx + b

255

Array of **32x32x3** numbers (3072 numbers total)

t

f(x,W) = Wx + b

255

Array of **32x32x3** numbers (3072 numbers total)

t

f(x,W) = Wx + b

Mug score increases this way

Mug Score = 0 Array of **32x32x3** numbers (3072 numbers total)

t

f(x,W) = Wx + b

Mug score increases this way

Array of **32x32x3** numbers (3072 numbers total)

f(x,W) = Wx + b

Mug score increases this way

Mug Score = 0

Array of **32x32x3** numbers (3072 numbers total)

Mug score increases this way

> Mug Score = 0

Hyperplanes carving up a high-dimensional space

Plot created using Wolfram Cloud

Hard Cases for a Linear Classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

Hard Cases for a Linear Classifier

Class 1: First and third quadrants			Cla : 1 <:
Class 2: Second and fo	urth quadrants		Cla Eve

ss 1:

= L2 norm <= 2

iss 2:

erything else

Hard Cases for a Linear Classifier

Class 1: First and third	quadrants	Cla : 1 <:
Class 2: Second and fo	urth quadrants	Cla Eve

ss 1:

= L2 norm <= 2

erything else

Class 1: Three modes

Class 2: Everything else

Algebraic Viewpoint

f(x,W) = Wx

Plot created using Wolfram Cloud

Linear Classifier — Three Viewpoints

So far—Defined a Score Function

-2.93

master chef can	-3.45	-0.51	3.42
mug -	-8.87	6.04	4.64
tomato soup can	0.09	5.31	2.65
cracker box	2.9	-4.22	5.1
mustard bottle	4.48	-4.19	2.64
tuna fish can	8.02	3.58	5.55
sugar box	3.78	4.49	-4.34
gelatin box	1.06	-4.37	-1.5
potted meat can _	-0.36	-2.09	-4.79
large marker	-0.72	-2 93	614

6.14

$$f(x,W) = Wx + b$$

Given a W, we can compute class scores for an image, x.

But how can we actually choose a good W?

So far—Choosing a Good W

-2.93

master chef can -3.4	-0.51	3.42
mug -8.8	7 6.04	4.64
tomato soup can 0.09	5.31	2.65
cracker box 2.9	-4.22	5.1
mustard bottle 4.48	3 -4.19	2.64
tuna fish can 8.02	2. 3.58	5.55
sugar box 3.78	3 4.49	-4.34
gelatin box 1.06	-4.37	-1.5
potted meat can _0.3	6 -2.09	-4.79
large marker -0.7	2 -2 93	6 1 4

6.14

$$f(x,W) = Wx + b$$

TODO:

- 1. Use a loss function to quantify how good a value of W is
- 2. Find a W that minimizes the loss function (**optimization**)

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Loss Function

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i is an image and y_i is a (discrete) label

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i is an image and y_i is a (discrete) label

Loss for a single example is $L_i(f(x_i, W), y_i)$

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i is an image and y_i is a (discrete) label

Loss for a single example is $L_i(f(x_i, W), y_i)$

Loss for the dataset is average of per-example losses:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Want to interpret raw classifier scores as probabilities

cracker 3.2 mug 5.1 sugar -1.7

Want to interpret raw classifier scores as probabilities

cracker3.2mug5.1

sugar -1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Want to interpret raw classifier scores as probabilities

cracker3.2mug5.1sugar-1.7Unormalized Logity

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Want to interpret raw classifier scores as probabilities

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$ Softmax

Probabilities must be >=0

> **24.5** 164.0

Unnormalized probabilities

0.18

 $exp(\cdot)$

cracker3.2mug5.1sugar-1.7

Want to interpret raw classifier scores as probabilities

Probabilities must be >=0

Unnormalized probabilities

cracker mug

3.2 5.1

 $exp(\cdot)$

Unnormalized logprobabilities (logits)

1.7

sugar

(*W*)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax
Probabilities
must sum to 1
0.13
0.87
0.00

Probabilities

Want to interpret raw classifier scores as probabilities

Probabilities must be >=0

Unnormalized probabilities

cracker mug

3.2 5.1

 $exp(\cdot)$

Unnormalized logprobabilities (logits)

1.7

sugar

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax} \\ \text{Frobabilities} \\ \text{must sum to 1} \\ \textbf{0.13} \\ \textbf{0.13} \\ \textbf{0.87} \\ \textbf{0.00} \\ \end{bmatrix} \quad L_i = -\log P(Y = y_i \mid X = L_i) \\ L_i = -\log(0.13) \\ = 2.04 \\ \textbf{0.00} \\ \end{bmatrix}$$

Probabilities

Want to interpret raw classifier scores as **probabilities**

Probabilities must be >=0

Unnormalized probabilities

cracker mug

3.2 5.1

 $exp(\cdot)$

Unnormalized logprobabilities (logits)

1.7

sugar

(W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax
Frobabilities
must sum to 1
 $L_i = -\log P(Y = y_i | X = L_i = -\log(0.13))$
 $= 2.04$
Maximum Likelihood Estim
Choose weights to maximize

Probabilities

weights to maximize the likelihood of the observed data (see CSCI 5521)

Want to interpret raw classifier scores as probabilities

Probabilities must be >=0

Unnormalized probabilities

cracker

3.2 5.1

 $exp(\cdot)$

Unnormalized logprobabilities (logits)

1.7

sugar

(W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax
function
Probabilities
must sum to 1
0.13
0.87
0.87
0.00
Probabilities

Want to interpret raw classifier scores as probabilities

Probabilities must be >=0

Unnormalized probabilities

cracker

3.2 5.1

 $exp(\cdot)$

Unnormalized logprobabilities (logits)

1.7

sugar

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax function}$$
Probabilities
must sum to 1
$$O.13 \quad O.13 \quad \text{compare} \quad 1.0$$

$$O.87 \quad \text{Kullback-Leibler} \quad 0.0$$

$$O.00 \quad D_{KL}(P \mid |Q) = \quad 0.0$$
Probabilities
$$\sum_{y} P(y) \log \frac{P(y)}{Q(y)} \quad \text{correptoble}$$

y

Want to interpret raw classifier scores as probabilities

Probabilities must be >=0

Unnormalized probabilities

cracker

3.2 5.1

 $exp(\cdot)$

Unnormalized logprobabilities (logits)

1.7

sugar

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax function}$$

Probabilities
must sum to 1
$$(O.13) \quad \bigoplus \text{ compare} \quad 1.0$$

$$(O.13) \quad \bigoplus \text{ compare} \quad 1.0$$

$$(O.13) \quad \bigoplus \text{ compare} \quad 1.0$$

$$(O.10) \quad H(P, Q) = H(P) + D_{KL}(P \mid Q) \quad O.0$$

Probabilities

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

cracker 3.2 5.1 mug -1.7 sugar

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: What is the min / max possible loss L_i ?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: What is the min / max possible loss L_i ?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

A: Min: 0, Max: $+\infty$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: If all scores are small random values, what is the loss?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: If all scores are small random values, what is the loss?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

A:
$$-\log(\frac{1}{C})$$

 $\log(\frac{1}{10}) \approx 2.3$

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$ $= \max(0, 5.1 - 3.2 + 1)$ $+ \max(0, -1.7 - 3.2 + 1)$ $= \max(0, 2.9) + \max(0, -3.9)$ = 2.9 + 0 = 2.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$ $= \max(0, 1.3 - 4.9 + 1)$ $+\max(0, 2.0 - 4.9 + 1)$ $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0 = 0

cracker	3.2	1.3	2.2
nug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$ $= \max(0, 2.2 - (-3.1) + 1)$ $+\max(0, 2.5 - (-3.1) + 1)$ $= \max(0, 6.3) + \max(0, 6.6)$ = 6.3 + 6.6 = 12.9

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Loss over the dataset is: L = (2.9 + 0.0 + 12.9) / 3 = 5.27

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q: What happens to the loss if the scores for the mug image change a bit?

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q2: What are the min and max possible loss?

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q3: If all the scores were random, what loss would we expect?

Cross-Entropy vs SVM Loss

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What is cross-entropy loss? What is SVM loss?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What is cross-entropy loss? What is SVM loss?

A: Cross-entropy loss > 0 SVM loss = 0

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and y_i

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

A: Cross-entropy loss will change; SVM loss will stay the same for 1st and 3rd example SVM loss will change for the 2nd

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

- **Q**: What happens to each loss if I double the score of the correct class from 10 to 20?
- A: Cross-entropy loss will decrease, SVM loss still 0

Algebraic Viewpoint

f(x,W) = Wx

Plot created using Wolfram Clou

Recap—Three Ways to Interpret Linear Classifiers

- We have some dataset of (x, y)
- We have a score function:
- We have a **loss function**:

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i})$

Recap—Loss Functions Quantify Preferences

s = f(x; W, b) = Wx + bLinear classifier

- We have some dataset of (x, y)
- We have a score function:
- We have a **loss function**:

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i})$

Recap—Loss Functions Quantify Preferences

Q: How do we find the best W,b? s = f(x; W, b) = Wx + bLinear classifier

Next time: Regularization + Optimization

W_2

Negative gradient direction

Lecture 3 **Linear Classifiers**

