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DeepRob
Lecture 3
Linear Classifiers
University of Michigan and University of Minnesota

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/


Project 0
• Instructions and code available on the website
• Here: https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/

projects/project0/

• Due tonight! January 24th, 11:59 PM CT
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https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project0/
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project0/
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project0/
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• Instructions and code will be available on the website today.
• Classification using K-Nearest Neighbors and Linear Models

Project 1

We’re here!



Gradescope Quizzes
• Quiz links will be published at 7am on the day of lecture.
• This will start from next lecture on 01/26

• The quiz will close before that day’s lecture time i.e. 
2:30pm

• Time limit of 15 min once quiz is opened
• Covers material from previous lectures and graded 

projects
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Recap: Image Classification—A Core Computer Vision Task
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Input: image Output: assign image to one 
of a fixed set of categories

Chocolate Pretzels
Granola Bar
Potato Chips
Water Bottle

Popcorn



Recap: Image Classification Challenges
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Viewpoint Variation & Semantic Gap

Illumination Changes

Intraclass Variation



Recap: Machine Learning—Data-Driven Approach
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1. Collect a dataset of images and labels

2. Use Machine Learning to train a classifier

3. Evaluate the classifier on new images

Example training set

Justin Johnson January 10, 2022

First classifier: Nearest Neighbor

Lecture 2 - 40

Memorize all data 
and labels

Predict the label of 
the most similar 
training image

Justin Johnson January 10, 2022

First classifier: Nearest Neighbor

Lecture 2 - 40

Memorize all data 
and labels

Predict the label of 
the most similar 
training image
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Linear Classifiers



Building Block of Neural Networks
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Justin Johnson January 12, 2022Lecture 3 - 8

This image is CC0 1.0 public domain

Neural Network

Linear 
classifiers

This image is CC0 1.0 public domain

https://www.maxpixel.net/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Recall PROPS
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10 classes

32x32 RGB images

50k training images (5k per class)

10k test images (1k per class)

Chen et al., “ProgressLabeller: Visual Data Stream Annotation 
for Training Object-Centric 3D Perception”, IROS, 2022.

Progress Robot Object Perception Samples Dataset

A video link will be posted to the 
website today discussing about 

PROPS dataset that you will use for P1



Parametric Approach
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Parametric Approach

Lecture 3 - 10

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)
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Parametric Approach: Linear Classifier

Lecture 3 - 11

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx

Parametric Approach—Linear Classifier
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Parametric Approach: Linear Classifier

Lecture 3 - 12

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
(10,) (10, 3072)

(3072,)

Parametric Approach—Linear Classifier
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Parametric Approach: Linear Classifier

Lecture 3 - 13

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b
(10,) (10, 3072)

(3072,)
(10,)

Parametric Approach—Linear Classifier
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Example for 2x2 image, 3 classes (cat/dog/ship)

Lecture 3 - 14

Input image
(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

(4,)

f(x,W) = Wx + b

56 231

24 2

Example for 2x2 Image, 3 classes (crackers/mug/sugar)
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Example for 2x2 image, 3 classes (cat/dog/ship)

Lecture 3 - 15

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3, 4)

(3,)

(3,)

f(x,W) = Wx + b
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Example for 2x2 Image, 3 classes (crackers/mug/sugar)

56 231

24 2



Linear Classifier—Algebraic Viewpoint
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Example for 2x2 image, 3 classes (cat/dog/ship)

Lecture 3 - 15
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1.5 1.3 2.1 0.0
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W
Input image
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24
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56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95
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b(4,)
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(3,)

(3,)

f(x,W) = Wx + b

56 231
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Linear Classifier: Bias Trick

Lecture 3 - 17

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

-96.8

437.9

61.95

=

(5,)
(3, 5) (3,)

1

Add extra one to data vector; 
bias is absorbed into last 
column of weight matrix

Linear Classifier—Bias Trick
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56 231

24 2

Add extra one to data vector; bias is 
absorbed into last column of weight matrix



Linear Classifier—Predictions are Linear
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Linear Classifier: Predictions are Linear!

Lecture 3 - 19

f(x, W) = Wx (ignore bias)

f(cx, W) = W(cx) = c * f(x, W)
Image 0.5 * ImageScores

-96.8

437.8

62.0

-48.4

218.9

31.0

0.5 * Scores
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Interpreting a Linear Classifier
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Interpreting a Linear Classifier

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input	image

(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3,	4)

(3,)

(3,)

f(x,W) = Wx + b
Algebraic ViewpointAlgebraic Viewpoint



Interpreting a Linear Classifier
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Interpreting a Linear Classifier
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Interpreting a Linear Classifier
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0.1 2.0

1.5 1.3

2.1 0.0

0 .25
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1.1 3.2 -1.2
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-96.8 437.9 61.95
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Algebraic Viewpoint
f(x,W) = Wx + b

Instead of stretching pixels into 
columns, we can equivalently 
stretch rows of W into images!

Instead of stretching pixels into columns, we 
can equivalently stretch rows of W into images!



Interpreting a Linear Classifier
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Instead of stretching pixels into columns, we 
can equivalently stretch rows of W into images!
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Interpreting a Linear Classifier
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Instead of stretching pixels into columns, we 
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Interpreting a Linear Classifier—Visual Viewpoint
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Linear classifier has one 
“template” per category

Instead of stretching pixels into columns, we 
can equivalently stretch rows of W into images!
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Interpreting a Linear Classifier
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Interpreting a Linear Classifier—Visual Viewpoint
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Linear classifier has one 
“template” per category

A single template cannot capture 
multiple modes of the data

e.g. mustard bottles can rotate

Instead of stretching pixels into columns, we 
can equivalently stretch rows of W into images!
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Interpreting a Linear Classifier
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Interpreting a Linear Classifier—Geometric Viewpoint
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 26

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)Value of pixel (15, 8, 0)

Airplane 
Score Car 

ScoreCat 
ScoreClassifier 

score

0 255



Interpreting a Linear Classifier—Geometric Viewpoint
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Interpreting a Linear Classifier: Geometric Viewpoint
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Interpreting a Linear Classifier—Geometric Viewpoint
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 26
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Interpreting a Linear Classifier—Geometric Viewpoint
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 26

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)Value of pixel (15, 8, 0)

Airplane 
Score Car 

ScoreCat 
ScoreClassifier 

score

0 255
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 28

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Pixel
(15, 8, 0)

Car Score 
= 0

Pixel 
(11, 11, 0)

Car score 
increases 
this way

Interpreting a Linear Classifier—Geometric Viewpoint

31

Pixel 

(15, 8, 0)

Mug

Mug



f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)

Interpreting a Linear Classifier—Geometric Viewpoint
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Mug

Mug

Mug

Pixel 

(15, 8, 0)
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 30

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)

Interpreting a Linear Classifier—Geometric Viewpoint
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Mug

Mug

Mug

Pixel 

(15, 8, 0)

Cracker

Sugar
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)

Interpreting a Linear Classifier—Geometric Viewpoint
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Mug

Mug

Mug

Pixel 

(15, 8, 0)

Cracker

Sugar



Hard Cases for a Linear Classifier
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Hard Cases for a Linear Classifier

Lecture 3 - 32

Class 1: 
First and third quadrants

Class 2: 
Second and fourth quadrants

Class 1: 
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1: 
Three modes

Class 2:
Everything else
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Linear Classifier—Three Viewpoints
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Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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Linear Classifier: Three Viewpoints

Lecture 3 - 34
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Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space



So far—Defined a Score Function
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So Far: Defined a linear score function

Lecture 3 - 35

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Given a W, we can 
compute class scores 
for an image x.

But how can we 
actually choose a 
good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain
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So Far: Defined a linear score function
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-8.87
0.09
2.9
4.48
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3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
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4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Given a W, we can 
compute class scores 
for an image x.

But how can we 
actually choose a 
good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Given a W, we can 
compute class scores 
for an image, x.

But how can we actually 
choose a good W?

master chef can

cracker box

sugar box

tomato soup can

mustard bottle
tuna fish can

gelatin box
potted meat can

mug

large marker



So far—Choosing a Good W
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So Far: Defined a linear score function

Lecture 3 - 35

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Given a W, we can 
compute class scores 
for an image x.

But how can we 
actually choose a 
good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

TODO:

1. Use a loss function to quantify 
how good a value of W is

2. Find a W that minimizes the 
loss function (optimization)
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So Far: Defined a linear score function
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Loss Function
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A loss function measures how 
good our current classifier is

Low loss = good classifier

High loss = bad classifier

Also called: objective function, 
cost function
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A loss function measures how 
good our current classifier is

Low loss = good classifier

High loss = bad classifier

Also called: objective function, 
cost function

Negative loss function 
sometimes called reward 
function, profit function, utility 
function, fitness function, etc.

Given a dataset of examples
{(xi, yi)}N

i=1
where  is an image and 

            is a (discrete) label

xi
yi
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Loss Function
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A loss function measures how 
good our current classifier is

Low loss = good classifier

High loss = bad classifier

Also called: objective function, 
cost function

Negative loss function 
sometimes called reward 
function, profit function, utility 
function, fitness function, etc.

Given a dataset of examples
{(xi, yi)}N

i=1
where  is an image and 

            is a (discrete) label

xi
yi

Loss for a single example is
Li( f(xi, W), yi)

Loss for the dataset is average 
of per-example losses:

L = 1
N ∑

i
Li( f(xi, W), yi)



Cross-Entropy Loss
Multinomial Logistic Regression
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

3.2
5.1

-1.7sugar
mug
cracker
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

3.2
5.1

-1.7sugar
mug
cracker



Cross-Entropy Loss
Multinomial Logistic Regression
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

Unnormalized log-
probabilities (logits)

3.2
5.1

-1.7sugar
mug
cracker
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

Unnormalized log-
probabilities (logits)

3.2
5.1

-1.7
Unnormalized 
probabilities

24.5
164.0
0.18

Probabilities 
must be >=0

exp( )⋅
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

Unnormalized log-
probabilities (logits)

3.2
5.1

-1.7
Unnormalized 
probabilities

24.5
164.0
0.18

Probabilities 
must be >=0

exp( )⋅

Probabilities

0.13
0.87
0.00

Probabilities 
must sum to 1

normalize
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

Unnormalized log-
probabilities (logits)

3.2
5.1

-1.7
Unnormalized 
probabilities

24.5
164.0
0.18

Probabilities 
must be >=0

exp( )⋅

Probabilities

0.13
0.87
0.00

Probabilities 
must sum to 1

normalize

Justin Johnson January 12, 2022

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 48

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0
0.18

0.13
0.87
0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(See EECS 445 or EECS 545)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

"! = − log( ) = *! | , = -!
Li = − log(0.13)

= 2.04
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mug
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

Unnormalized log-
probabilities (logits)

3.2
5.1

-1.7
Unnormalized 
probabilities

24.5
164.0
0.18

Probabilities 
must be >=0

exp( )⋅

Probabilities

0.13
0.87
0.00

Probabilities 
must sum to 1

normalize
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 48

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0
0.18

0.13
0.87
0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(See EECS 445 or EECS 545)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

"! = − log( ) = *! | , = -!
Li = − log(0.13)

= 2.04

Maximum Likelihood Estimation 
Choose weights to maximize the 
likelihood of the observed data

(see CSCI 5521)
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

Unnormalized log-
probabilities (logits)

3.2
5.1

-1.7
Unnormalized 
probabilities

24.5
164.0
0.18

Probabilities 
must be >=0

exp( )⋅

Probabilities

0.13
0.87
0.00

Probabilities 
must sum to 1

normalize
1.00
0.00
0.00

compare

Correct 
probabilities
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

Unnormalized log-
probabilities (logits)

3.2
5.1

-1.7
Unnormalized 
probabilities

24.5
164.0
0.18

Probabilities 
must be >=0

exp( )⋅

Probabilities

0.13
0.87
0.00

Probabilities 
must sum to 1

normalize
1.00
0.00
0.00

compare

Correct 
probabilities

Kullback-Leibler 
divergence

DKL(P | |Q) =

∑
y

P(y)log P(y)
Q(y)
P(y)
Q(y)
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

Unnormalized log-
probabilities (logits)

3.2
5.1

-1.7
Unnormalized 
probabilities

24.5
164.0
0.18

Probabilities 
must be >=0

exp( )⋅

Probabilities

0.13
0.87
0.00

Probabilities 
must sum to 1

normalize
1.00
0.00
0.00

compare

Correct 
probabilities

Cross Entropy

H(P, Q) =
H(P) + DKL(P | |Q)sugar

mug
cracker



Cross-Entropy Loss
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

3.2
5.1

-1.7
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 48

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0
0.18

0.13
0.87
0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(See EECS 445 or EECS 545)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

"! = − log( ) = *! | , = -!

Maximize probability of correct class

Justin Johnson January 12, 2022

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 53

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min / 
max possible loss Li?

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

+$ = − log- . = /$ | 0 = 1$ .! = − log exp ,$!
∑# exp ,#

Putting it all together
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

3.2
5.1

-1.7

Justin Johnson January 12, 2022

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 48

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0
0.18

0.13
0.87
0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(See EECS 445 or EECS 545)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

"! = − log( ) = *! | , = -!

Maximize probability of correct class
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 53

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min / 
max possible loss Li?

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

+$ = − log- . = /$ | 0 = 1$ .! = − log exp ,$!
∑# exp ,#

Putting it all together

Q: What is the min / 
max possible loss ?Li
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

3.2
5.1

-1.7
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 48

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0
0.18

0.13
0.87
0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(See EECS 445 or EECS 545)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

"! = − log( ) = *! | , = -!

Maximize probability of correct class
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 53

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min / 
max possible loss Li?

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

+$ = − log- . = /$ | 0 = 1$ .! = − log exp ,$!
∑# exp ,#

Putting it all together

Q: What is the min / 
max possible loss ?Li

A: Min: , Max: 0 +∞
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

3.2
5.1

-1.7

Justin Johnson January 12, 2022

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 48

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0
0.18

0.13
0.87
0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(See EECS 445 or EECS 545)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

"! = − log( ) = *! | , = -!

Maximize probability of correct class

Justin Johnson January 12, 2022

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 53

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min / 
max possible loss Li?

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

+$ = − log- . = /$ | 0 = 1$ .! = − log exp ,$!
∑# exp ,#

Putting it all together

Q: If all scores are 
small random values, 
what is the loss?

59

sugar
mug
cracker



Cross-Entropy Loss
Multinomial Logistic Regression

Justin Johnson January 12, 2022

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

3.2
5.1

-1.7

Justin Johnson January 12, 2022

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 48

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0
0.18

0.13
0.87
0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(See EECS 445 or EECS 545)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

"! = − log( ) = *! | , = -!

Maximize probability of correct class

Justin Johnson January 12, 2022

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 53

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min / 
max possible loss Li?

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

+$ = − log- . = /$ | 0 = 1$ .! = − log exp ,$!
∑# exp ,#

Putting it all together

Q: If all scores are 
small random values, 
what is the loss?

A: −log( 1
C

)

log( 1
10 ) ≈ 2.3
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 58

Loss

Score for 
correct class

Highest score 
among other classes
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 59

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Multiclass SVM Loss

62
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 59

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1

Justin Johnson January 12, 2022

Multiclass SVM Loss

Lecture 3 - 61

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1

Justin Johnson January 12, 2022

Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1sugar
mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 63

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0

= max(0, 1.3 - 4.9 + 1) 
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 63

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0

= max(0, 1.3 - 4.9 + 1) 
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1sugar

mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 64

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

= max(0, 2.2 - (-3.1) + 1) 
+max(0, 2.5 - (-3.1) + 1)

= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 64

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

= max(0, 2.2 - (-3.1) + 1) 
+max(0, 2.5 - (-3.1) + 1)

= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1sugar

mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1



Justin Johnson January 12, 2022

Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1sugar
mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1



Q: What happens to the 
loss if the scores for the 
mug image change a bit?
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1sugar

mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 67

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Q2: What are the min 
and max possible loss?

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1sugar

mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 68

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Q3: If all the scores 
were random, what 
loss would we expect?

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1sugar

mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1



Cross-Entropy vs SVM Loss
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1



Cross-Entropy vs SVM Loss

73
Justin Johnson January 12, 2022

Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 75

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
slightly change the scores of the last 
datapoint?

A: Cross-entropy loss will change;
SVM loss will stay the same

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 75

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
slightly change the scores of the last 
datapoint?

A: Cross-entropy loss will change;
SVM loss will stay the same

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1

SVM loss will change for the 2nd
SVM loss will stay the same for 1st and 3rd example
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Cross-Entropy vs SVM Loss

Lecture 3 - 77

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
double the score of the correct class 
from 10 to 20?

A: Cross-entropy loss will decrease,
SVM loss still 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1

Cross-Entropy vs SVM Loss
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 77

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
double the score of the correct class 
from 10 to 20?

A: Cross-entropy loss will decrease,
SVM loss still 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1

Cross-Entropy vs SVM Loss
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space

Justin Johnson January 12, 2022

Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)
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Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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Recap: Loss Functions quantify preferences

Lecture 3 - 79

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: Linear classifier

Softmax: !! = − log %&' (%$
∑& %&' (&

SVM: !! = ∑"#$$max 0, /" − /$$ + 1

/ = " #;%, 7 = %# + 7
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Recap: Loss Functions quantify preferences

Lecture 3 - 79

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: Linear classifier

Softmax: !! = − log %&' (%$
∑& %&' (&

SVM: !! = ∑"#$$max 0, /" − /$$ + 1

/ = " #;%, 7 = %# + 7
Q: How do we find the best W,b?
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Next time: Regularization + Optimization
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