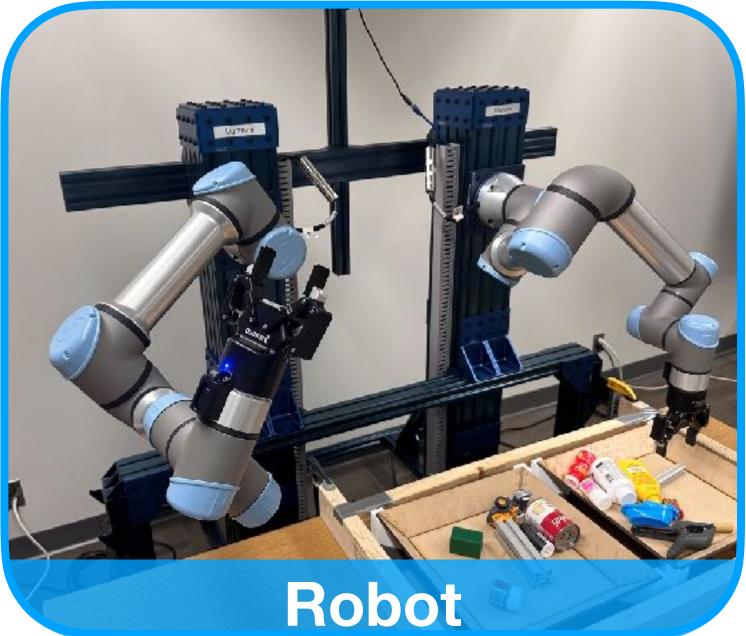


Lecture 2 **Image Classification University of Michigan and University of Minnesota**

Table



Robot

Project 0

- Instructions and code available on the website
 - Here: <u>https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/</u>

projects/project0/

- Uses Python, PyTorch and Google Colab
- Introduction to PyTorch Tensors
- Due this Tuesday (January 24th), 11:59 PM CT

- If you choose to develop locally
 - **PyTorch Version 1.13.0**
- Ensure you save your notebook file before uploading submission
- Close any Colab notebooks not in use to avoid usage limits

Project 0 Suggestions

Discussion Forum

- <u>Ed Stem</u> available for course discussion and questions
 - Forum is shared across UMich and UMinn students
 - Participation and use is not required
 - Opt-in using this Google form

Discussion of quizzes and verbatim code must be private

Discussion Forum

ed Deep Rob	– Ed Discussion						
🕑 New Thread	Q Search						
COURSES + Deep Rob 1 CATEGORIES	 Question about Autograder Access Projects - PO Anonymous 7d 						
 General Lectures Discussions Projects 	 Question about hidden test case Projects - PO Anonymous 1w Question about mm_on_gpu Projects - PO Anonymous 1w 						
Social	8 Jan 2023 ⑦ Running on GPU Projects - P0 Stephenie Worthy 1w						
	 ⑦ PyTorch dtype difference General Anonymous 1w ⑦ Question about sum_positive_entries Projects - P0 Anonymous 2w 						
	② Question about torch version						

							23014320	And State
	Public ~	РуТс	orch dtype di	ffere	nce	#9		
5	- 1		<mark>Anonymous</mark> Last week in <mark>Genera</mark> l		PIN	* STAR	O WATCH	75 VIEW
	- 1	\bigcirc	Is there any difference float64 vs. torch.float6		n dtype	and ten	sor dtype	? Ex:
	2		Comment Edit Delete	Endorse	***			
		1 Ans	wer					
	✓ ● 4	P	Anthony Opipari STAFF Last week					
	1	\bigcirc 1	l'm not sure l understa what difference you're dtype"?	(B)		12	12	
ries	• 1	~	If the question is whet are stored with data e numbers, then yes. He	lements	that ar	e 64-bit f	loating po	oint
	v							

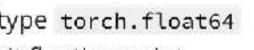
À

♠

🔁 📶 🌣 👘

75 VIEWS

"dtype" and "tensor



ion on torch tensor

- Additional class permissions have been issued.
- Desingh

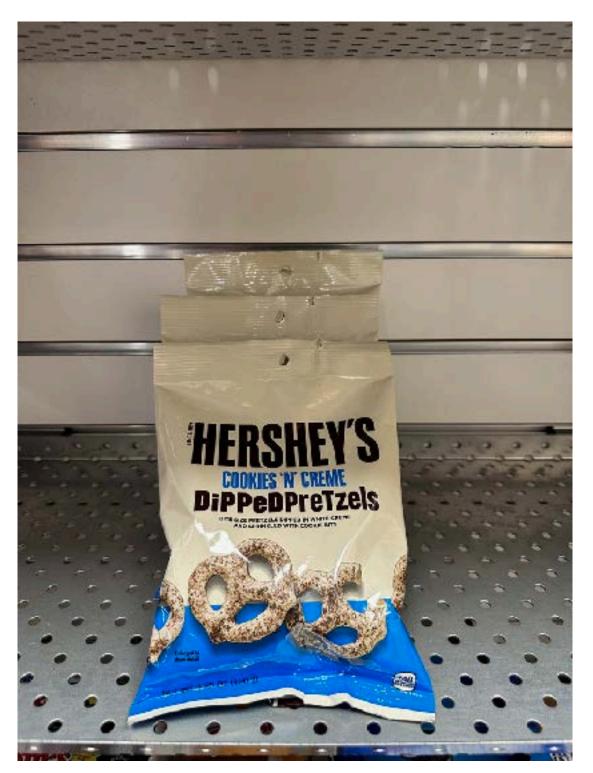
Enrollment

If you haven't received a class permission contact Prof.

Image Classification

Image Classification—A Core Computer Vision Task

Input: image



Output: assign image to one of a fixed set of categories

Chocolate Pretzels

Granola Bar

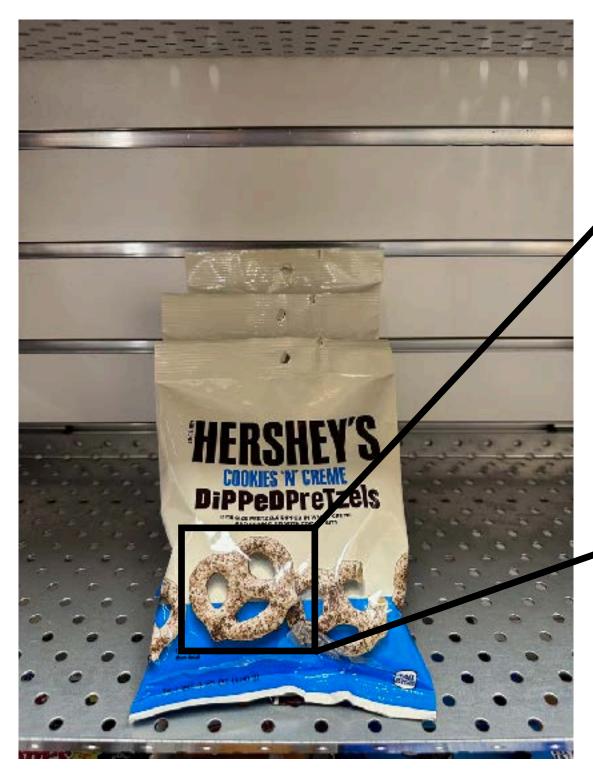
Potato Chips

Water Bottle

Popcorn

Problem—Semantic Gap

Input: image



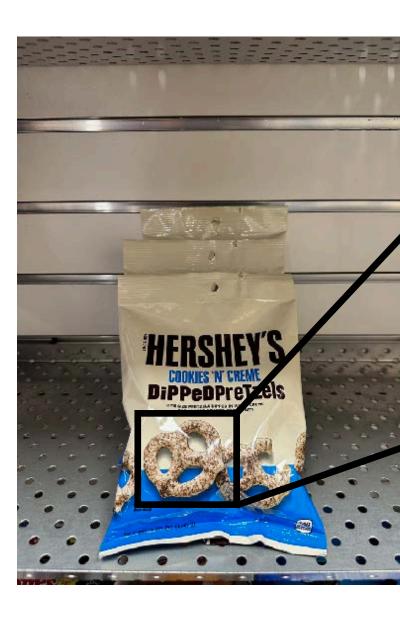
[[183, 187, 189, 189, 188, 188, 189, 190, 186, 185, 189, 190, [185, 188, 189, 188, 188, 189, 191, 193, 187, 190, 191, 189, [186, 189, 189, 187, 187, 188, 189, 189, 192, 194, 189, 184,	186, 185, 18 182, 185, 18	35],
	182, 185, 18	
[186 189 189 187 187 188 180 189 107 104 189 184	, ,	
[100, 109, 109, 107, 107, 100, 103, 109, 192, 194, 109, 104]	185. 188. 18	37],
[188, 188, 188, 190, 190, 189, 189, 190, 190, 189, 185, 184,		8],
[187, 187, 188, 192, 191, 189, 191, 193, 191, 186, 185, 189,	187, 187, 18	5],
[186, 186, 189, 191, 190, 189, 190, 192, 191, 188, 190, 193,	186, 186, 18	34],
[189, 186, 189, 192, 192, 190, 191, 193, 184, 188, 190, 192,	186, 187, 18	86],
[191, 189, 189, 190, 189, 190, 190, 190, 183, 187, 186, 188,	187, 189, 18	8],
[192, 194, 193, 189, 188, 193, 194, 191, 191, 192, 186, 186,	187, 186, 18	37],
[190, 192, 193, 191, 191, 195, 194, 191, 191, 192, 188, 189,	189, 186, 18	88],
[189, 188, 190, 189, 190, 189, 187, 187, 185, 190, 188, 189,	192, 192, 19	1],
[191, 188, 187, 186, 188, 190, 189, 190, 186, 193, 190, 187,	194, 194, 19	2],
[194, 193, 189, 186, 189, 190, 191, 194, 192, 191, 192, 194,	194, 194, 18	8],
[196, 196, 196, 193, 191, 190, 191, 195, 194, 191, 193, 194,	192, 190, 18	37],
[194, 193, 194, 191, 188, 189, 190, 193, 193, 191, 193, 192,	190, 190, 19	10],
[197, 194, 193, 191, 188, 189, 191, 192, 192, 192, 194, 192,	190, 193, 19	3],
[202, 201, 202, 200, 196, 193, 192, 192, 190, 191, 194, 193,	191, 193, 19	3],
[205, 206, 207, 206, 202, 198, 196, 194, 189, 190, 191, 192,	191, 191, 19	0],
[207, 207, 204, 202, 199, 198, 199, 199, 195, 192, 192, 194,	193, 191, 19	0],
[205, 203, 200, 200, 199, 196, 198, 202, 199, 194, 193, 195,	193, 191, 19	2],
[199, 196, 196, 201, 205, 204, 202, 202, 199, 194, 192, 193,		_
[195, 194, 193, 196, 201, 205, 205, 203, 200, 196, 195, 195,	192, 190, 19	21,
[194, 194, 193, 194, 196, 199, 202, 204, 201, 200, 200, 199,		_
[194, 193, 192, 195, 197, 199, 202, 204, 200, 203, 204, 202,		-
[199, 201, 201, 200, 200, 201, 201, 205, 202, 206, 207, 205,		-

What the computer sees

An image is just a grid of numbers between [0, 255]

e.g. 800 x 600 x 3 (3 channels RGB)

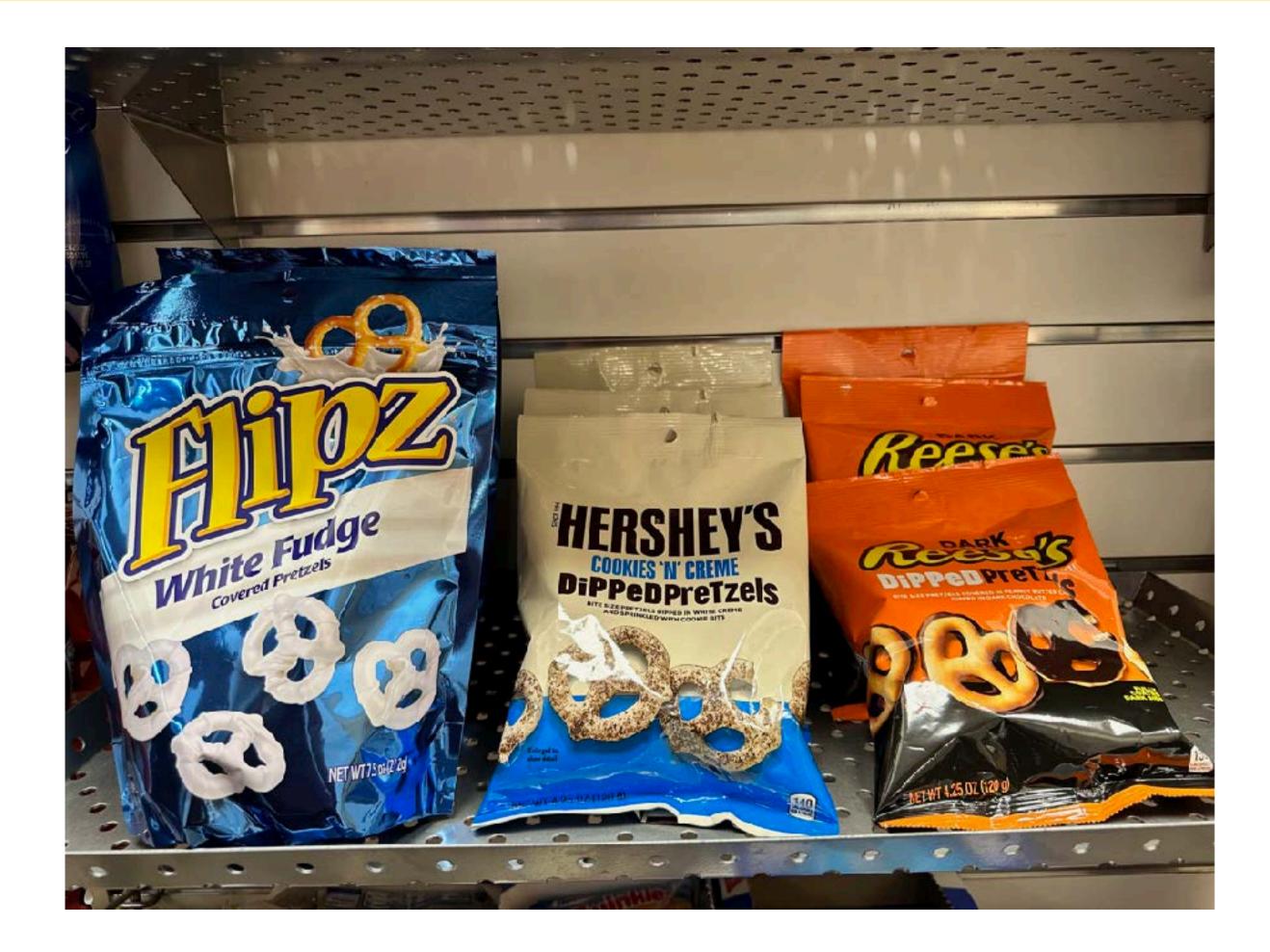
Challenges—Viewpoint Variation



[[183,	187,	189,	189,	188,	188,	189,	190,	186,	185,	189,	190,	187,	186,	183],
[185,	188,	189,	188,	188,	189,	191,	193,	187,	190,	191,	189,	186,	185,	185],
[186,	189,	189,	187,	187,	188,	189,	189,	192,	194,	189,	184,	182,	185,	187],
[188,	188,	188,	190,	190,	189,	189,	190,	190,	189,	185,	184,	185,	188,	188],
[187,	187,	188,	192,	191,	189,	191,	193,	191,	186,	185,	189,	187,	187,	185],
[186,	186,	189,	191,	190,	189,	190,	192,	191,	188,	190,	193,	186,	186,	184],
[189,	186,	189,	192,	192,	190,	191,	193,	184,	188,	190,	192,	186,	187,	186],
[191,	189,	189,	190,	189,	190,	190,	190,	183,	187,	186,	188,	187,	189,	188],
[192,	194,	193,	189,	188,	193,	194,	191,	191,	192,	186,	186,	187,	186,	187],
[190,	192,	193,	191,	191,	195,	194,	191,	191,	192,	188,	189,	189,	186,	188],
[189,	188,	190,	189,	190,	189,	187,	187,	185,	190,	188,	189,	192,	192,	191],
[191,	188,	187,	186,	188,	190,	189,	190,	186,	193,	190,	187,	194,	194,	192],
					-	-					-		-	188],
		-	-		-	-				-	-	-	-	187],
						-				-	-	-	-	190],
					-	-					-			193],
														193],
														190],
														190],
														192],
														192],
														192],
	-	-	-		-	-		-		-	-	-	-	196],
		-												200],
[199,	201,	201,	200,	200,	201,	201,	205,	202,	206,	207,	205,	203,	205,	203]]

Pixels change when the camera moves

Challenges—Intraclass Variation



Challenges—Fine-Grained Categories

Milk Chocolate

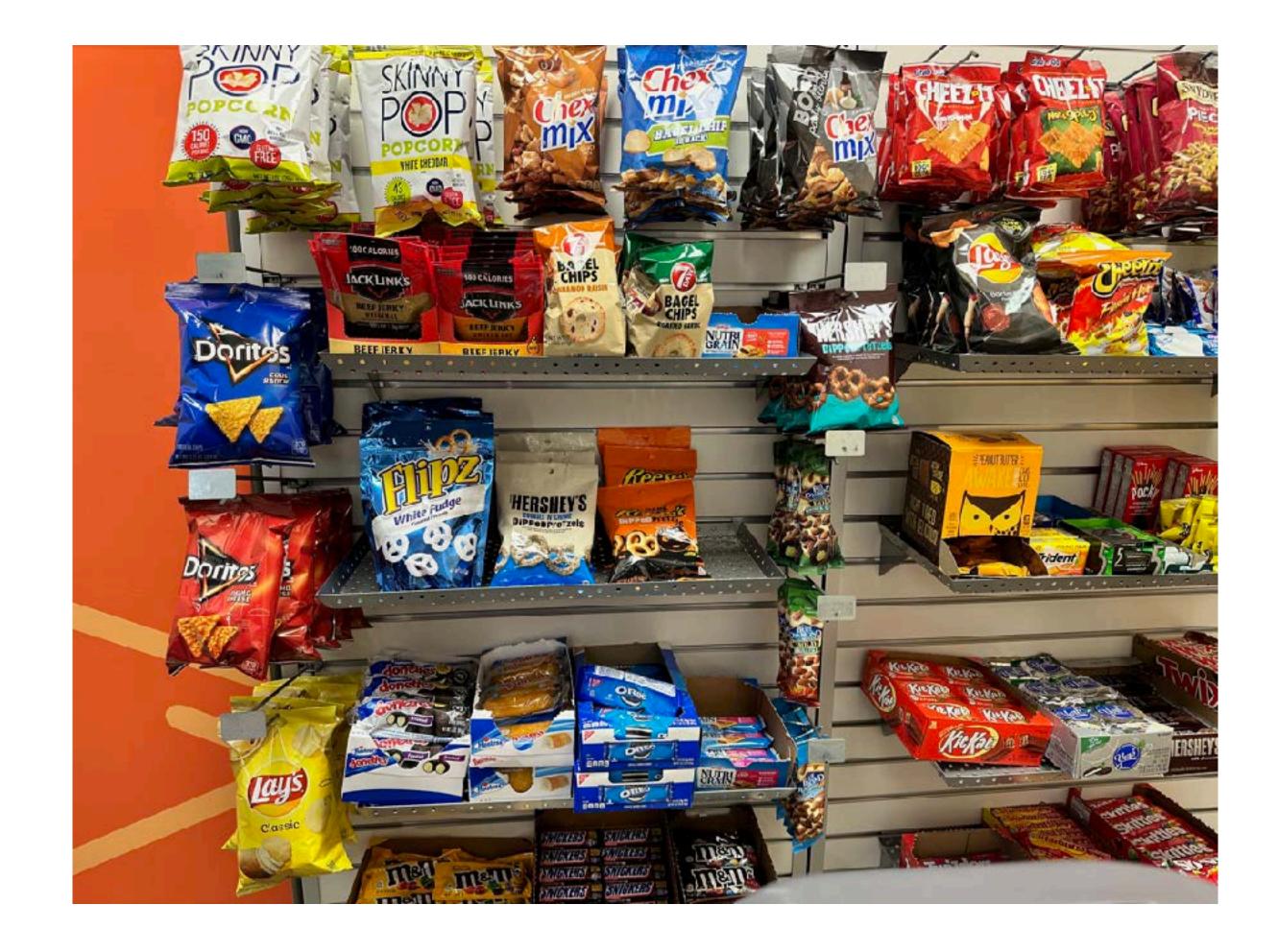
White Chocolate

Cookies N' Creme

Peanut Butter

Ambiguous Category

Challenges—Background Clutter



iPhone 14 Camera

DR

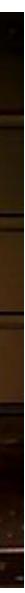
Challenges—Image Resolution

ASUS RGB-D Camera

640x480

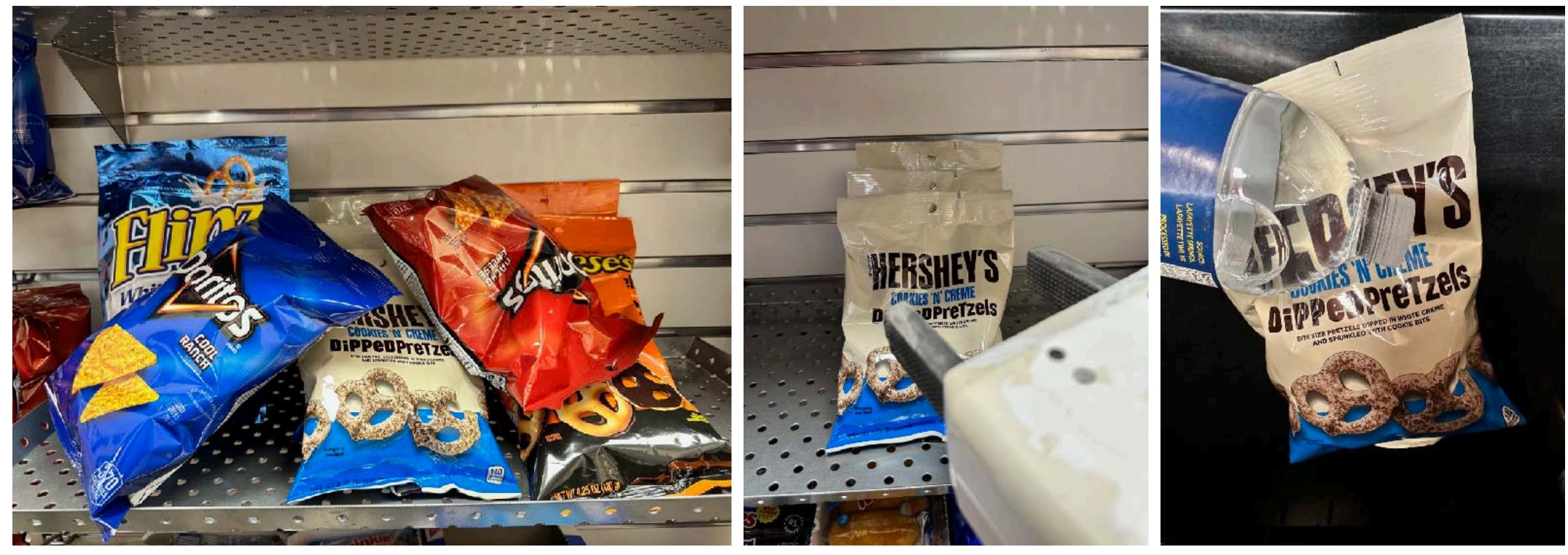
Challenges—Illumination Changes

Want our robot's perception system to be reliable in all conditions



Challenges—Subject Deformation

Scene Clutter



DR

Challenges—Occlusion

Robot Actuator

Transparency

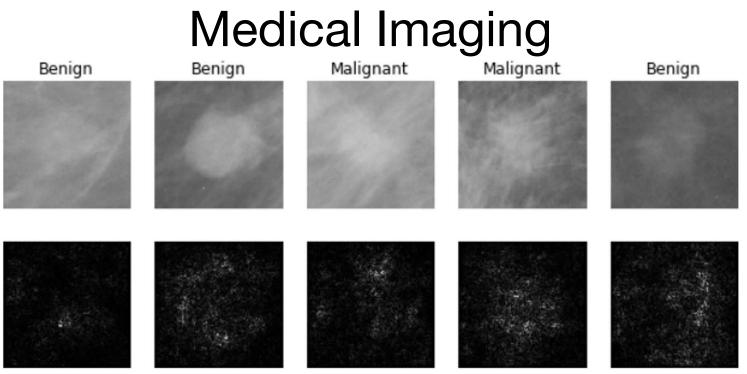
Challenges—Semantic Relationships

Reflections

Robots have to act on the state they perceive

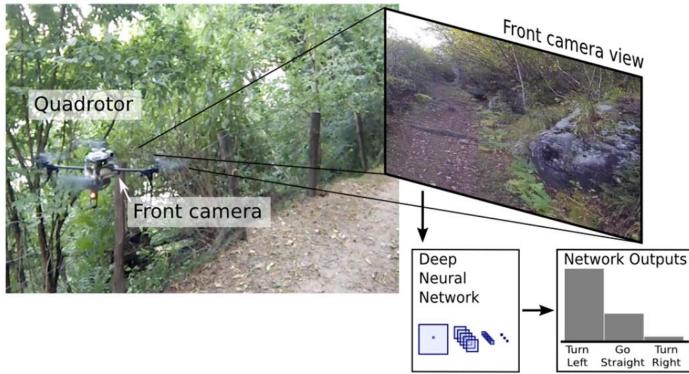
Contact Relationships

Applications of Image Classification



Lévy et al., "Breast Mass Classification from Mammograms using Deep Convolutional Neural Networks", arXiv:1612.00542, 2016

Trail Direction Classification



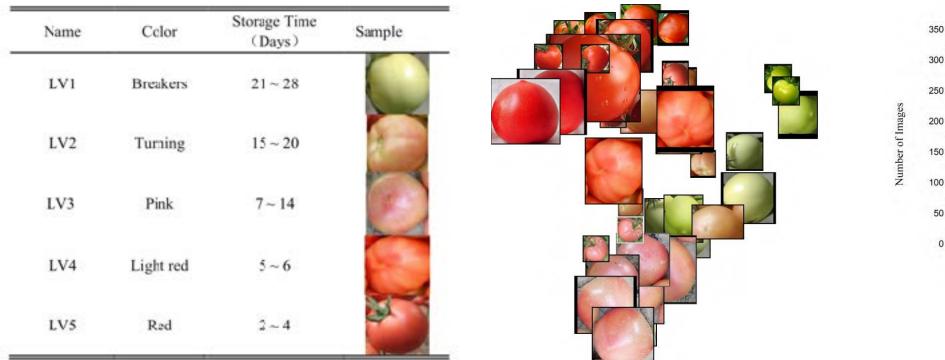
Giusti et al., "A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots", IEEE RAL, 2016

Galaxy Classification

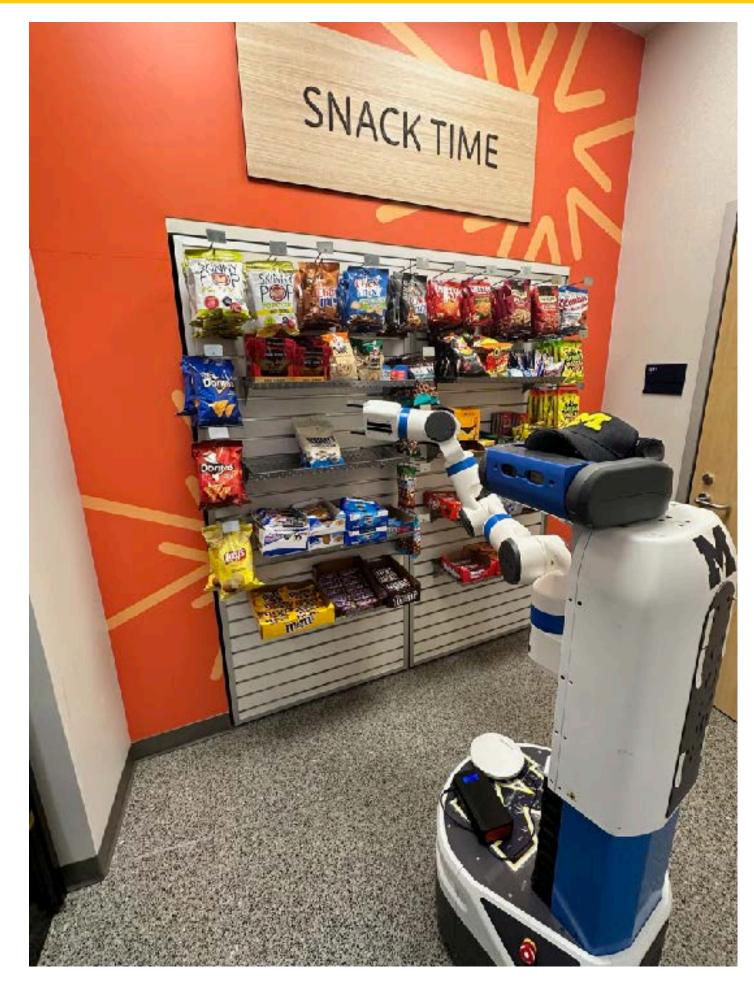
Dieleman et al., "Rotation-invariant convolutional neural networks for galaxy morphology prediction", 2015

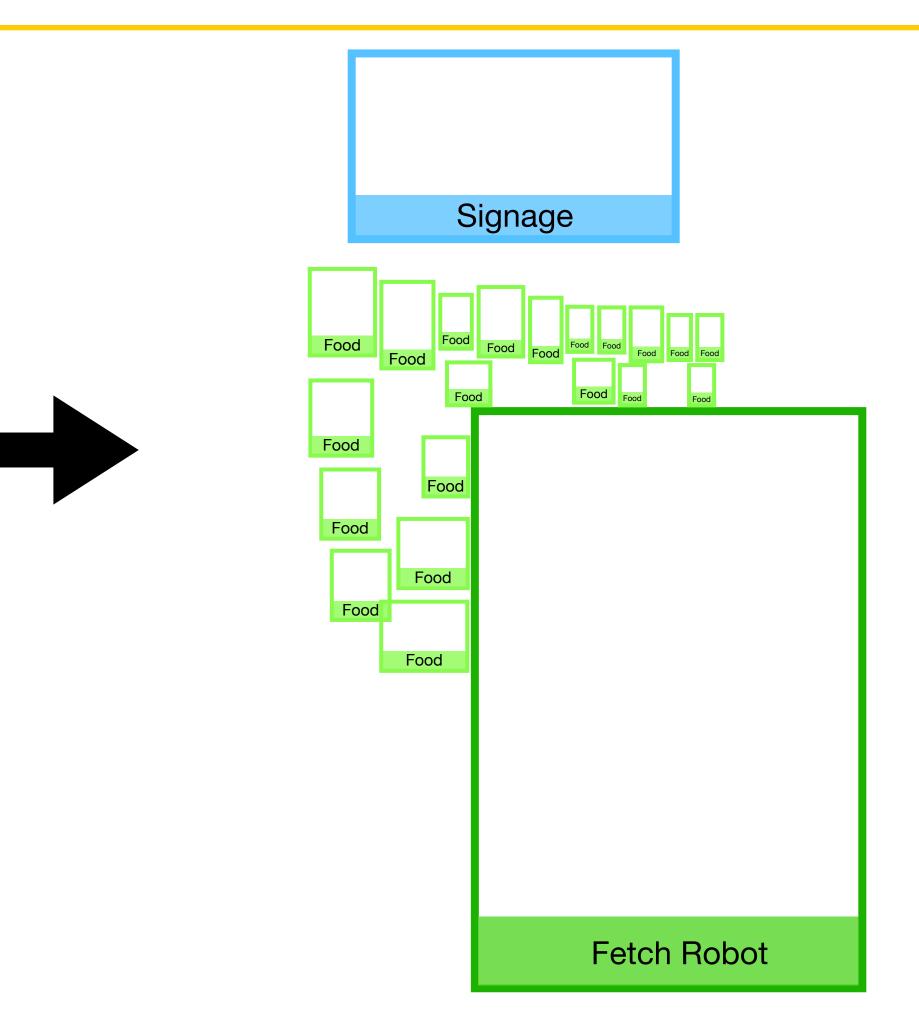
From left to right: <u>public domain by NASA</u>, usage <u>permitted</u> by ESA/Hubble, <u>public domain by NASA</u>, and public domain

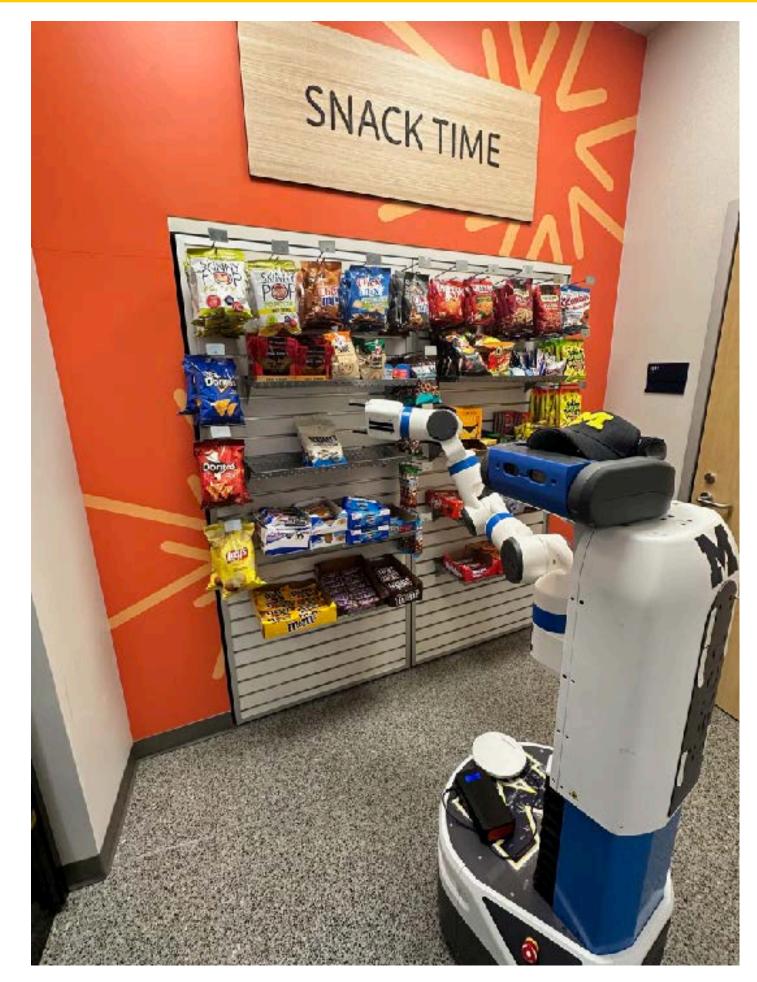
Tomato Ripeness Classification



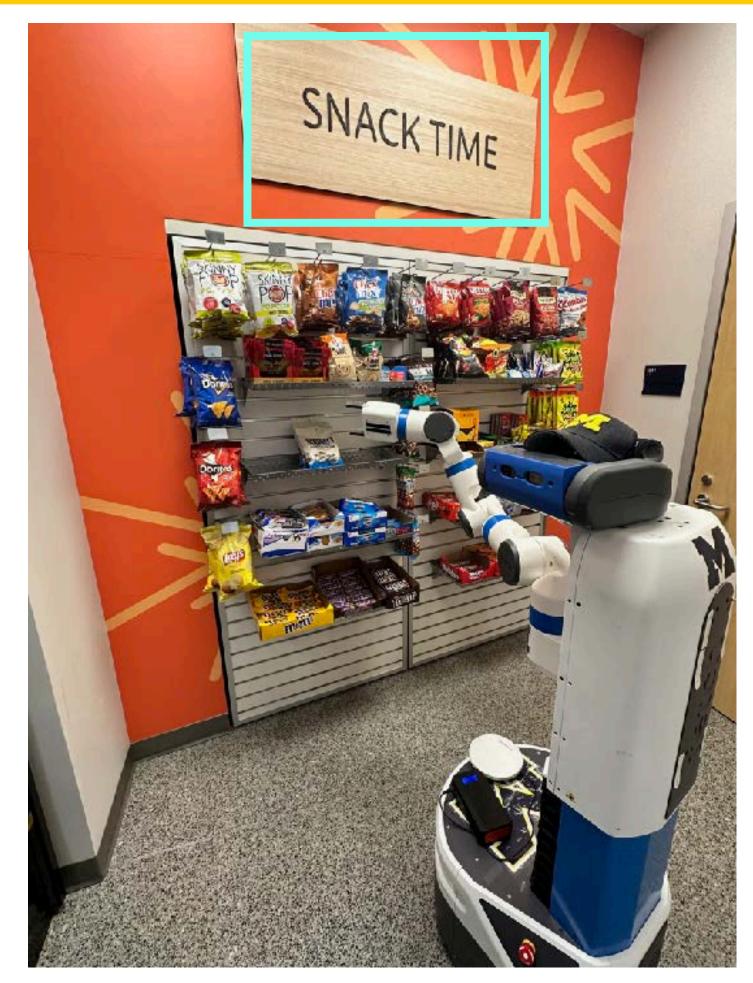
Zhang et al., "Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot", IEEE Access, 2016



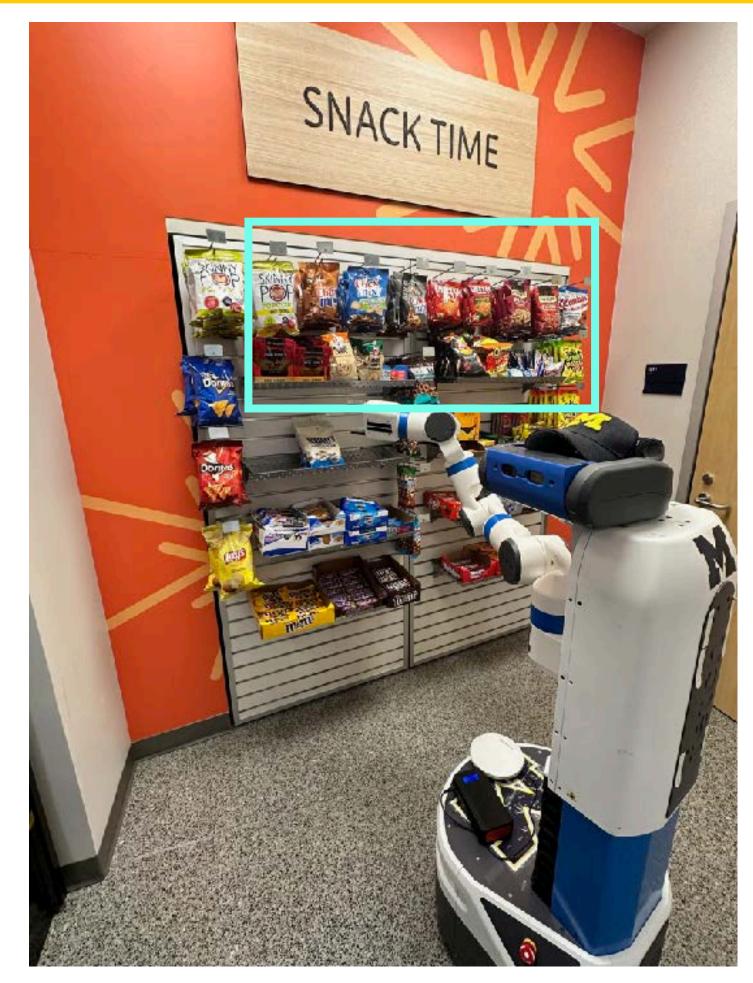




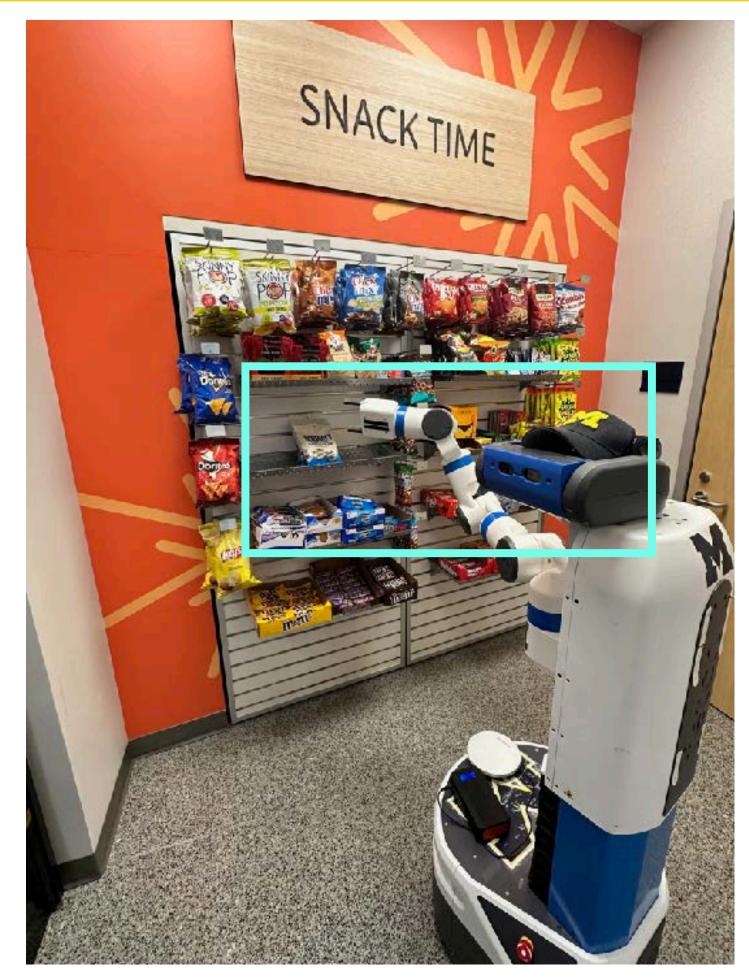
Example: Object Detection



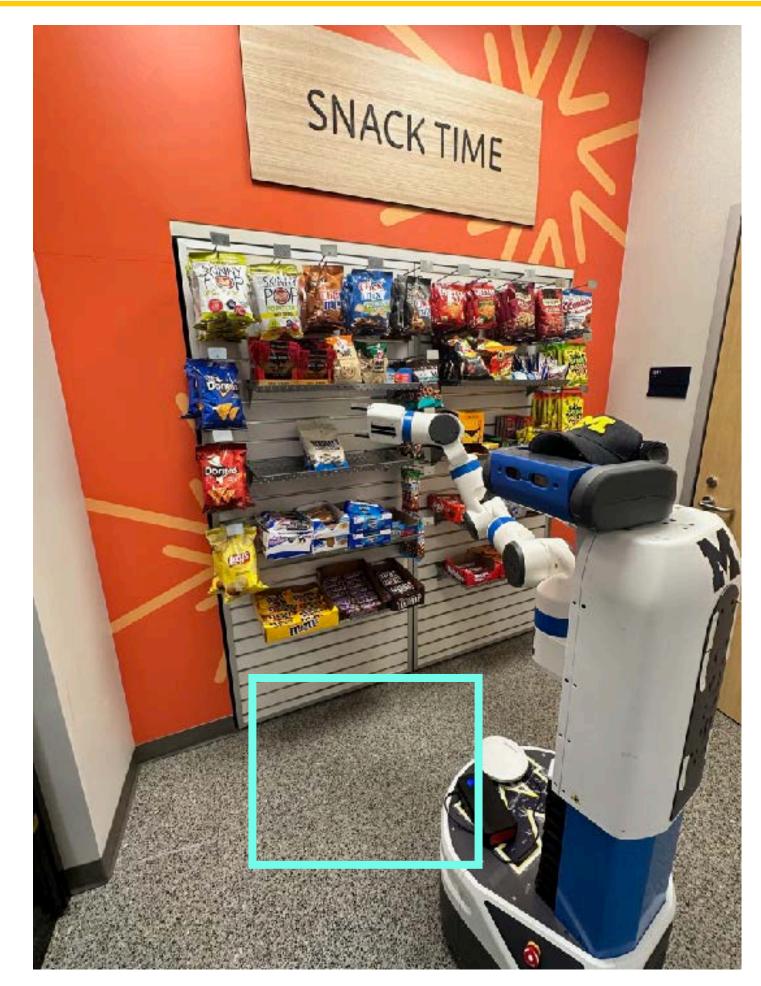
Example: Object Detection



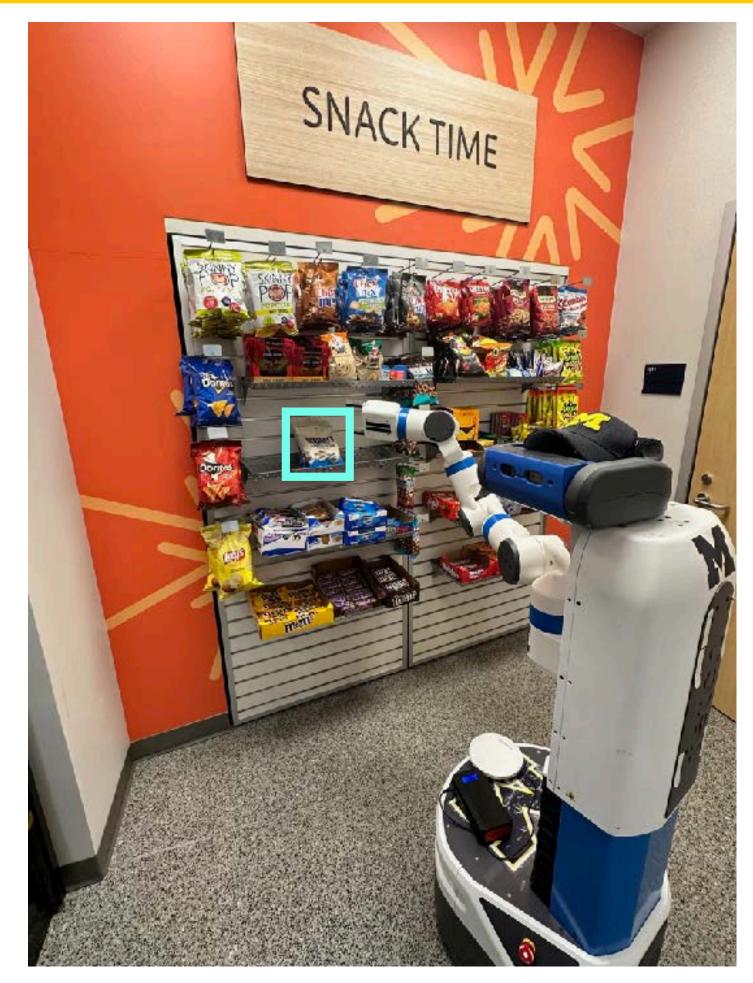
Example: Object Detection



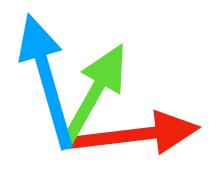
Example: Object Detection



Example: Object Detection



Example: Pose Estimation



An Image Classifier

Some magic here? return class_label

Unlike well defined programming (e.g. sorting a list)

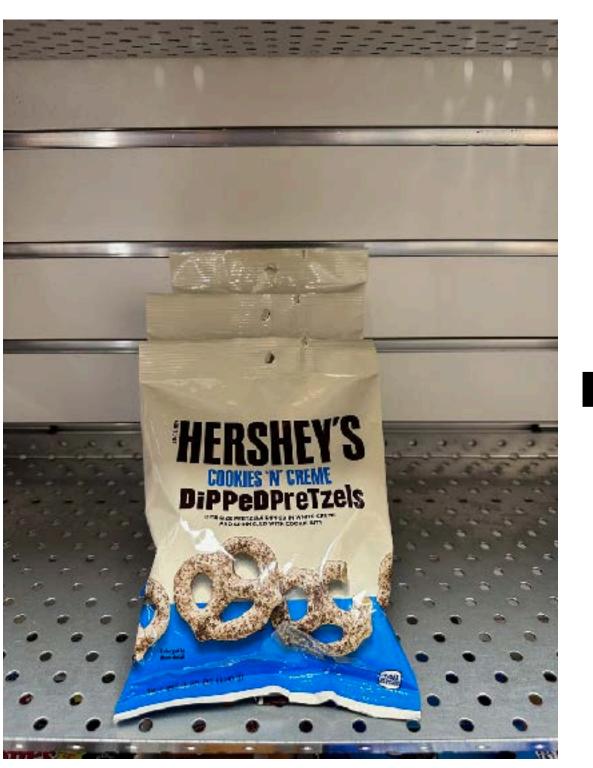
No obvious way to hard-code the algorithm for recognizing each class

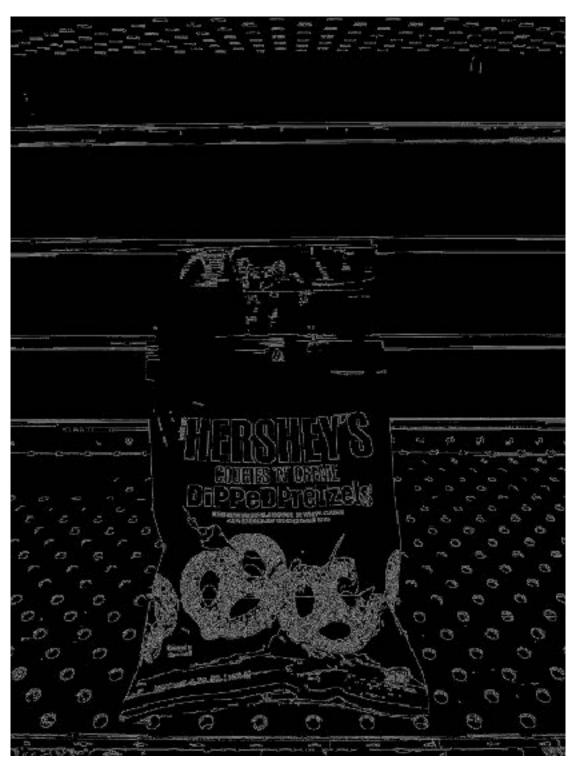
DR

def classify_image(image):

An Image Classifier

Input: image

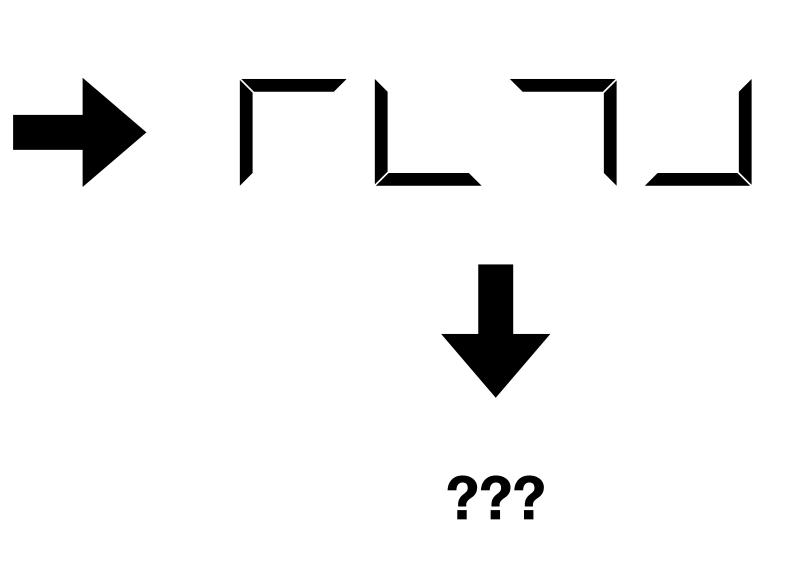




DR

Detect: Edges

Detect: Corners



- Collect a dataset of images and labels
- Use Machine Learning to train a classifier 2.
- Evaluate the classifier on new images 3.

def train(images, labels): # Machine learning! return model

def predict(model, test_images): # Use model to predict labels return test_labels

Machine Learning—Data-Driven Approach

Example training set

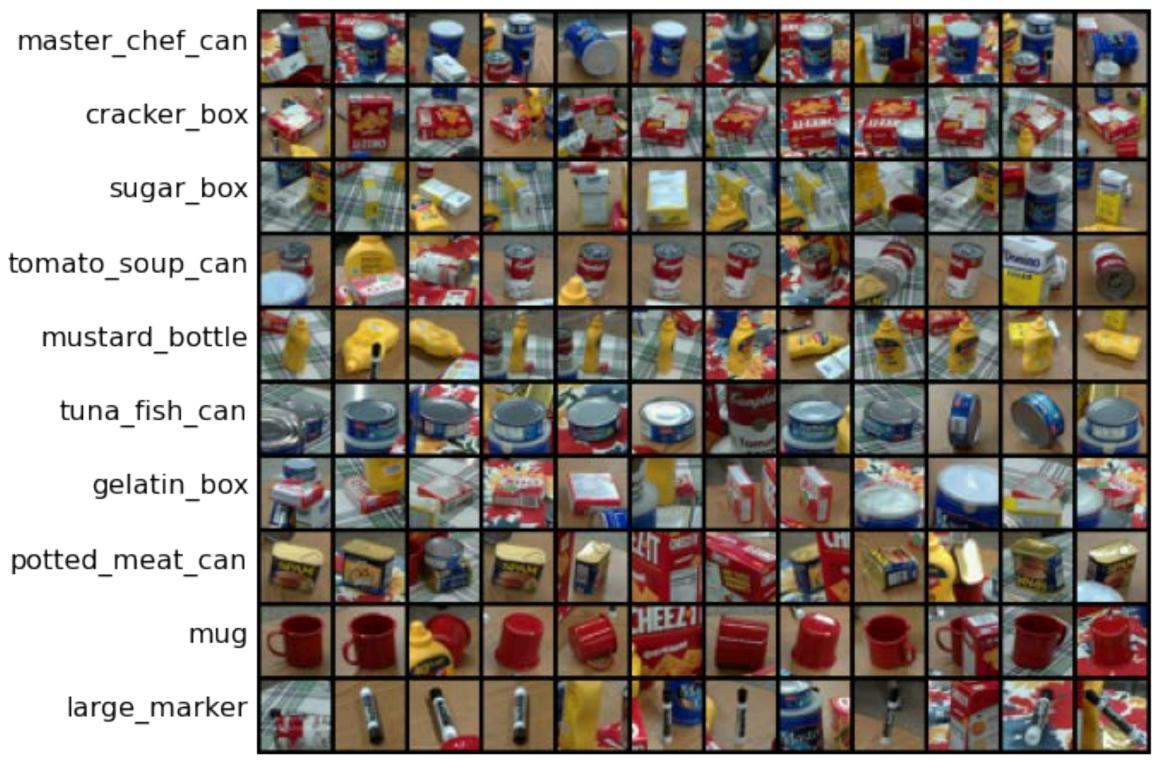


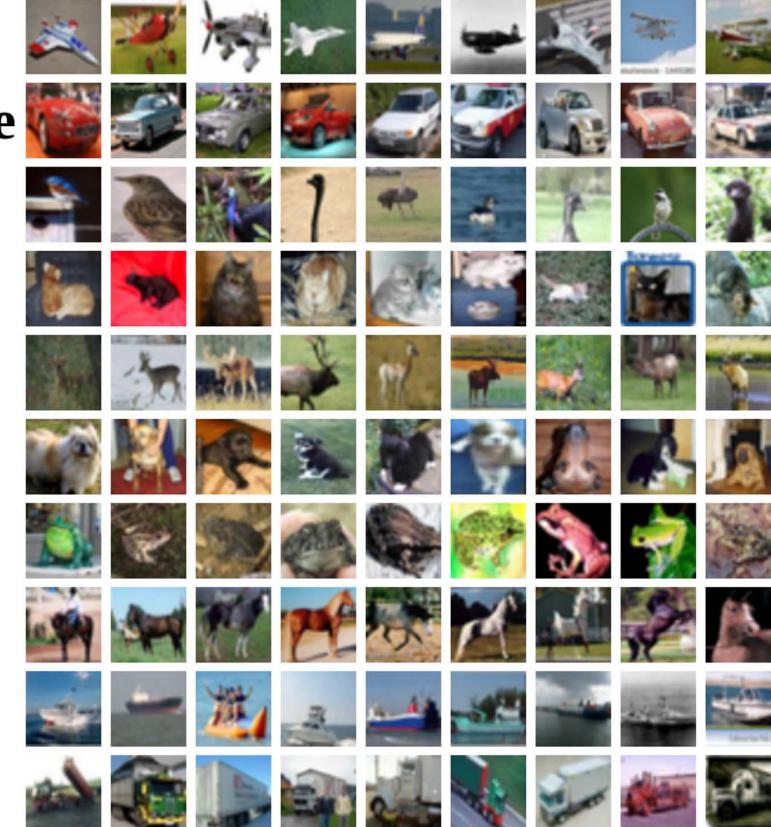
Image Classification Datasets—MNIST

10 classes: Digits 0 to 928x28 grayscale images50k training images10k test images

Due to relatively small size, results on MNIST often do not hold on more complex datasets

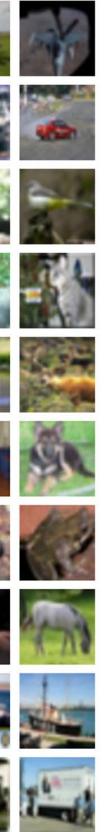
Image Classification Datasets—CIFAR10

airplane automobile 🌆 bird cat deer dog frog horse ship



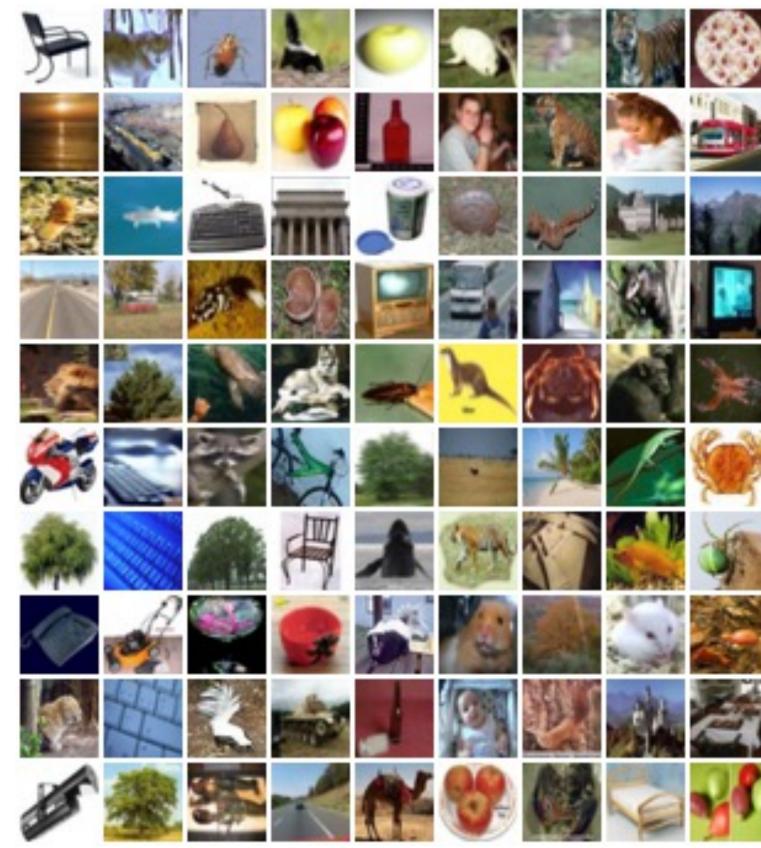
Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

truck



10 classes 32x32 RGB images **50k** training images (5k per class) **10k** test images (1k per class)

Image Classification Datasets—CIFAR100



Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

100 classes 32x32 RGB images **50k** training images (500 per class) **10k** test images (100 per class)

20 superclasses with 5 classes each:

Aquatic mammals: beaver, dolphin, otter, seal, whale

Trees: maple, oak, palm, pine, willow

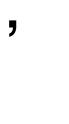


Image Classification Datasets – ImageNet

flamingo

ruffed grouse

Egyptian cat

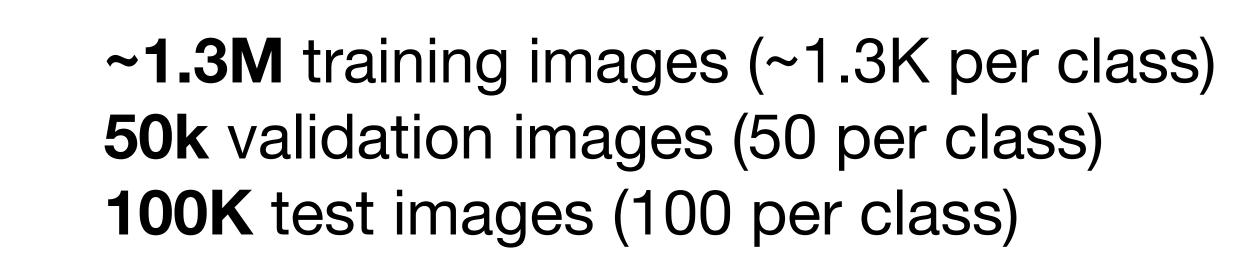
quail

lynx

dalmatiar

keeshond miniature schnauzer standard schnauzer giant schnauzer

Deng et al., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR, 2009. Russakovsky et al., "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015.



1000 classes

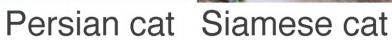
Performance metric: **Top 5 accuracy** Algorithm predicts 5 labels for each image, one must be right

Image Classification Datasets—ImageNet

flamingo

ruffed grouse

Egyptian cat



quail

lynx

dalmatiar

keeshond miniature schnauzer standard schnauzer giant schnauzer

Deng et al., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR, 2009. Russakovsky et al., "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015.

1000 classes

~1.3M training images (~1.3K per class) **50k** validation images (50 per class) **100K** test images (100 per class) test labels are secret!

Images have variable size, but often resized to **256x256** for training

There is also a 22K category version of ImageNet, but less commonly used

Image Classification Datasets—MIT Places

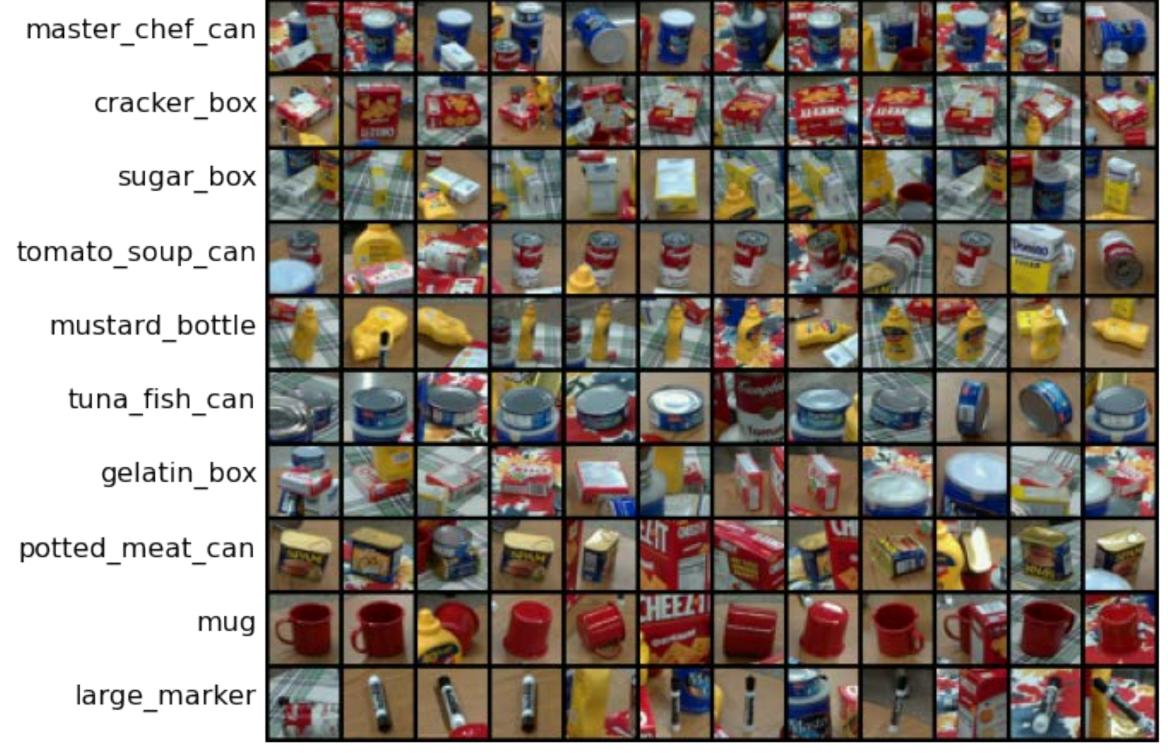
365 classes of different scene types

~8M training images **18.25K** val images (50 per class) **328.5K** test images (900 per class)

Images have variable size, but often resized to 256x256 for training

Image Classification Datasets—PROPS

Progress Robot Object Perception Samples Dataset



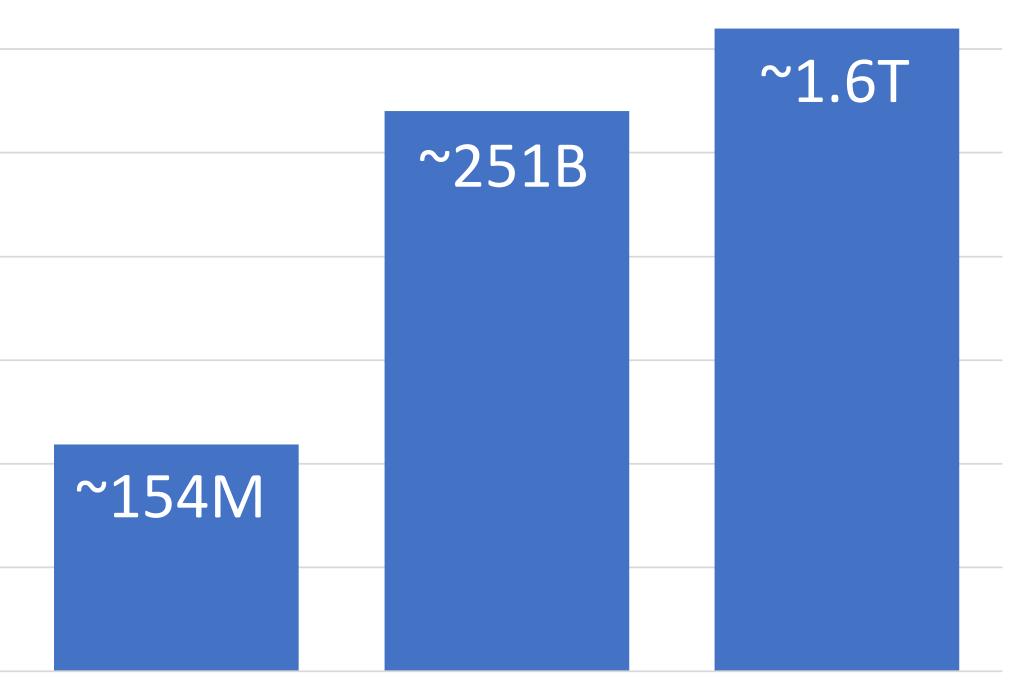
Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

10 classes 32x32 RGB images **50k** training images (5k per class) **10k** test images (1k per class)

		PROPS
1.E+06	MNIST	CIFAR10
1.E+07	~47M	
1.E+08		~154M
1.E+09		
1.E+10		
1.E+11		
1.E+12		
1.E+13		

DR

Classification Datasets—Number of Training Pixels



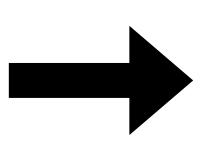
ImageNet CIFAR100 Places365

def train(images, labels): # Machine learning! return model

def predict(model, test_images): # Use model to predict labels return test_labels

First Classifier—Nearest Neighbor

Memorize all data and labels



Predict the label of the most similar training image

Distance Metric to Compare Images

L1 distance: d_1

	test i	mage		
56	32	10	18	
90	23	128	133	
24	26	178	200	
2	0	<mark>255</mark>	220	



a annago			
10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

$$I_{1}(I_{1}, I_{2}) = \sum_{p} |I_{1}^{p} - I_{2}^{p}|$$

pixel-wise absolute value differences

46	12	14	1	
82	13	39	33	add
12	10	0	30	→ 456
2	32	22	<mark>108</mark>	


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
```

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

import numpy as np

```
class NearestNeighbor:
 def __init__(self):
    pass
```

```
def train(self, X, y):
  """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
  self.Xtr = X
  self.ytr = y
```

```
def predict(self, X):
```

```
num test = X.shape[0]
```

```
Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
```

for i in xrange(num test):

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

""" X is N x D where each row is an example we wish to predict label for """

lets make sure that the output type matches the input type

Memorize training data


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
   for i in xrange(num test):
```

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

For each test image: Find nearest training image Return label of nearest image


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
```

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Q: With N examples how fast is training?

A: O(1)


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
```

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Q: With N examples how fast is training?

A: O(1)

Q: With N examples how fast is testing?

A: O(N)


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
```

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Q: With N examples how fast is training?

A: O(1)

Q: With N examples how fast is testing?

A: O(N)

This is a problem: we can train slow offline but need fast testing!


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
   pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
```

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

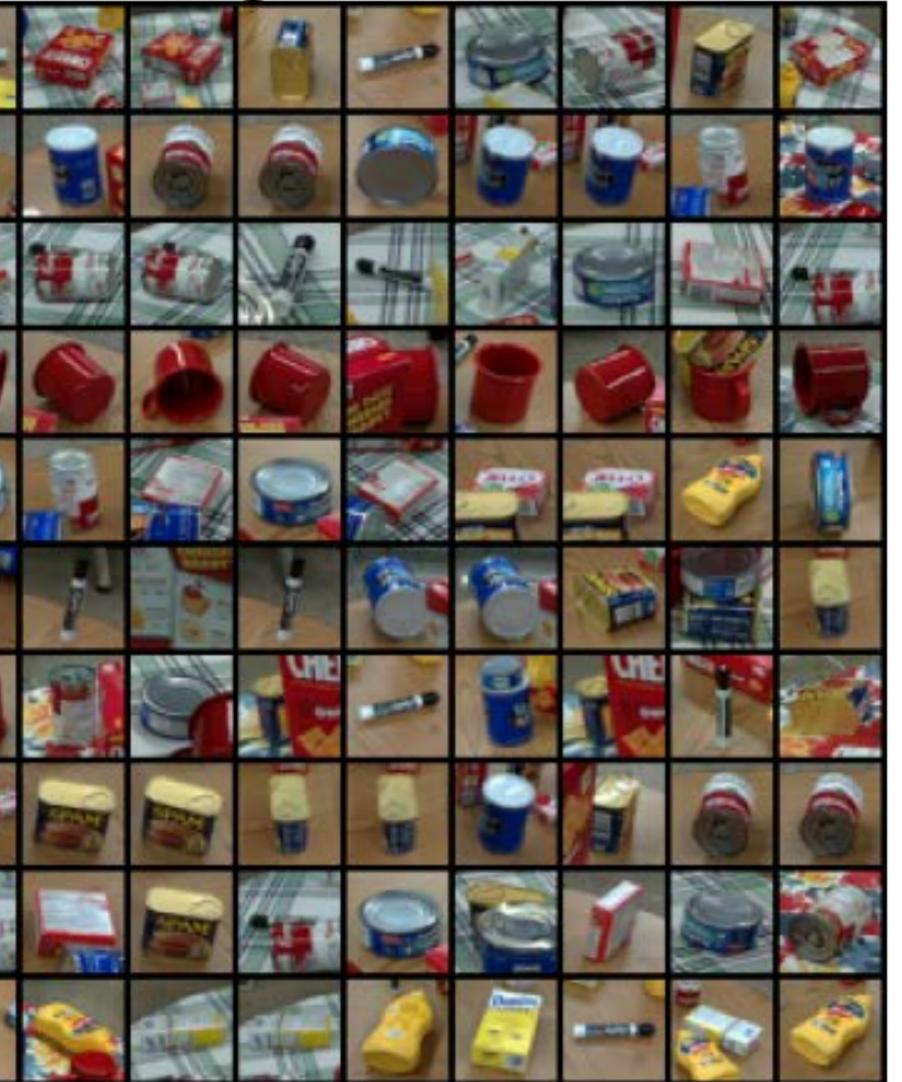
return Ypred

There are many methods for fast / approximate nearest neighbors

e.g. github.com/facebookresearch/faiss

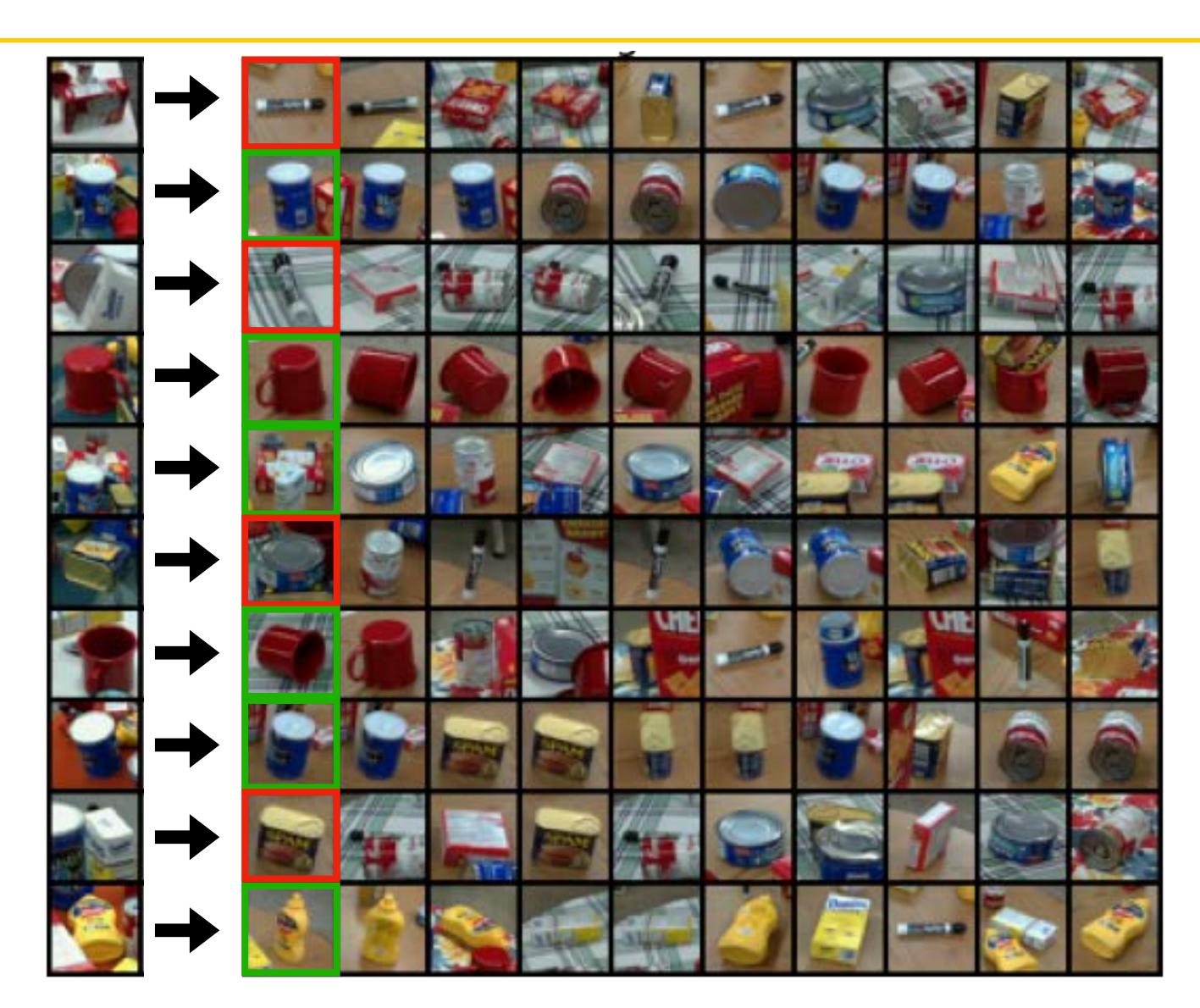
DR

What does this look like?

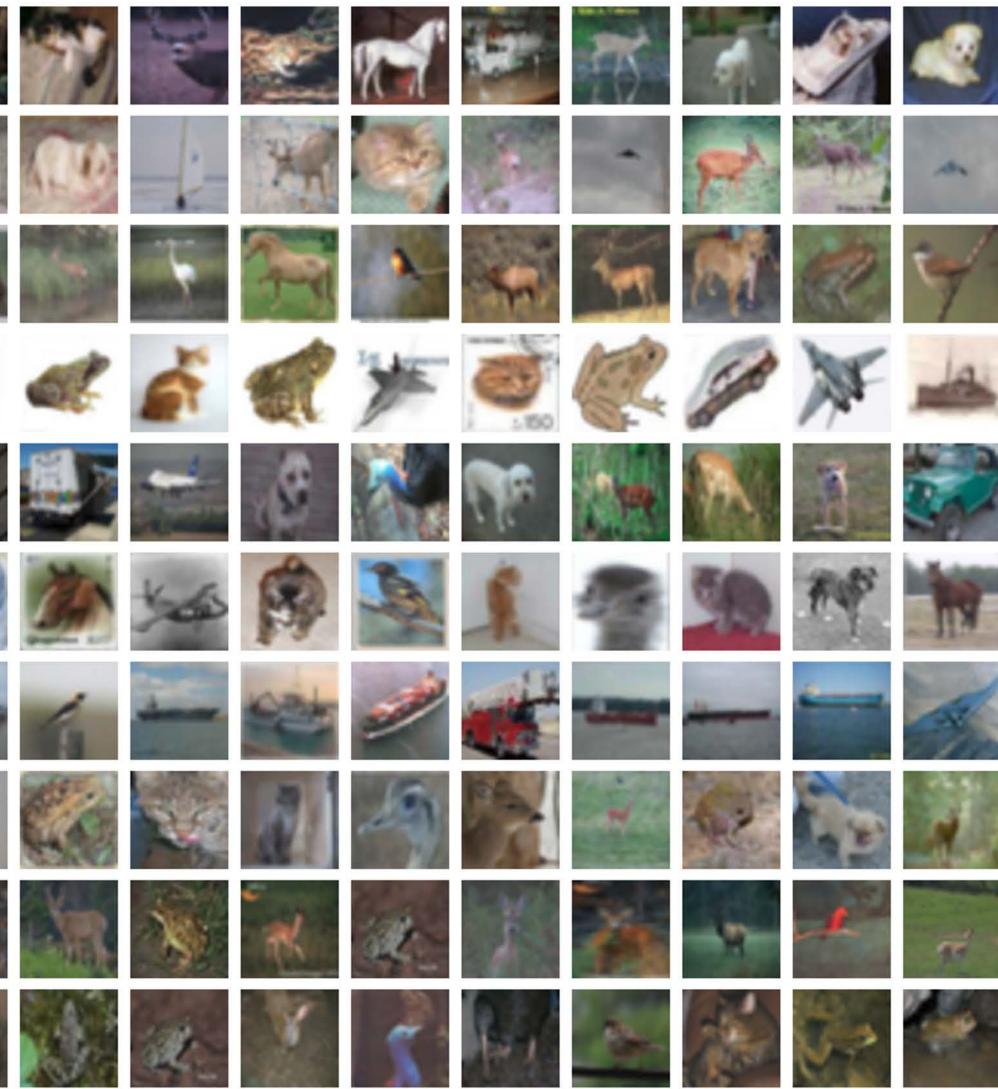


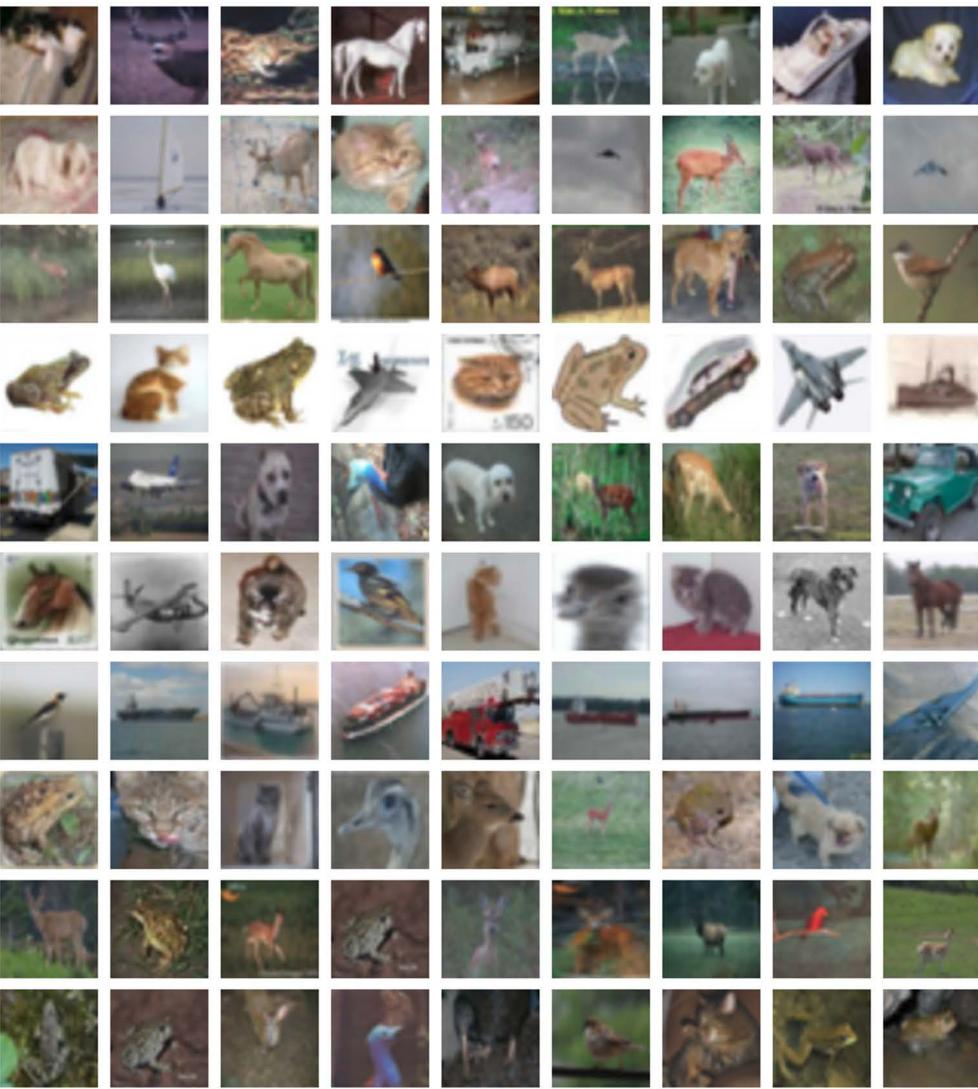
What does this look like?

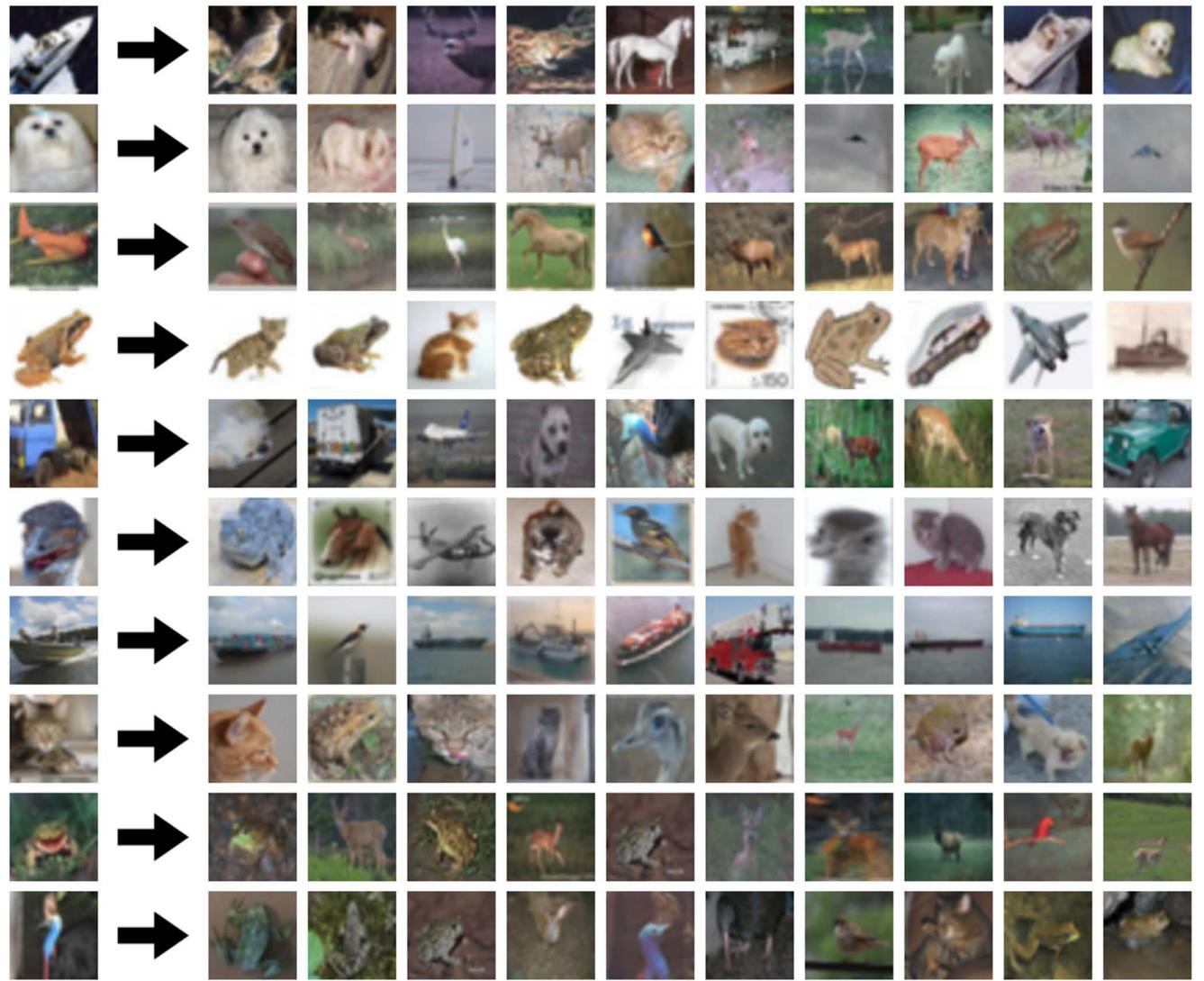
PROPS dataset is instance-level



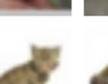
What does this look like?

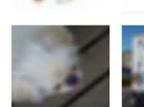






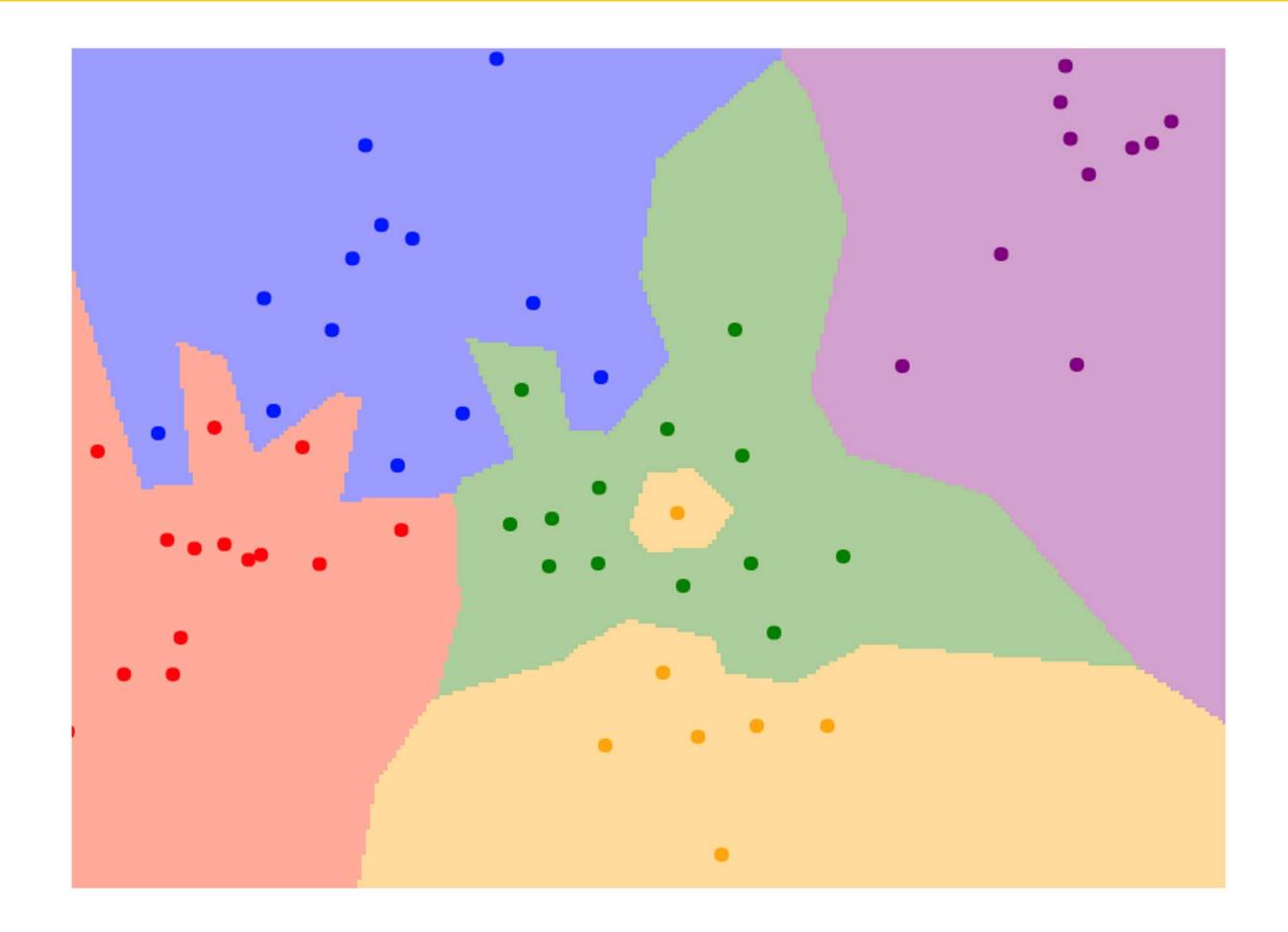
DR



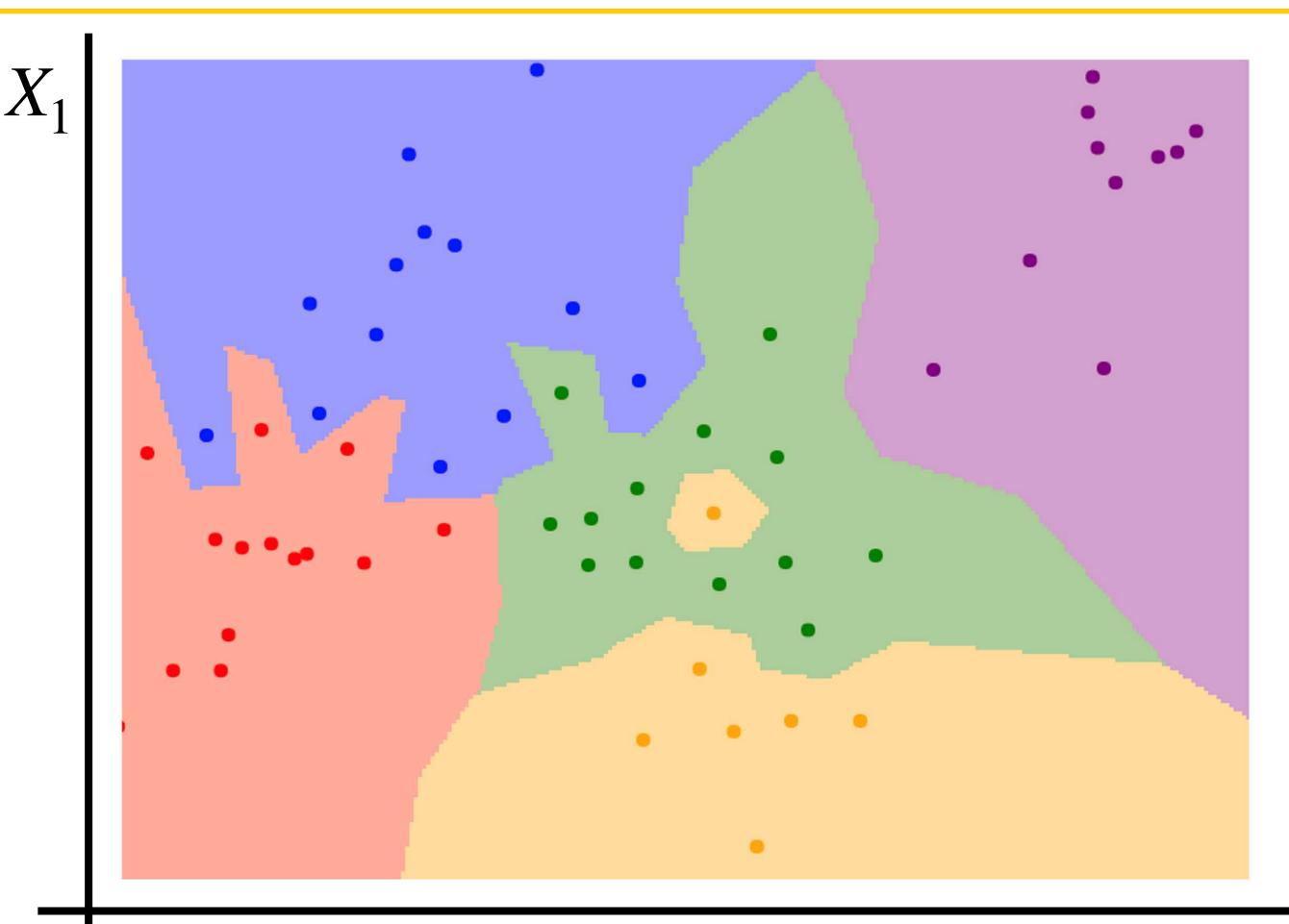


What does this look like?

CIFAR10 dataset is category-level



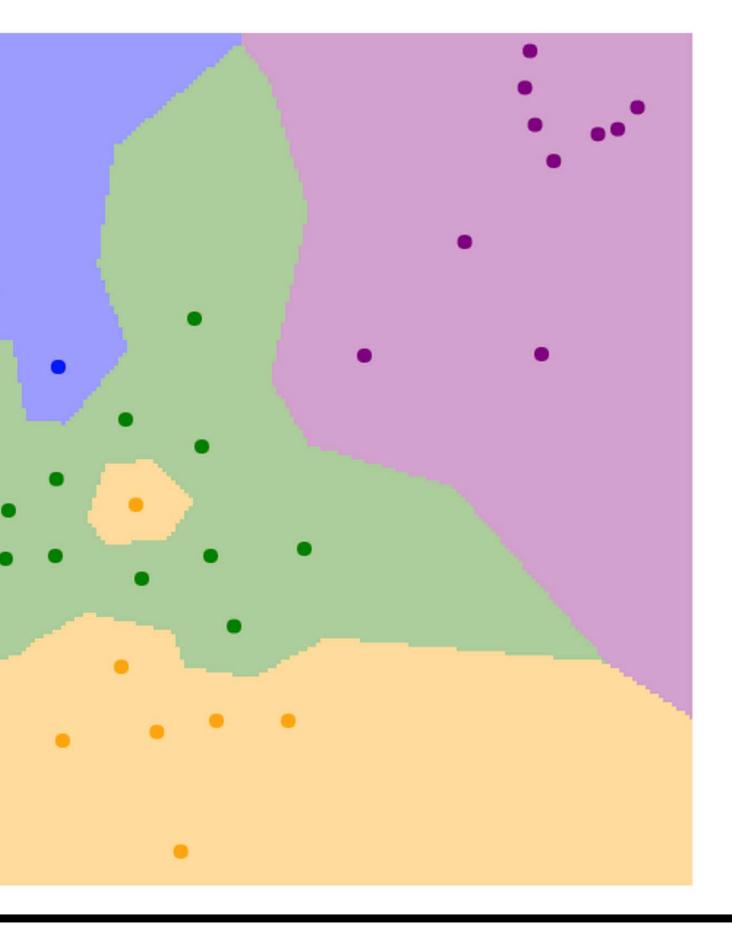
Nearest neighbors in two dimensions



Nearest neighbors in two dimensions

 X_1

Points are training examples; colors give training labels

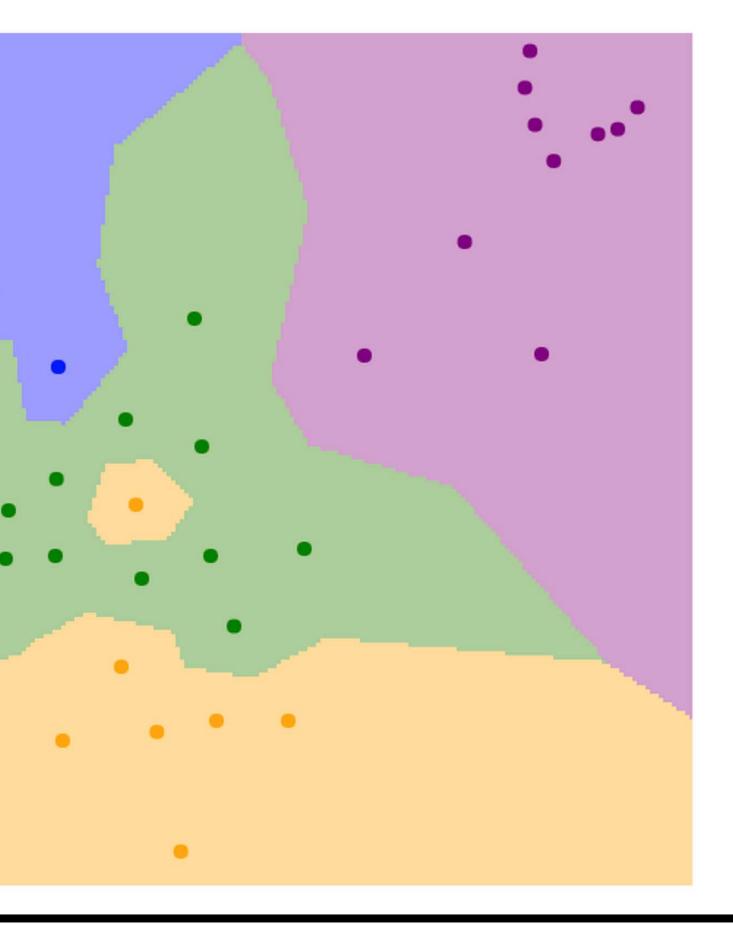


 X_0

Nearest neighbors in two dimensions

Points are training examples; colors give training labels

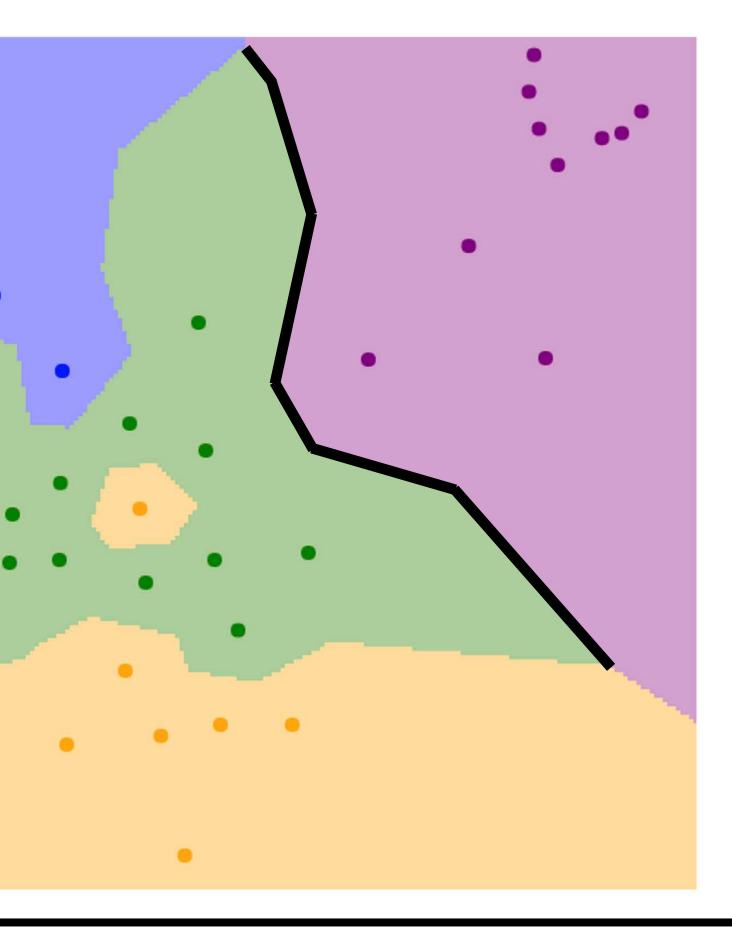
Background colors give the category a test point would be assigned



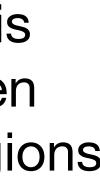
Nearest neighbors in two dimensions

Points are training examples; colors give training labels.

Background colors give the category a test point would be assigned



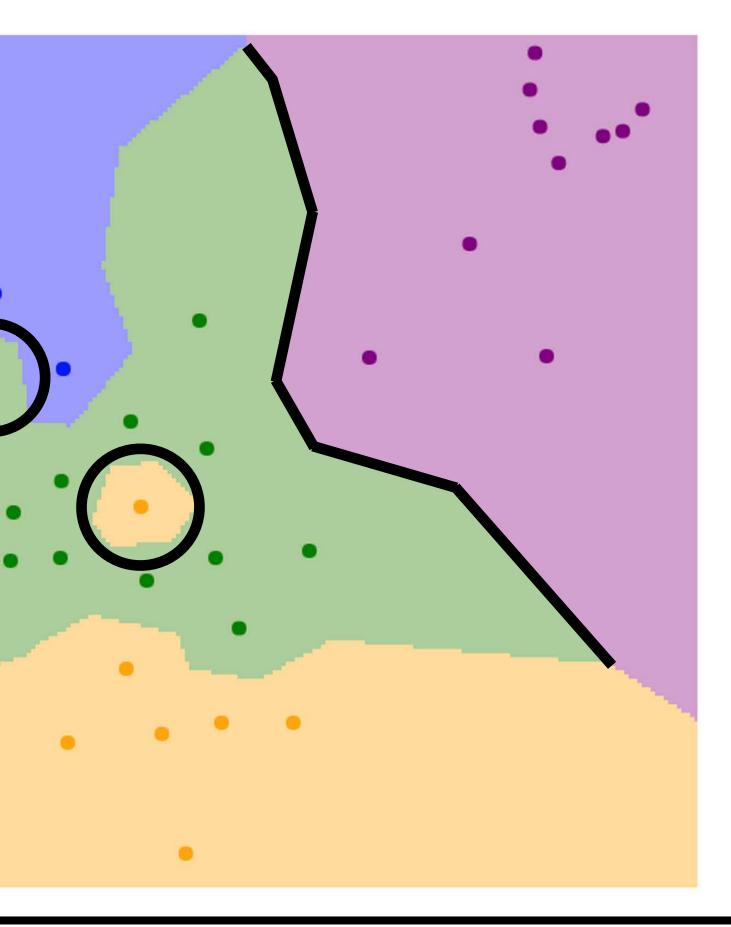
Decision boundary is the boundary between two classification regions



Nearest neighbors in two dimensions

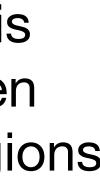
Points are training examples; colors give training labels.

Background colors give the category a test point would be assigned



Decision boundary is the boundary between two classification regions

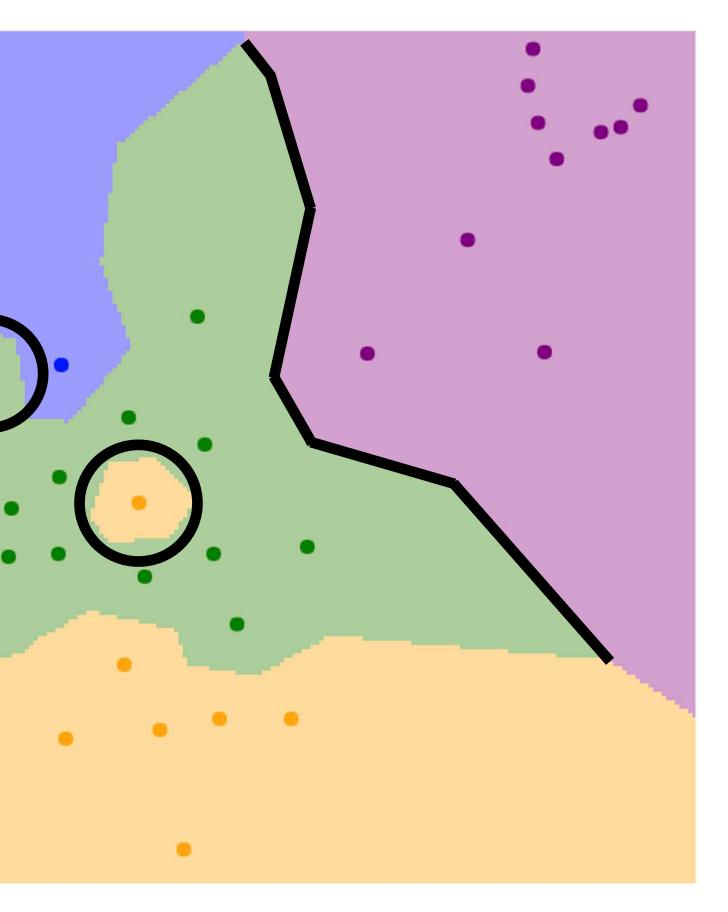
Decision boundaries can be noisy; affected by outliers



Nearest neighbors in two dimensions

Points are training examples; colors give training labels.

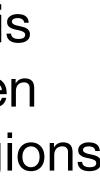
Background colors give the category a test point would be assigned



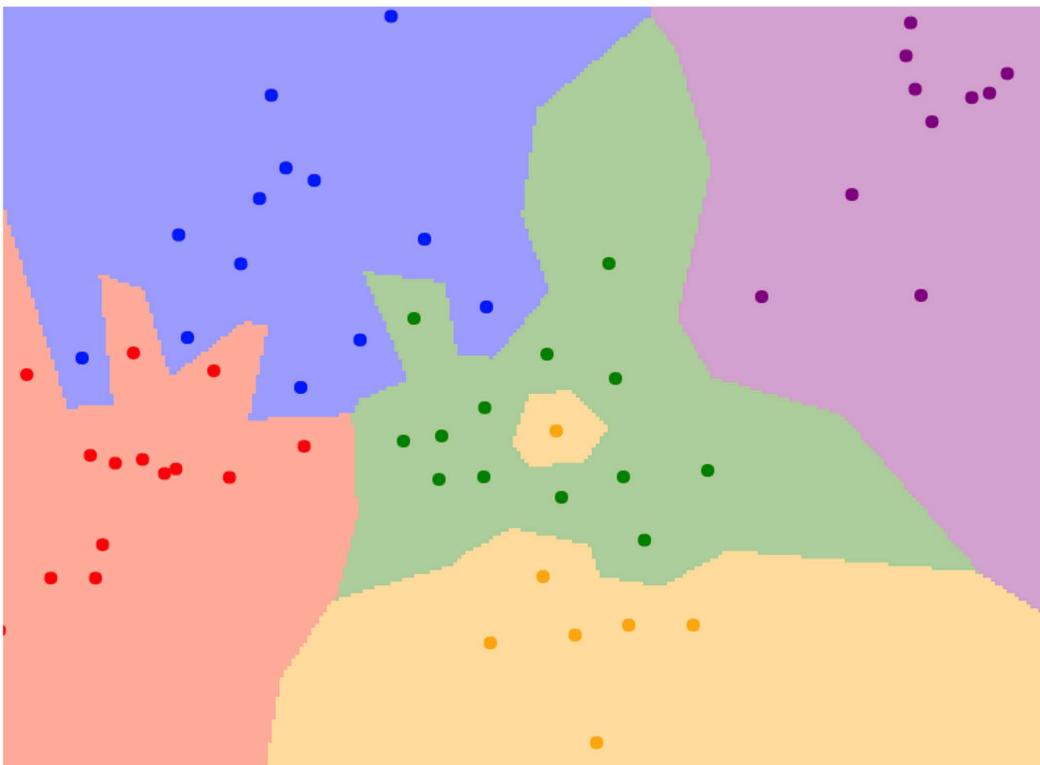
Decision boundary is the boundary between two classification regions

Decision boundaries can be noisy; affected by outliers

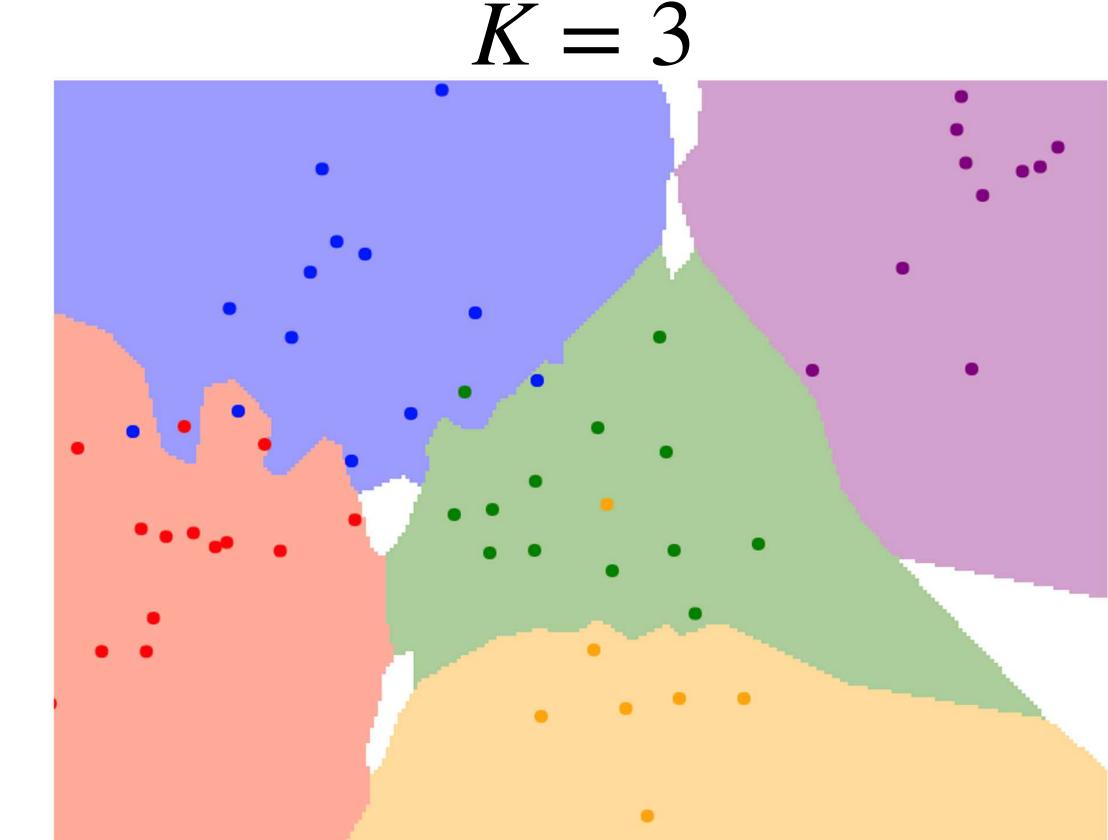
How to smooth the decision boundaries? Use more neighbors!

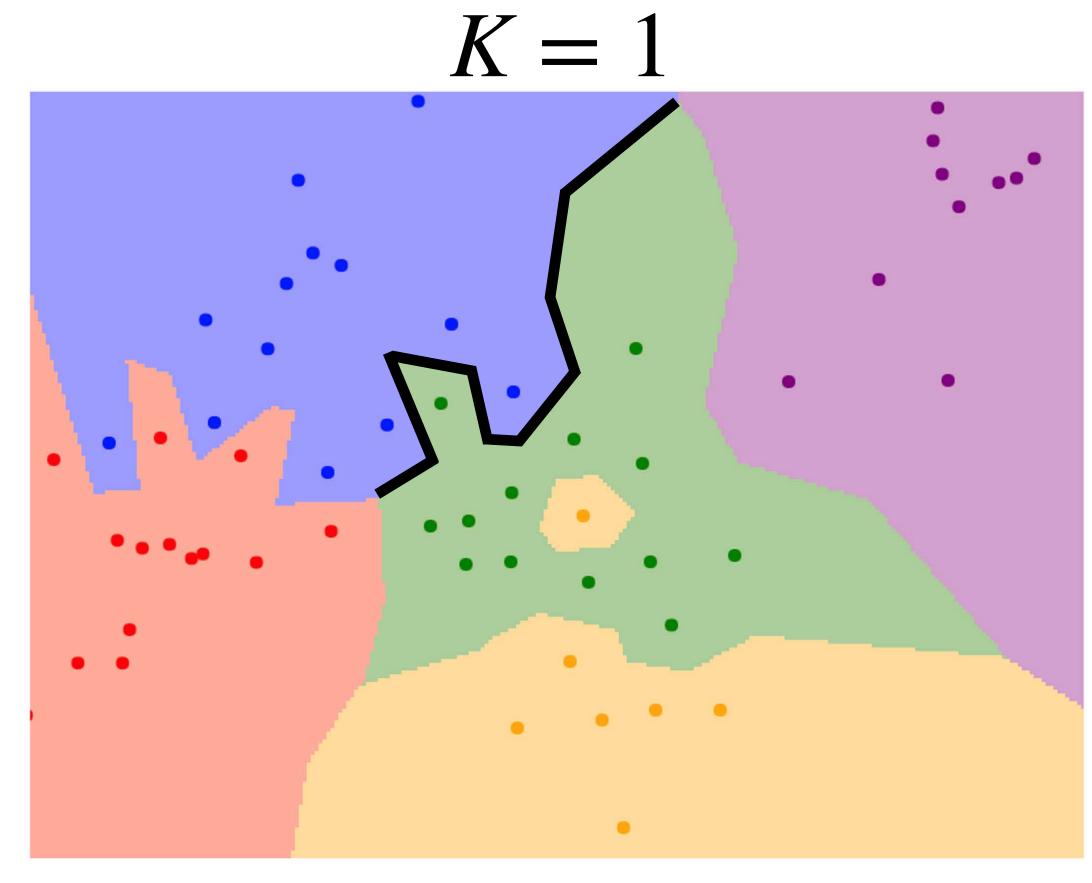


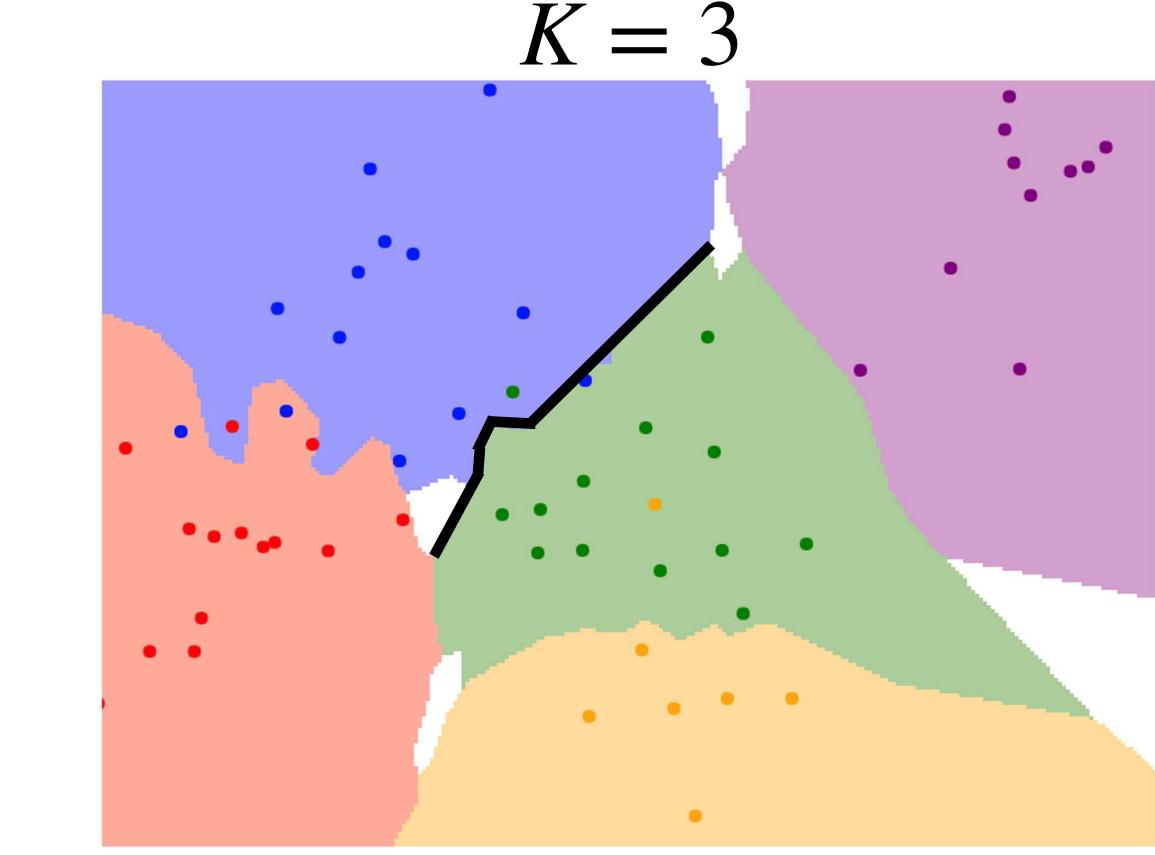
K = 1



Instead of copying label from nearest neighbor, take majority vote from K closest training points

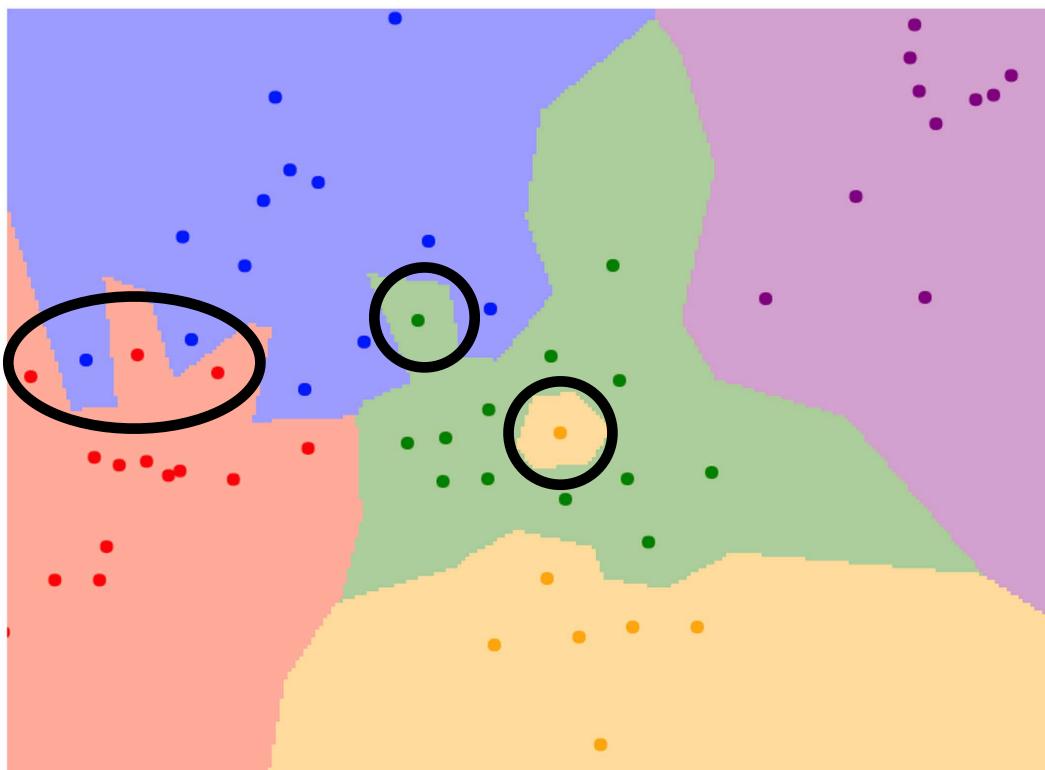


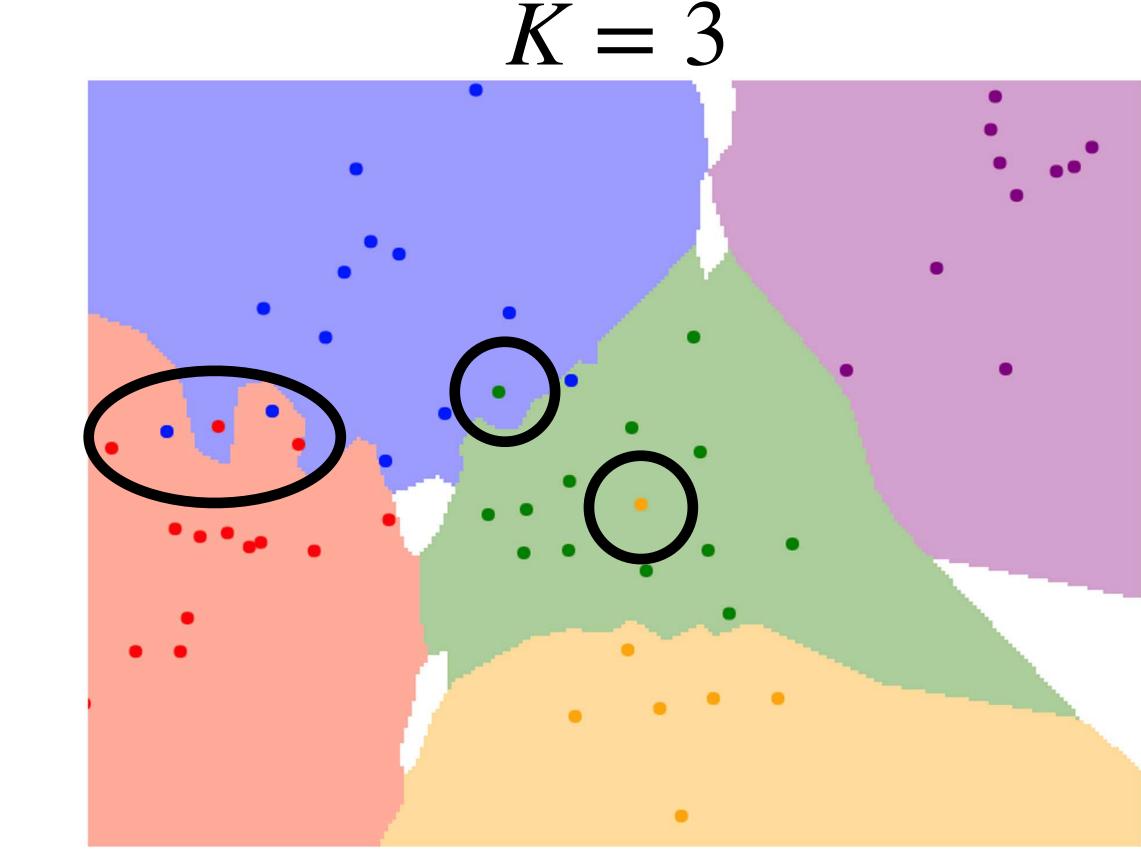




Using more neighbors helps smooth out rough decision boundaries

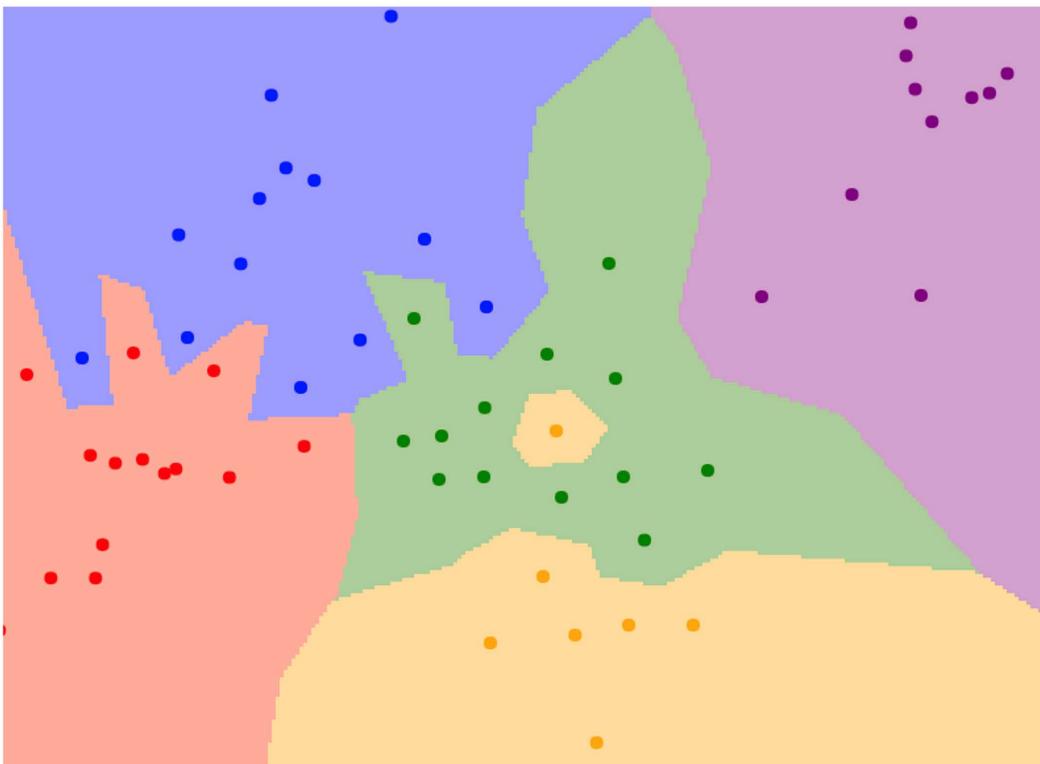
K = 1



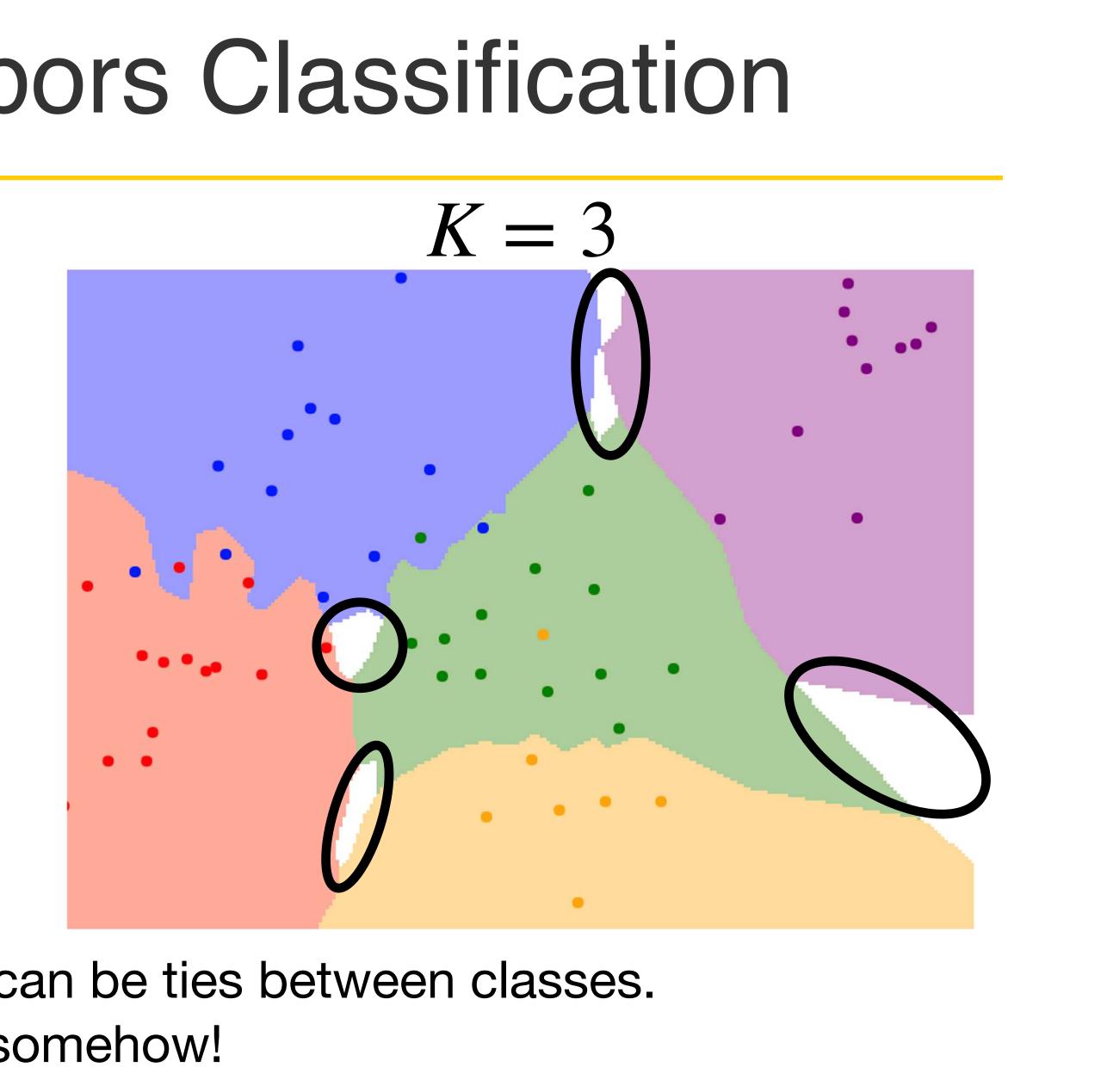


Using more neighbors helps reduce the effect of outliers

K = 1

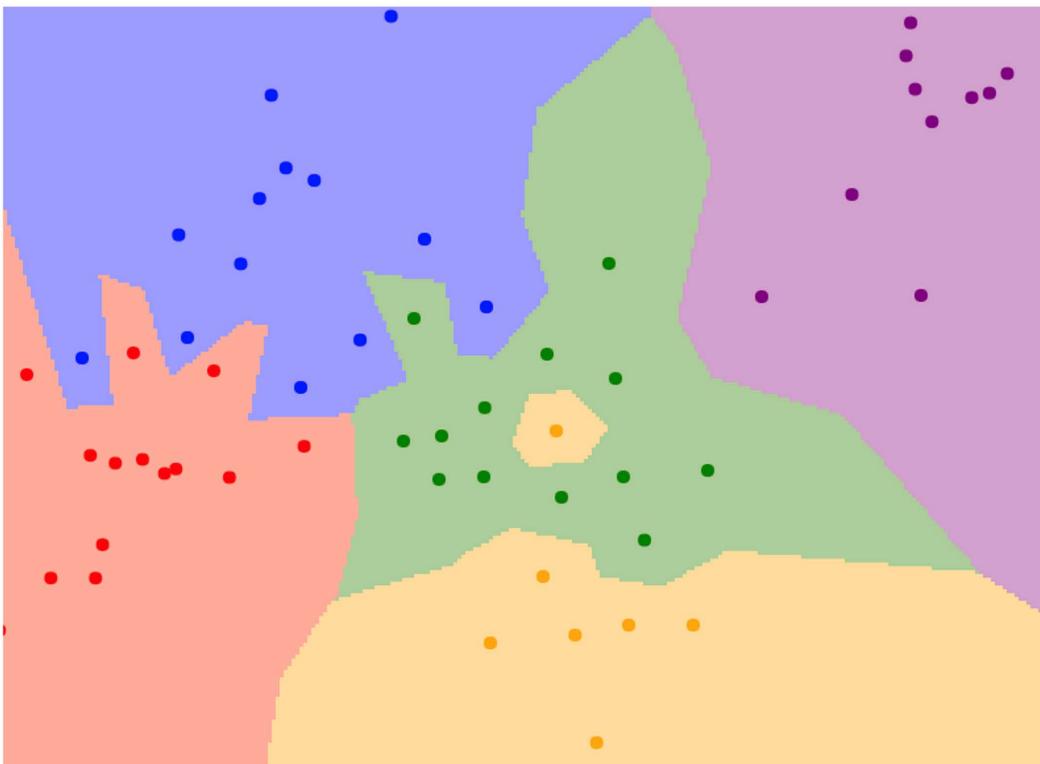


Need to break ties somehow!

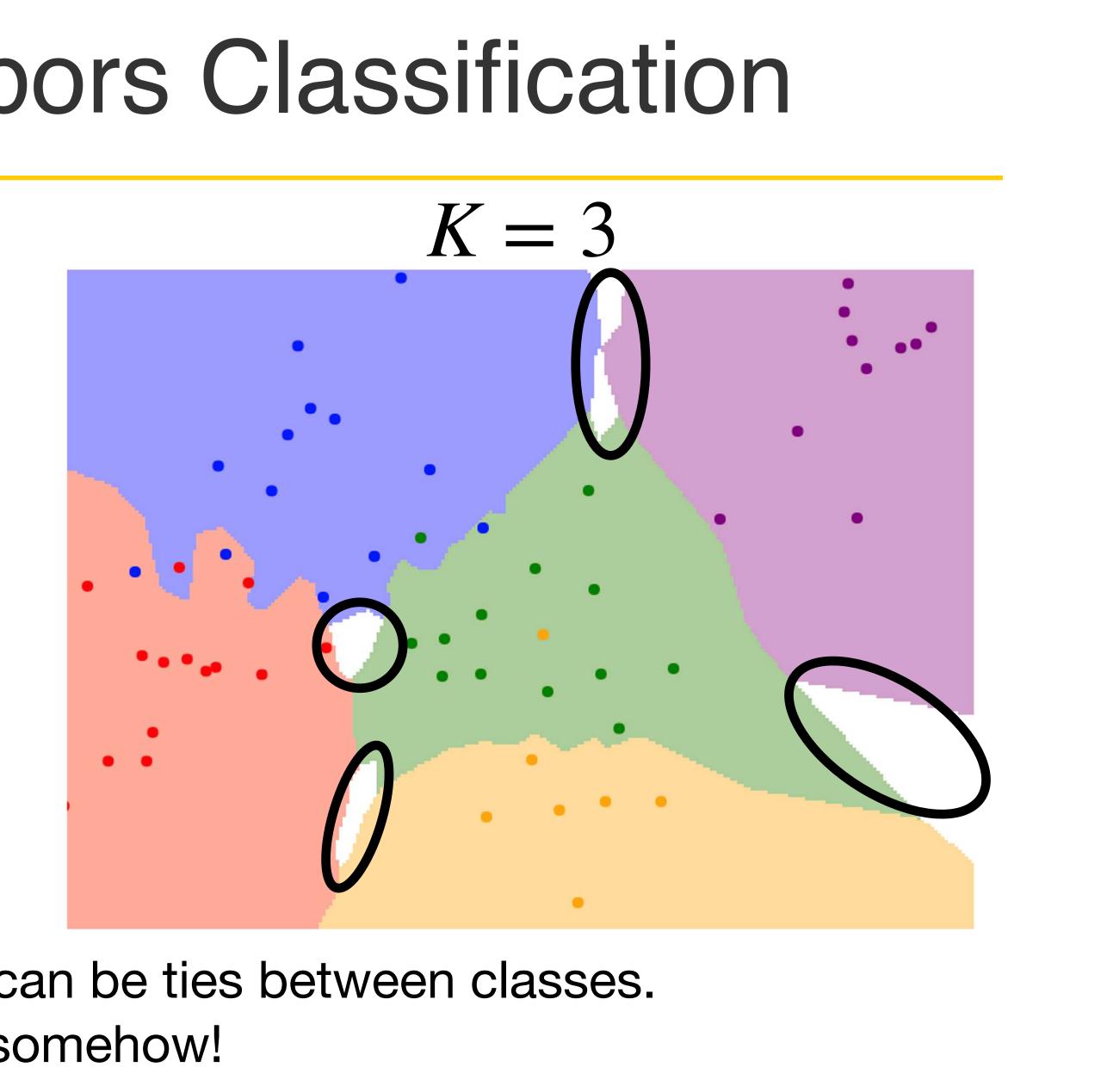


When K > 1 there can be ties between classes.

K = 1



Need to break ties somehow!



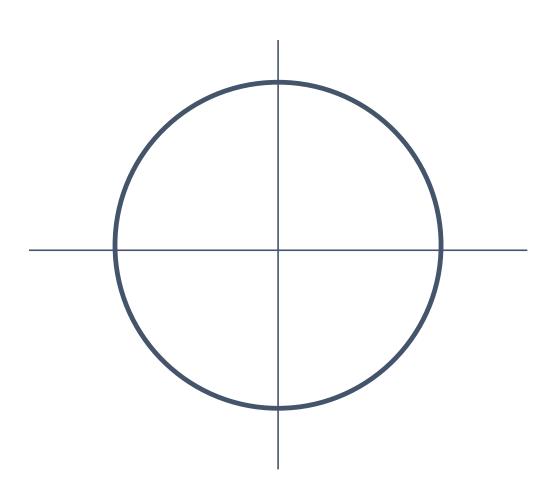
When K > 1 there can be ties between classes.

K-Nearest Neighbors – Distance Metric

L1 (Manhattan) distance $d_1(I_1, I_2) = \sum |I_1^p - I_2^p|$

L2 (Euclidean) distance

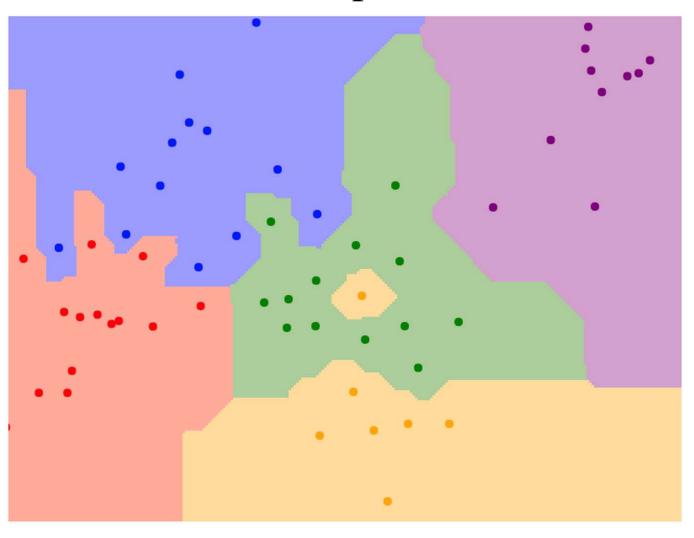
$$d_2(I_1, I_2) = (\sum_{p} (I_1^p - I_2^p)^2)^{\frac{1}{2}}$$



K-Nearest Neighbors – Distance Metric

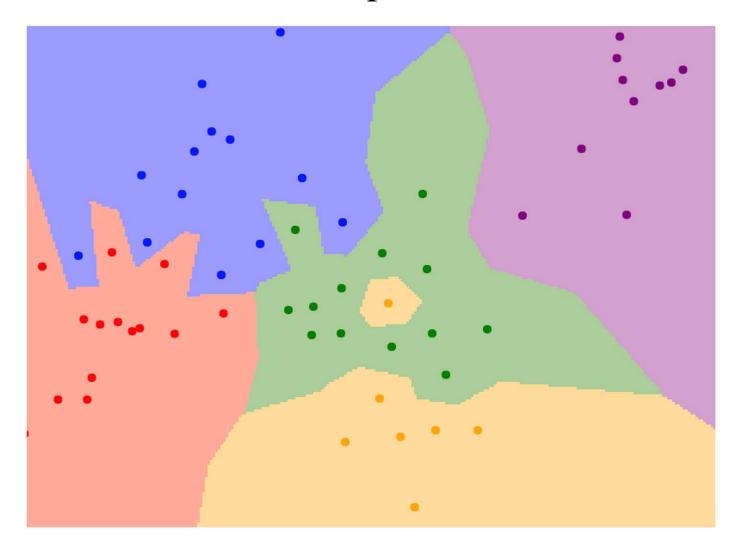
L1 (Manhattan) distance

 $d_1(I_1, I_2) = \sum |I_1^p - I_2^p|$



L2 (Euclidean) distance

 $d_2(I_1, I_2) = (\sum_{1} (I_1^p - I_2^p)^2)^{\frac{1}{2}}$



K = 1

K-Nearest Neighbors – Distance Metric

With the right choice of distance metric, we can apply K-Nearest Neighbors to any type of data!

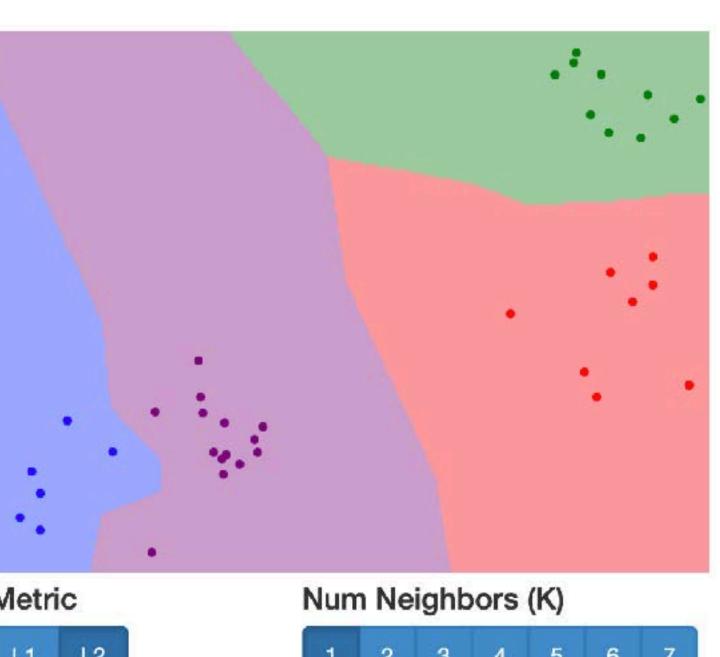
K-Nearest Neighbors – Web Demo

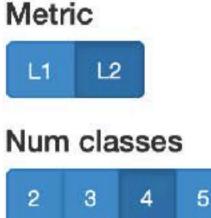
Interactively move points around and see decision boundaries change

Observe results with L1 vs L2 metrics

Observe results with changing number of training points and value of K

ision.stanford.edu/teaching/cs231n-demos/knn/





0						
1	2	3	4	5	6	7
Nun	n po	ints				

Hyperparameters

What is the best value of K to use? What is the best **distance metric** to use?

Hyperparameters

What is the best value of K to use? What is the best **distance metric** to use?

These are examples of **hyperparameters**: choices about our learning algorithm that we don't learn from the training data Instead we set them at the start of the learning process

Hyperparameters

What is the best value of K to use? What is the best **distance metric** to use?

These are examples of **hyperparameters**: choices about our learning algorithm that we don't learn from the training data Instead we set them at the start of the learning process

Very problem-dependent. In general need to try them all and observe what works best for our data.

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train

BAD: K = 1 always works perfectly on training data

Your Dataset

	test
--	------

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

Your

Idea #2: Split data into train and test, cl hyperparameters that work best on test data

train

BAD: K = 1 always works perfectly on training data

h	OOS	9
┸		_

BAD: No idea how algorithm will perform on new data

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

Your

Idea #2: Split data into train and test, characters that work best on test

train

Idea #3: Split data into train, val, and te hyperparameters on val and evaluate of

train

BAD: K = 1 always works perfectly on training data

r Dataset				
choose st data		D : No idea how algorithm Il perform on new data		
		test		
est ; choose on test	Better!			
	validation	test		

Setting Hyperparameters

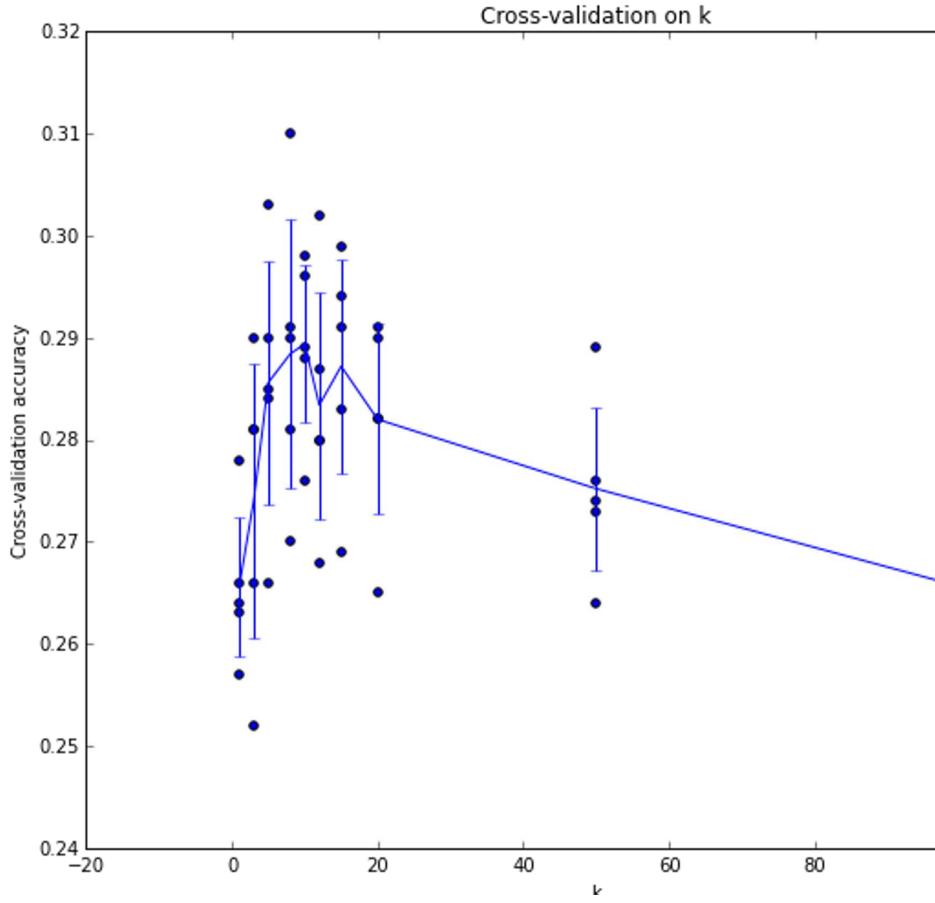
Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but (unfortunately) not used too frequently in deep learning

DR

Your Dataset



DR

Setting Hyperparameters

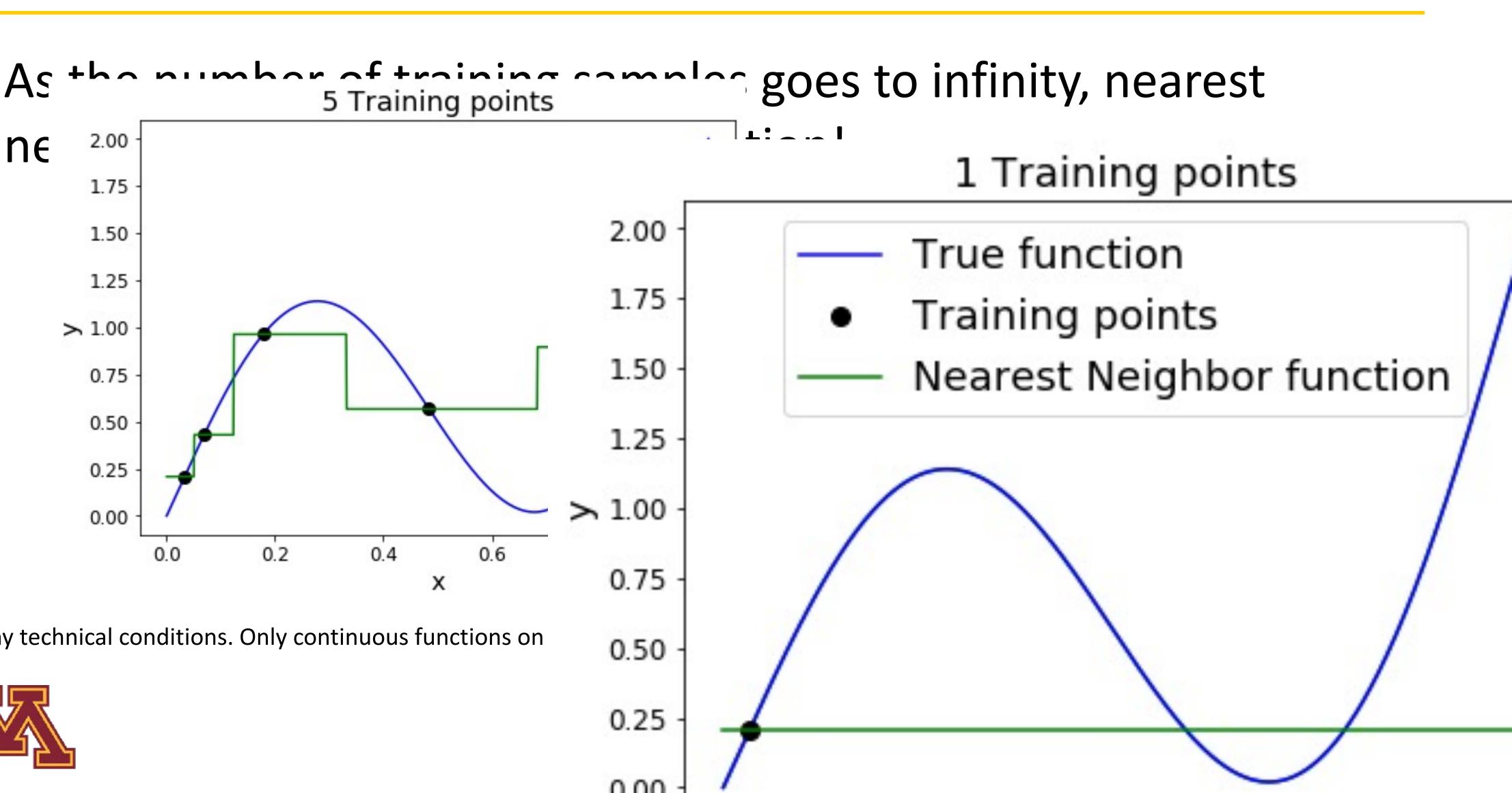
Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

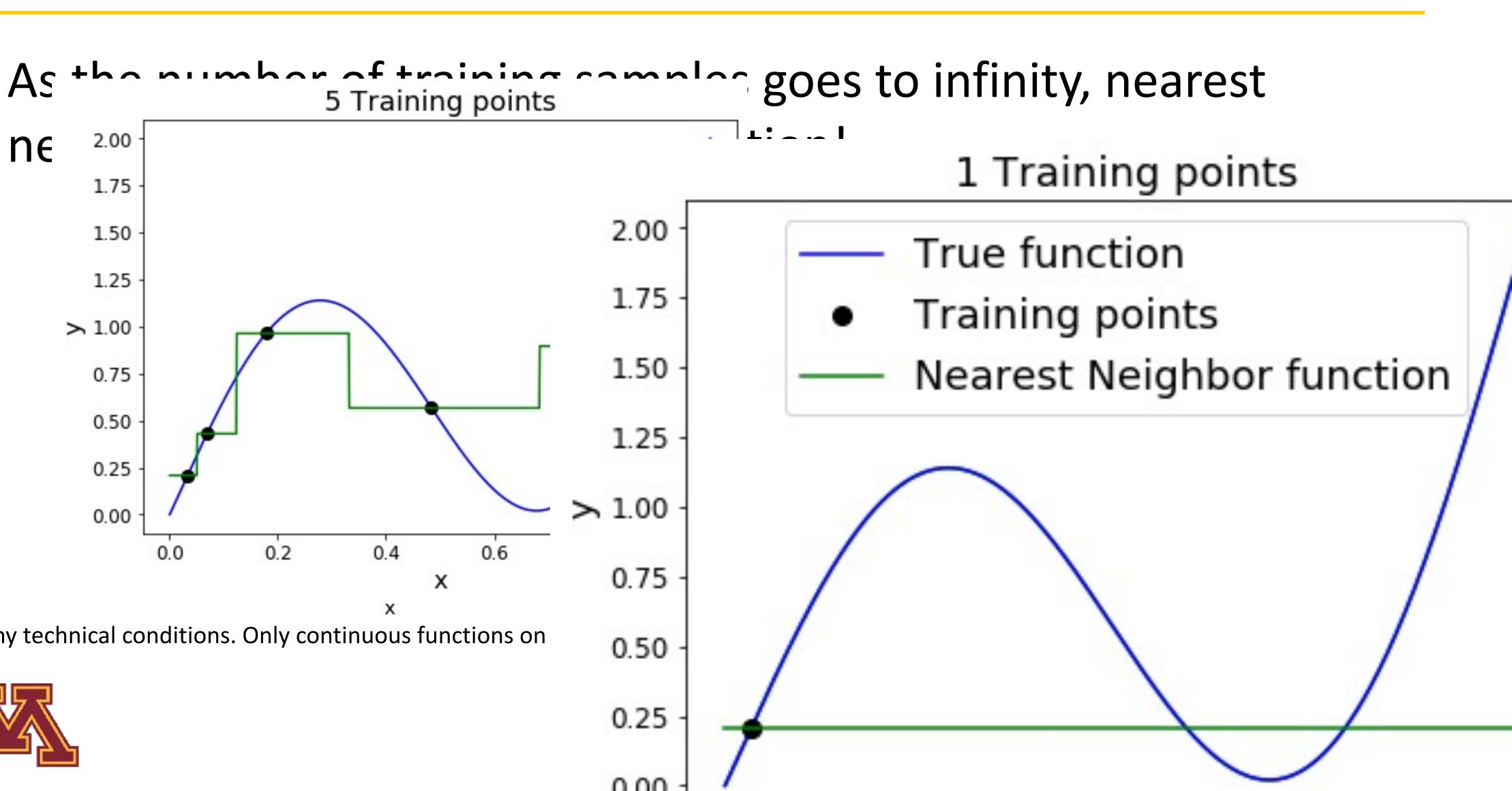
The line goes through the mean, bars indicated standard deviation

(Seems that k ~ 7 works best for this data)

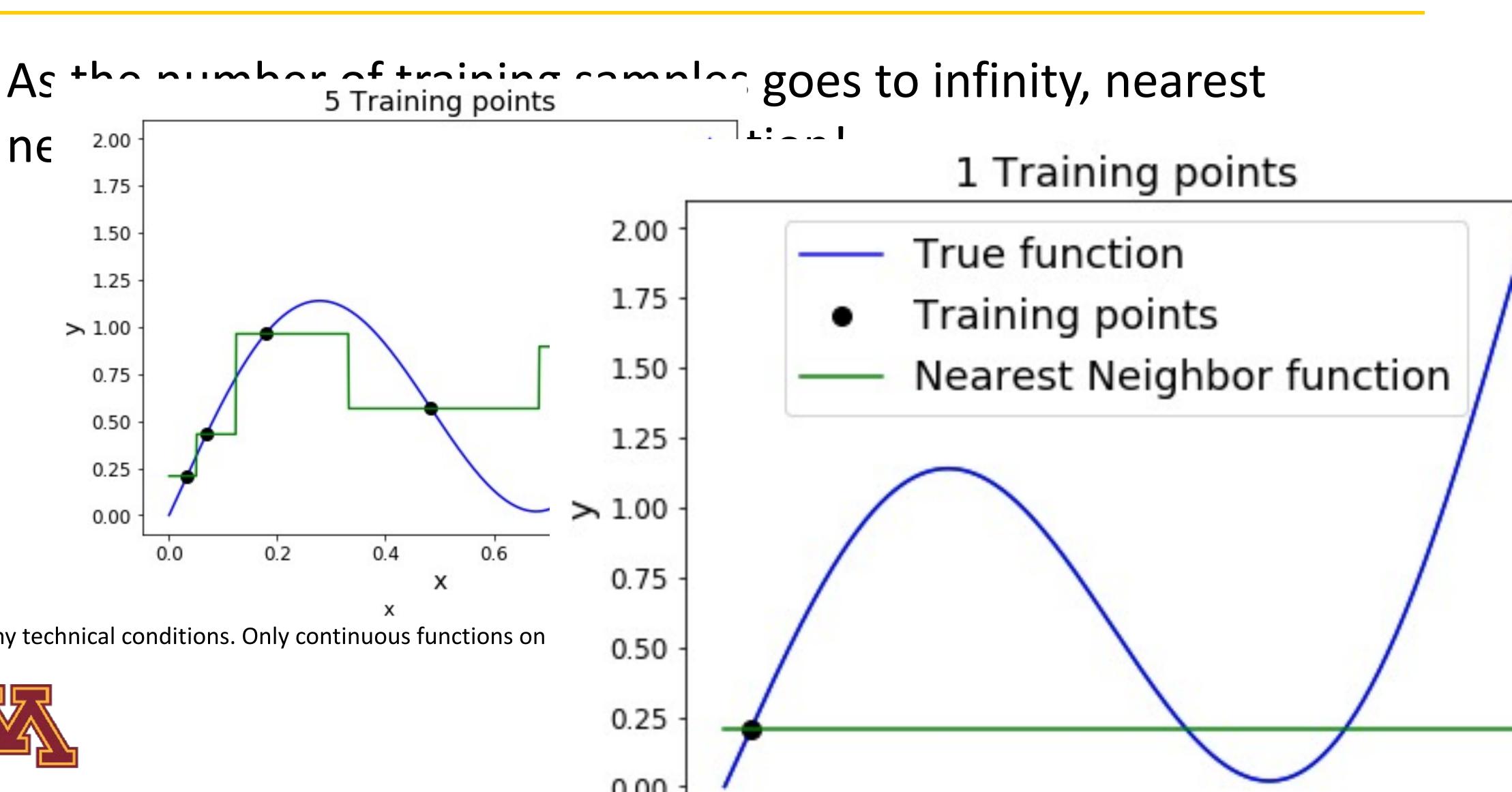
120



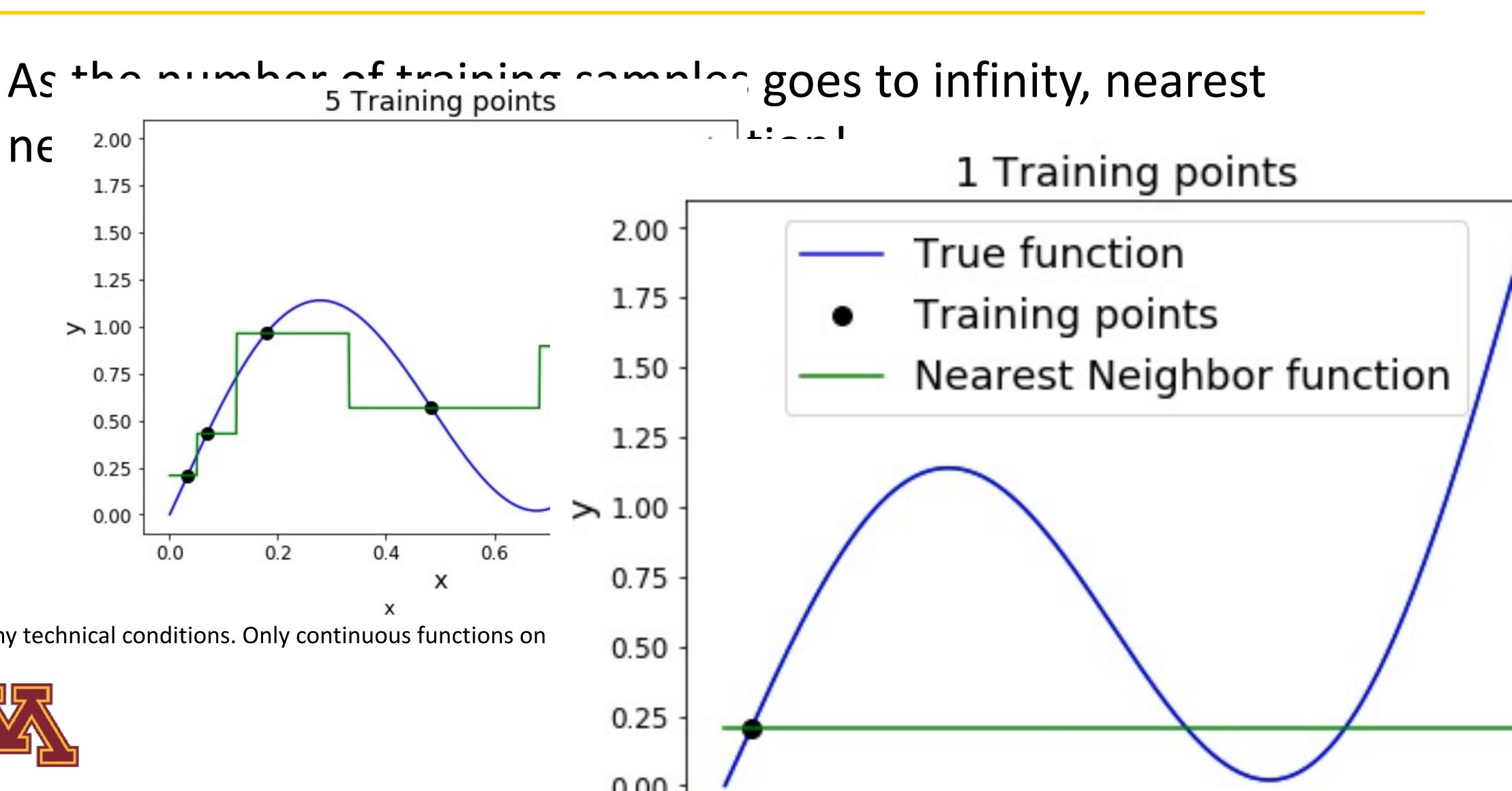
DR



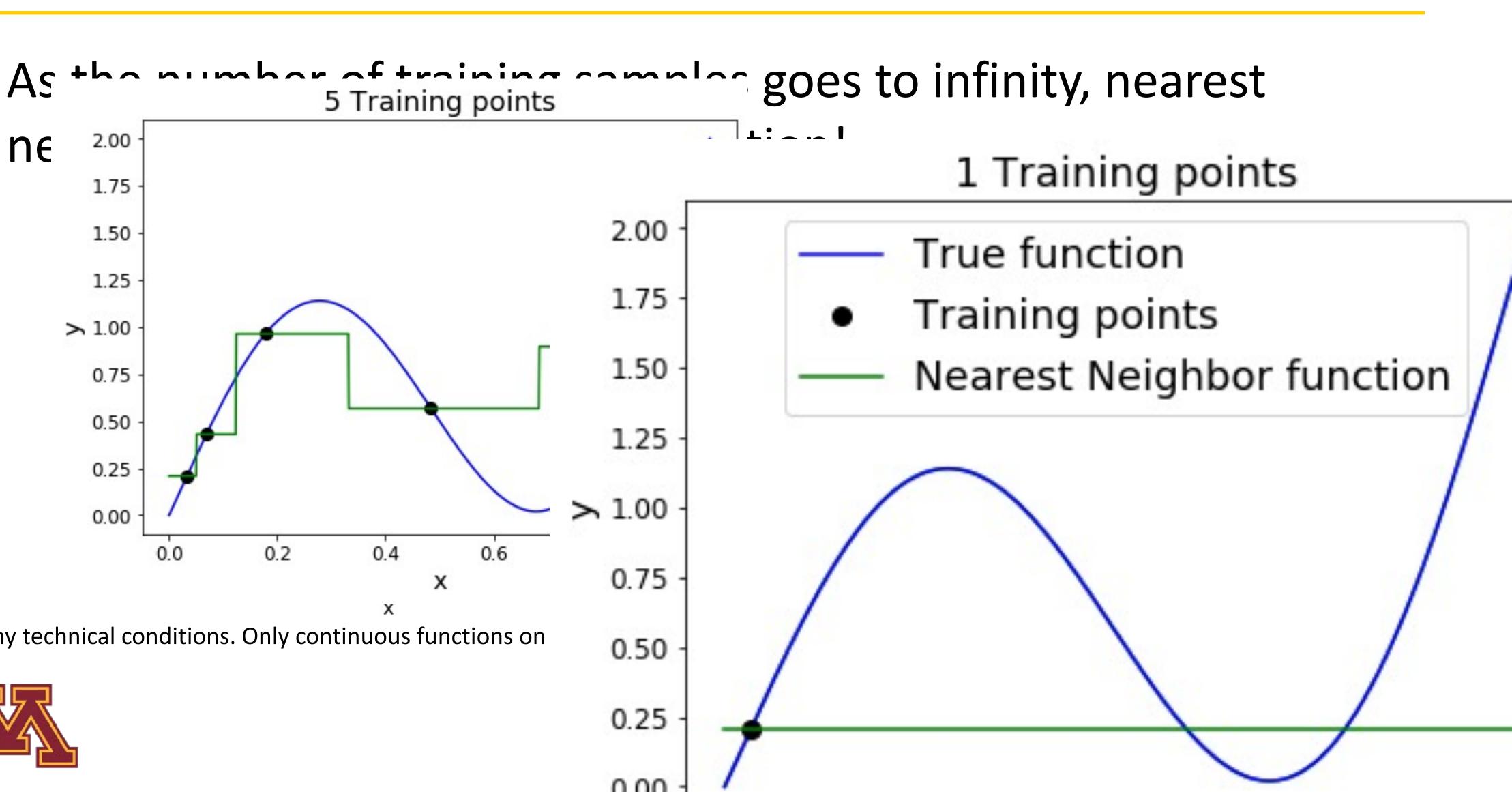
DR



DR



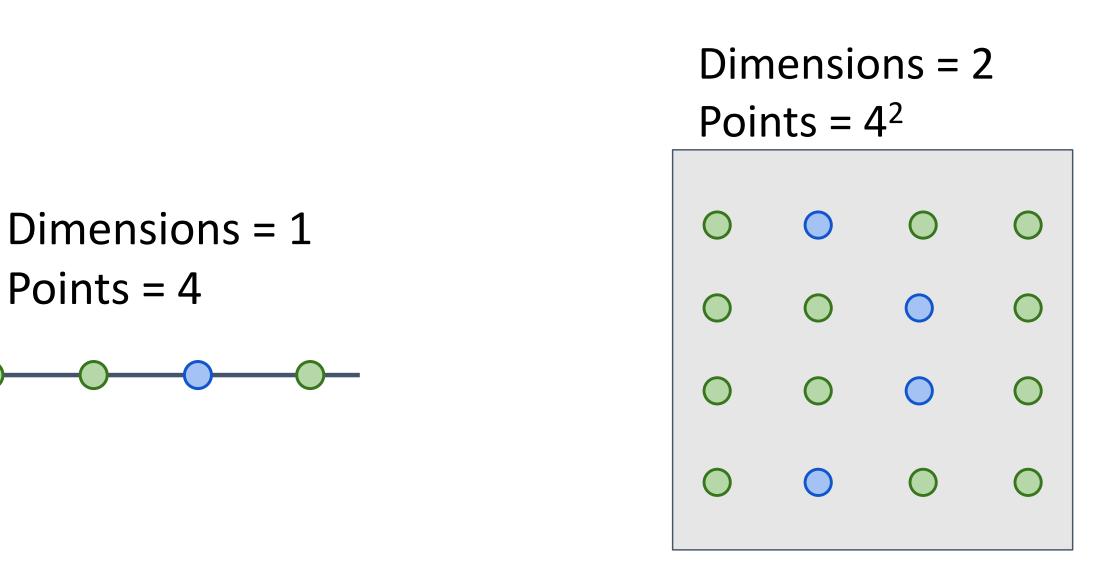
DR

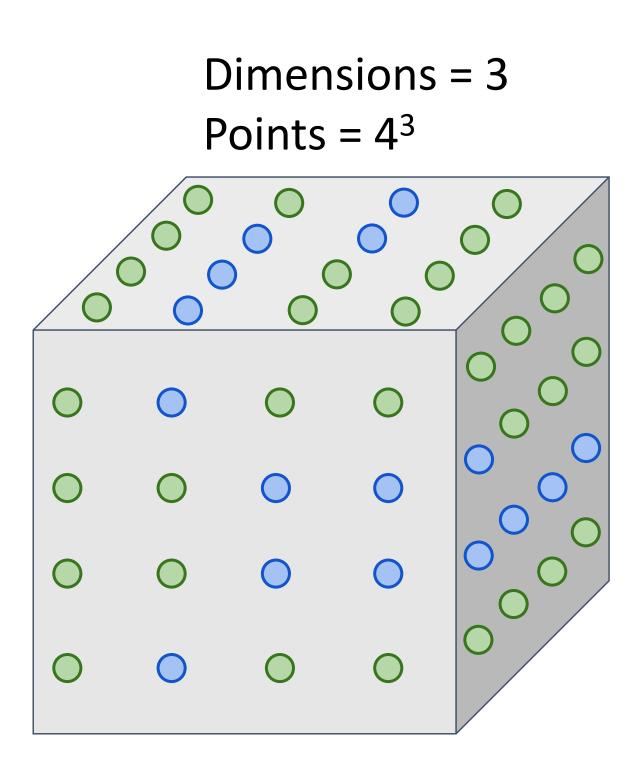


DR

Problem—Curse of Dimensionality

Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension





Problem—Curse of Dimensionality

Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension

Number of possible 32x32 binary images

$2^{32X32} \approx 10^{308}$

Very slow at test time Distance metrics on pixels are not informative

Original

Boxed

All 3 images have same L2 distance to the original

K-Nearest Neighbors Seldom Used on Raw Pixels

Shifted

Tinted

K-Nearest Neighbors with ConvNet Features Works Well

Devlin et al., "Exploring Nearest Neighbor Approaches for Image Captioning", 2015.

DR

Summary

- In **image classification** we start with a training set of images and labels, and must predict labels for a test set
- Image classification is challenging due to the semantic gap: we need invariance to occlusion, deformation, lighting, sensor variation, etc.
- Image classification is a **building block** for other vision tasks
- The **K-Nearest Neighbors** classifier predicts labels from nearest training samples
- Distance metric and **K** are hyperparameters
- Choose hyper parameters using the validation set; only run on the test set once at the very end!

Next time: Linear Classifiers

