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Project 0
• Instructions and code available on the website
• Here: https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/

projects/project0/

• Uses Python, PyTorch and Google Colab

• Introduction to PyTorch Tensors

• Due this Tuesday (January 24th), 11:59 PM CT
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https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project0/
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project0/
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/projects/project0/


Project 0 Suggestions
• If you choose to develop locally
• PyTorch Version 1.13.0

• Ensure you save your notebook file before uploading submission

• Close any Colab notebooks not in use to avoid usage limits
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Discussion Forum
• Ed Stem available for course discussion and questions

• Forum is shared across UMich and UMinn students

• Participation and use is not required

• Opt-in using this Google form

• Discussion of quizzes and verbatim code must be private 
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https://edstem.org/us/courses/31008/discussion/
https://docs.google.com/forms/d/e/1FAIpQLSelLeqIUKBxQvqqp6LFs2fSYfzy9D_QCcvtXc302hnm6oF1EA/viewform?usp=sharing


Discussion Forum
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Enrollment
• Additional class permissions have been issued.

• If you haven’t received a class permission contact Prof. 
Desingh
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Image Classification



Image Classification—A Core Computer Vision Task
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Input: image Output: assign image to one 
of a fixed set of categories

Chocolate Pretzels
Granola Bar
Potato Chips
Water Bottle

Popcorn



Problem—Semantic Gap
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What the computer sees

An image is just a grid of 
numbers between [0, 255]

e.g. 800 x 600 x 3

(3 channels RGB)

Input: image



Challenges—Viewpoint Variation
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Pixels change when 
the camera moves



Challenges—Intraclass Variation
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Challenges—Fine-Grained Categories
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Milk 
Chocolate

Cookies N’ 
Creme Peanut ButterWhite 

Chocolate
Ambiguous 
Category



Challenges—Background Clutter
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Challenges—Image Resolution
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iPhone 14 Camera ASUS RGB-D Camera

4032x3024 640x480



Challenges—Illumination Changes
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Want our robot’s perception system 
to be reliable in all conditions



Challenges—Subject Deformation 
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Challenges—Occlusion 
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Scene Clutter Robot Actuator Transparency



Challenges—Semantic Relationships 
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Reflections Contact 
Relationships

Robots have to act on the state they perceive



Applications of Image Classification
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A Machine Learning Approach to Visual Perception
of Forest Trails for Mobile Robots

Alessandro Giusti, Jérôme Guzzi, Dan C. Cireşan, Fang-Lin He, Juan P. Rodríguez, Flavio Fontana,
Matthias Faessler, Christian Forster, Jürgen Schmidhuber, Gianni Di Caro, Davide Scaramuzza,

and Luca M. Gambardella

Abstract—We study the problem of perceiving forest or moun-
tain trails from a single monocular image acquired from the
viewpoint of a robot traveling on the trail itself. Previous literature
focused on trail segmentation, and used low-level features such
as image saliency or appearance contrast; we propose a different
approach based on a deep neural network used as a supervised
image classifier. By operating on the whole image at once, our sys-
tem outputs the main direction of the trail compared to the viewing
direction. Qualitative and quantitative results computed on a large
real-world dataset (which we provide for download) show that our
approach outperforms alternatives, and yields an accuracy compa-
rable to the accuracy of humans that are tested on the same image
classification task. Preliminary results on using this information
for quadrotor control in unseen trails are reported. To the best of
our knowledge, this is the first letter that describes an approach to
perceive forest trials, which is demonstrated on a quadrotor micro
aerial vehicle.

Index Terms—Visual-Based Navigation, Aerial Robotics,
Machine Learning, Deep Learning.

VIDEOS AND DATASET

A narrated video summary of this letter, additional figures,
videos and the full training/testing datasets are available at
http://bit.ly/perceivingtrails.

I. INTRODUCTION

A UTONOMOUSLY following a man-made trail (such as
those normally traversed by hikers or mountain-bikers) is

a challenging and mostly unsolved task for robotics. Solving
such problem is important for many applications, including
wilderness mapping [1] and search and rescue; moreover, fol-
lowing a trail would be the most efficient and safest way for a
ground robot to travel medium and long distances in a forested
environment: by their own nature, trails avoid excessive slopes
and impassable ground (e.g. due to excessive vegetation or

Manuscript received August 31, 2015; Accepted November 18, 2015. Date of
publication December 17, 2015; date of current version February 29, 2016. This
work was supported by the Swiss National Science Foundation (SNSF) through
the National Centre of Competence in Research (NCCR) Robotics, and the
Supervised Deep/Recurrent Nets Grant (project code 140399). This paper was
recommended for publication by Editor J. Kosecka upon evaluation of the
Associate Editor and Reviewers’ comments.

A. Giusti, J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodríguez, J. Schmidhuber,
G. Di Caro, and L. M. Gambardella are with the Dalle Molle Institute
for Artificial Intelligence (IDSIA), USI-SUPSI, Lugano, Switzerland (e-mail:
alessandrog@idsia.ch).

F. Fontana, M. Faessler, C. Forster, and D. Scaramuzza are with the Robotics
and Perception Group (RPG), University of Zurich, Zurich 8050, Switzerland.
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Fig. 1. Our quadrotor acquires the trail images from a forward-looking camera;
a Deep Neural Network classifies the images to determine which action will
keep the robot on the trail.

wetlands). Many robot types, including wheeled, tracked and
legged vehicles [2], are capable of locomotion along real-
world trails. Moreover, Micro Aerial Vehicles (MAVs) flying
under the tree canopy [3], [4] are a compelling and realistic
option made possible by recent technological advances (such
as collision-resilience [5]).

In order to successfully follow a forest trail, a robot has
to perceive where the trail is, then react in order to stay on
the trail. In this letter, we will describe a machine-learning
approach to the visual perception of forest trails and show pre-
liminary results on an autonomous quadrotor. We consider as
input a monocular image from a forward-looking camera (see
Figure 1).

Perceiving real-world trails in these conditions is an
extremely difficult and interesting pattern recognition prob-
lem (see Figure 2), which is often challenging even for
humans (e.g., losing a trail is a common experience among
casual hikers). Computer Vision and Robotics literature
mainly focused on paved road [6]–[9] and forest/desert road
perception [10].

The latter is a significantly more difficult problem than the
former, because unpaved roads are normally much less struc-
tured than paved ones: their appearance is very variable and
often boundaries are not well defined. Compared to roads, the
perception of trails poses an even harder challenge, because
their surface appearance can change very frequently, their shape
and width is not as constrained, and they often seamlessly blend
with the surrounding area (e.g. grass).

Several previous works [11], [12] dealing with trail percep-
tion solved a segmentation problem, i.e., aimed at determining

2377-3766 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 09,2023 at 14:51:01 UTC from IEEE Xplore.  Restrictions apply. 

Giusti et al., “A Machine Learning Approach to Visual 
Perception of Forest Trails for Mobile Robots”, IEEE RAL, 2016

Trail Direction Classification
L. Zhang et al.: Deep Learning Based Improved Classification System

FIGURE 2. The visualization of a part of dataset images on t-SNE
distribution.

1) GEOMETRIC TRANSFORMATIONS

Scaling and rotations are two ways for geometric transfor-
mations. In order to find the best augmentation methods, we
generated three datasets in this section.
S(p, q),D(j, k) represent the source and target point of

the discrete image. These two points present as s(up, vq)
and d(xj, yk ) in Descartes coordinate system. For the scal-
ing transformation, we exploit the following formula, shown
as Eq. (4).

(
xj = sxup
yk = syvq

(4)

Where sx and sy are random non-negative scaling coefficient
on horizontal and vertical axes. We generated the dataset S
based on random scaling transformation. For the rotations
transformation, we exploit the following formula Eq. (5).

(
xj = up cos ✓ � vq sin ✓

yk = up sin ✓ + vq cos ✓
(5)

2 represents the angle between the rotation image and the
original image in counter clock wise direction on the hori-
zontal axis. ✓ 2 (0, 360�]. We generated the dataset R based
on random rotation transformation.
Then, we generated the datasets R & S based on

datasets S and R. The number of each category in each dataset
is shown in Fig. 3.

2) RANDOM NOISE

We adopted three types of noises, i.e. Pepper, Salt, Gaus-
sian for data augmentation methods. Probability density

FIGURE 3. The number of images for each category.

function (PDF) of Gaussian expression as Eq. (6).

pg (z) = 1p
2⇡�

e�(z�z)2
�
2� 2

(6)

Where z represents the gray scale of image. z and � represent
the mean value and standard deviation of z respectively. The
PDF of Pepper noise expression as Eq. (7).

pP (z) =
(
pP z = p
0 else

(7)

Where pP represents probability with pepper noise occur-
rence. The PDF of Salt noise expression as Eq. (8).

ps (z) =
(
ps z = s
0 else

(8)

Where pP represents probability with salt noise occurrence.
Based on the above probability models, the corresponding
random noises were generated respectively.

3) COMBINATION

In order to study the relationship between different ways
of data augmentation and the predicted results of this task,
we combined the two ways of geometric transformations and
random noise by adding Pepper, Salt and Gaussian to the
datasets of R, S and R &S separately, and then got nine
kinds of datasets for training. They are R & PN, S & PN,
S & R & PN, R & SN, S & SN, S & R & SN, R & GN,
S & GN, and S & R & GN.

IV. CLASSIFICATION ARCHITECTURE
In this paper, we designed classification architecture shown
in Fig. 4. The purpose of design classification architecture
is to maintain overall information, while preserving local
details, with short response time of prediction. Based on the
above considerations, we designed this architecture, which
consists of three parts. The first part is to input color images
of three channels, and these images have 200 pixels attributes
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Tomato Ripeness Classification

Zhang et al., “Deep Learning Based Improved Classification System 
for Designing Tomato Harvesting Robot”, IEEE Access, 2016

Justin Johnson January 10, 2022

Image Classification: Very Useful!

Lecture 2 - 19

Medical Imaging

Levy et al, 2016 Figure reproduced with permission

Galaxy Classification

Dieleman et al, 2014 From left to right: public domain by NASA, usage permitted by 
ESA/Hubble, public domain by NASA, and public domain.

Whale recognition

This image by Christin Khan is in the public domain and 
originally came from the U.S. NOAA.Kaggle Challenge

Medical Imaging

Lévy et al., “Breast Mass Classification from Mammograms using 
Deep Convolutional Neural Networks”, arXiv:1612.00542, 2016
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Image Classification: Very Useful!

Lecture 2 - 19

Medical Imaging

Levy et al, 2016 Figure reproduced with permission

Galaxy Classification

Dieleman et al, 2014 From left to right: public domain by NASA, usage permitted by 
ESA/Hubble, public domain by NASA, and public domain.

Whale recognition

This image by Christin Khan is in the public domain and 
originally came from the U.S. NOAA.Kaggle Challenge

Galaxy Classification

Dieleman et al., “Rotation-invariant convolutional neural 
networks for galaxy morphology prediction”, 2015

From left to right: public domain by NASA, usage permitted by 
ESA/Hubble, public domain by NASA, and public domain

https://commons.wikimedia.org/wiki/File:NGC_4414_(NASA-med).jpg
https://commons.wikimedia.org/wiki/File:M101_hires_STScI-PRC2006-10a.jpg
https://en.wikipedia.org/wiki/File:Hubble2005-01-barred-spiral-galaxy-NGC1300.jpg


Image Classification—Building Block for Other Tasks
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Fetch Robot

Signage

Food

Food

Food

Food

Food

Food

Food

Food
Food
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FoodFood



Image Classification—Building Block for Other Tasks
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Example: Object Detection

Wall
Floor

Signage
Fetch Robot

Snacks



Image Classification—Building Block for Other Tasks
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Wall
Floor

Signage
Fetch Robot

Snacks

Example: Object Detection



Image Classification—Building Block for Other Tasks
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Wall
Floor

Signage
Fetch Robot

Snacks

Example: Object Detection



Image Classification—Building Block for Other Tasks
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Wall
Floor

Signage
Fetch Robot

Snacks

Example: Object Detection



Image Classification—Building Block for Other Tasks
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Wall
Floor

Signage
Fetch Robot

Snacks

Example: Object Detection



Image Classification—Building Block for Other Tasks

26

Example: Pose Estimation



An Image Classifier
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Justin Johnson January 10, 2022

An Image Classifier

Lecture 2 - 28

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm 
for recognizing a cat, or other classes.

Unlike well defined programming (e.g. sorting a list)

No obvious way to hard-code the algorithm 
for recognizing each class



An Image Classifier
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Input: image Detect: Edges Detect: Corners

???



Machine Learning—Data-Driven Approach
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1. Collect a dataset of images and labels

2. Use Machine Learning to train a classifier

3. Evaluate the classifier on new images

Example training set

Justin Johnson January 10, 2022

First classifier: Nearest Neighbor

Lecture 2 - 40

Memorize all data 
and labels

Predict the label of 
the most similar 
training image

Justin Johnson January 10, 2022

First classifier: Nearest Neighbor

Lecture 2 - 40

Memorize all data 
and labels

Predict the label of 
the most similar 
training image



Image Classification Datasets—MNIST
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Image Classification Datasets: MNIST

Lecture 2 - 31

10 classes: Digits 0 to 9
28x28 grayscale images
50k training images
10k test images

10 classes: Digits 0 to 9

28x28 grayscale images

50k training images

10k test images

Due to relatively small size, 
results on MNIST often do not 
hold on more complex datasets



Image Classification Datasets—CIFAR10

31
Justin Johnson January 10, 2022

Image Classification Datasets: CIFAR10

Lecture 2 - 33

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes
50k training images (5k per class)
10k testing images (1k per class)
32x32 RGB images

We will use this dataset for 
homework assignments

10 classes

32x32 RGB images

50k training images (5k per class)

10k test images (1k per class)

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.



Image Classification Datasets—CIFAR100
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100 classes

32x32 RGB images

50k training images (500 per class)

10k test images (100 per class)

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

Justin Johnson January 10, 2022

Image Classification Datasets: CIFAR100

Lecture 2 - 34

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

100 classes
50k training images (500 per class)
10k testing images (100 per class)
32x32 RGB images

20 superclasses with 5 classes each:

Aquatic mammals: beaver, dolphin, 
otter, seal, whale
Trees: Maple, oak, palm, pine, willow

20 superclasses with 5 classes each:

Aquatic mammals: beaver, dolphin, 
otter, seal, whale
Trees: maple, oak, palm, pine, willow



Image Classification Datasets—ImageNet
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Image Classification Datasets: ImageNet

Lecture 2 - 35

Deng et al, “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009
Russakovsky et al, “ImageNet Large Scale Visual Recognition Challenge”, IJCV 2015

1000 classes

~1.3M training images (~1.3K per class)
50K validation images (50 per class)
100K test images (100 per class)

Performance metric: Top 5 accuracy
Algorithm predicts 5 labels for each 
image; one of them needs to be right

1000 classes

~1.3M training images (~1.3K per class) 
50k validation images (50 per class) 
100K test images (100 per class)

Performance metric: Top 5 accuracy 
Algorithm predicts 5 labels for each 
image, one must be right

Deng et al., “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR, 2009.
Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge”, IJCV, 2015.



Image Classification Datasets—ImageNet
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Image Classification Datasets: ImageNet

Lecture 2 - 35

Deng et al, “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009
Russakovsky et al, “ImageNet Large Scale Visual Recognition Challenge”, IJCV 2015

1000 classes

~1.3M training images (~1.3K per class)
50K validation images (50 per class)
100K test images (100 per class)

Performance metric: Top 5 accuracy
Algorithm predicts 5 labels for each 
image; one of them needs to be right

1000 classes

~1.3M training images (~1.3K per class) 
50k validation images (50 per class) 
100K test images (100 per class)

Images have variable size, but often 
resized to 256x256 for training

Deng et al., “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR, 2009.
Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge”, IJCV, 2015.

There is also a 22K category version of 
ImageNet, but less commonly used

test labels are secret!



Image Classification Datasets—MIT Places
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Image Classification Datasets: MIT Places

Lecture 2 - 37

Zhou et al, “Places: A 10 million Image Database for Scene Recognition”, TPAMI 2017

365 classes of different scene types

~8M training images
18.25K val images (50 per class)
328.5K test images (900 per class)

Images have variable size, often 
resize to 256x256 for training

365 classes of different scene types

~8M training images

18.25K val images (50 per class) 
328.5K test images (900 per class)

Images have variable size, but often 
resized to 256x256 for training

Zhou et al., “Places: A 10 million Image Database for Scene Recognition”, TPAMI, 2017.



Image Classification Datasets—PROPS
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10 classes

32x32 RGB images

50k training images (5k per class)

10k test images (1k per class)

Chen et al., “ProgressLabeller: Visual Data Stream Annotation 
for Training Object-Centric 3D Perception”, IROS, 2022.

Progress Robot Object Perception Samples Dataset



Classification Datasets—Number of Training Pixels
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Classification Datasets: Number of Training Pixels

Lecture 2 - 38

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

MNIST CIFAR10 CIFAR100 ImageNet Places365

~47M ~154M ~154M

~251B
~1.6T

MNIST CIFAR10
PROPS

CIFAR100 ImageNet Places365



First Classifier—Nearest Neighbor
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First classifier: Nearest Neighbor

Lecture 2 - 40

Memorize all data 
and labels

Predict the label of 
the most similar 
training image

Justin Johnson January 10, 2022

First classifier: Nearest Neighbor

Lecture 2 - 40

Memorize all data 
and labels

Predict the label of 
the most similar 
training image

Memorize all data and labels

Predict the label of the most similar 
training image



Distance Metric to Compare Images
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Distance Metric to compare images

Lecture 2 - 41

L1 distance:

add

L1 distance: d1(I1, I2) = ∑
p

| Ip
1 − Ip

2 |



Nearest Neighbor Classifier
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Justin Johnson January 10, 2022Lecture 2 - 42

Nearest Neighbor Classifier
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Nearest Neighbor Classifier

Nearest Neighbor Classifier

Memorize training data
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Nearest Neighbor Classifier

Nearest Neighbor Classifier

For each test image:

   Find nearest training image

   Return label of nearest image
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Justin Johnson January 10, 2022Lecture 2 - 42

Nearest Neighbor Classifier

Nearest Neighbor Classifier

Q: With N examples how 
fast is training?

A: O(1)
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Nearest Neighbor Classifier

Nearest Neighbor Classifier

Q: With N examples how 
fast is training?

A: O(1)

Q: With N examples how 
fast is testing?

A: O(N)
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Nearest Neighbor Classifier

Nearest Neighbor Classifier

Q: With N examples how 
fast is training?

A: O(1)

Q: With N examples how 
fast is testing?

A: O(N)

This is a problem: we 
can train slow offline but 
need fast testing!
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Nearest Neighbor Classifier

Nearest Neighbor Classifier

There are many methods 
for fast / approximate 
nearest neighbors

e.g. github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss


What does this look like?
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What does this look like?

48

PROPS dataset is 
instance-level
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What does this look like?

Lecture 2 - 51

What does this look like?

49
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What does this look like?

Lecture 2 - 52

What does this look like?

50

CIFAR10 dataset is 
category-level
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53

K-Nearest Neighbors Decision Boundaries
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53

X1

X0

Nearest neighbors 
in two dimensions

K-Nearest Neighbors Decision Boundaries
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53

Nearest neighbors 
in two dimensions

X1

X0

Points are training 
examples; colors 
give training labels

K-Nearest Neighbors Decision Boundaries
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53

Nearest neighbors 
in two dimensions

X1

X0

Points are training 
examples; colors 
give training labels

Background colors 
give the category 
a test point would 
be assigned

X

K-Nearest Neighbors Decision Boundaries
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53

Nearest neighbors 
in two dimensions

X1

X0

Points are training 
examples; colors 
give training labels

Background colors 
give the category 
a test point would 
be assigned

X

Decision boundary is 
the boundary between 
two classification regions

K-Nearest Neighbors Decision Boundaries
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53

Nearest neighbors 
in two dimensions

X1

X0

Points are training 
examples; colors 
give training labels

Background colors 
give the category 
a test point would 
be assigned

X

Decision boundary is 
the boundary between 
two classification regions

Decision boundaries 
can be noisy; 
affected by outliers

K-Nearest Neighbors Decision Boundaries
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53

Nearest neighbors 
in two dimensions

X1

X0

Points are training 
examples; colors 
give training labels

Background colors 
give the category 
a test point would 
be assigned

X

Decision boundary is 
the boundary between 
two classification regions

Decision boundaries 
can be noisy; 
affected by outliers

How to smooth the 
decision boundaries? 
Use more neighbors!

K-Nearest Neighbors Decision Boundaries
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53
Justin Johnson January 10, 2022

K-Nearest Neighbors

Lecture 2 - 60

K = 1 K = 3

Instead of copying label from nearest neighbor, 
take majority vote from K closest points

K = 1 K = 3

Instead of copying label from nearest neighbor, 

take majority vote from  closest training pointsK

K-Nearest Neighbors Classification
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53
Justin Johnson January 10, 2022

K-Nearest Neighbors

Lecture 2 - 60

K = 1 K = 3

Instead of copying label from nearest neighbor, 
take majority vote from K closest points

K = 1 K = 3

Using more neighbors helps smooth out rough decision boundaries

K-Nearest Neighbors Classification



K-Nearest Neighbors Classification
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53
Justin Johnson January 10, 2022

K-Nearest Neighbors

Lecture 2 - 60

K = 1 K = 3

Instead of copying label from nearest neighbor, 
take majority vote from K closest points

K = 1 K = 3

reduce the effect of outliersUsing more neighbors helps
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53
Justin Johnson January 10, 2022

K-Nearest Neighbors

Lecture 2 - 60

K = 1 K = 3

Instead of copying label from nearest neighbor, 
take majority vote from K closest points

K = 1 K = 3

When  there can be ties between classes. 

Need to break ties somehow!

K > 1

K-Nearest Neighbors Classification
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Nearest Neighbor Decision Boundaries

Lecture 2 - 53
Justin Johnson January 10, 2022

K-Nearest Neighbors

Lecture 2 - 60

K = 1 K = 3

Instead of copying label from nearest neighbor, 
take majority vote from K closest points

K = 1 K = 3

When  there can be ties between classes. 

Need to break ties somehow!

K > 1

K-Nearest Neighbors Classification
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d1(I1, I2) = ∑
p

| Ip
1 − Ip

2 | d2(I1, I2) = (∑
p

(Ip
1 − Ip

2 )2)1
2

K-Nearest Neighbors—Distance Metric

Justin Johnson January 10, 2022

K-Nearest Neighbors: Distance Metric

Lecture 2 - 64

L1 (Manhattan) distance L2 (Euclidean) distance
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K-Nearest Neighbors: Distance Metric

Lecture 2 - 64

L1 (Manhattan) distance L2 (Euclidean) distance
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L1 (Manhattan) distance L2 (Euclidean) distance
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K-Nearest Neighbors—Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

K = 1
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K-Nearest Neighbors—Distance Metric
With the right choice of distance metric, we can 
apply K-Nearest Neighbors to any type of data!



K-Nearest Neighbors—Web Demo
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Interactively move points around 
and see decision boundaries change

Observe results with L1 vs L2 metrics

Observe results with changing number 
of training points and value of K

http://vision.stanford.edu/teaching/cs231n-demos/knn/

http://vision.stanford.edu/teaching/cs231n-demos/knn/


Hyperparameters
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What is the best value of  to use?K
What is the best distance metric to use?
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What is the best distance metric to use?

These are examples of hyperparameters: 

choices about our learning algorithm that we don’t learn from the training data

Instead we set them at the start of the learning process
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What is the best value of  to use?K
What is the best distance metric to use?

These are examples of hyperparameters: 

choices about our learning algorithm that we don’t learn from the training data

Instead we set them at the start of the learning process

Very problem-dependent. 

In general need to try them all and observe what works best for our data.
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Setting Hyperparameters

Lecture 2 - 72

Idea #1: Choose hyperparameters that 
work best on the data

Your Dataset
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Idea #1: Choose hyperparameters that 
work best on the data

BAD: K = 1 always works 
perfectly on training data

Your Dataset
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Idea #1: Choose hyperparameters that 
work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

Your Dataset

train test



Setting Hyperparameters

73

Justin Johnson January 10, 2022

Setting Hyperparameters

Lecture 2 - 72

Idea #1: Choose hyperparameters that 
work best on the data

Your Dataset

Justin Johnson January 10, 2022

Setting Hyperparameters

Lecture 2 - 73

Idea #1: Choose hyperparameters that 
work best on the data

BAD: K = 1 always works 
perfectly on training data

Your Dataset

Justin Johnson January 10, 2022

Setting Hyperparameters

Lecture 2 - 74

Idea #1: Choose hyperparameters that 
work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

Your Dataset

train test

Justin Johnson January 10, 2022

Setting Hyperparameters
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Idea #1: Choose hyperparameters that 
work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test
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Idea #1: Choose hyperparameters that 
work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test

Idea #3: Split data into train, val, and test; choose 
hyperparameters on val and evaluate on test

Better!
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Setting Hyperparameters
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Idea #1: Choose hyperparameters that 
work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test
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Setting Hyperparameters

Lecture 2 - 77

Your Dataset

testfold 1 fold 2 fold 3 fold 4 fold 5

Idea #4: Cross-Validation: Split data into folds, try each 
fold as validation and average the results

testfold 1 fold 2 fold 3 fold 4 fold 5

testfold 1 fold 2 fold 3 fold 4 fold 5

Useful for small datasets, but (unfortunately) not used too frequently in deep learning
Justin Johnson January 10, 2022

Setting Hyperparameters
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Your Dataset

testfold 1 fold 2 fold 3 fold 4 fold 5

Idea #4: Cross-Validation: Split data into folds, try each 
fold as validation and average the results

testfold 1 fold 2 fold 3 fold 4 fold 5

testfold 1 fold 2 fold 3 fold 4 fold 5

Useful for small datasets, but (unfortunately) not used too frequently in deep learning
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Setting Hyperparameters

Lecture 2 - 78

Example of 5-fold cross-validation for 
the value of k.

Each point: single outcome. 

The line goes through the mean, bars
indicated standard deviation

(Seems that k ~ 7 works best
for this data)
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K-Nearest Neighbor: Universal Approximation
As the number of training samples goes to infinity, nearest 
neighbor can represent any(*) function!

Lecture 2 - 79

(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.
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Curse of dimensionality: For uniform coverage of space, number 
of training points needed grows exponentially with dimension

Number of possible 
32x32 binary images

232x32 ≈ 10308



K-Nearest Neighbors Seldom Used on Raw Pixels
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K-Nearest Neighbor on raw pixels is seldom used

Lecture 2 - 87

- Very slow at test time
- Distance metrics on pixels are not informative

(all 3 images have same L2 distance to the one on the left)

Original Boxed Shifted Tinted

Original image is 
CC0 public domain

Very slow at test time

Distance metrics on pixels are not informative

All 3 images have same L2 distance to the original



K-Nearest Neighbors with ConvNet Features Works Well
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Devlin et al., “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015.Justin Johnson January 10, 2022

Nearest Neighbor with ConvNet features works well!

Lecture 2 - 88

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015



Summary
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In image classification we start with a training set of images and labels, 
and must predict labels for a test set

Image classification is challenging due to the semantic gap:

we need invariance to occlusion, deformation, lighting, sensor variation, etc.

Image classification is a building block for other vision tasks

The K-Nearest Neighbors classifier predicts labels from nearest training samples

Distance metric and K are hyperparameters

Choose hyper parameters using the validation set; 
only run on the test set once at the very end!
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Next time: Linear Classifiers
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Next time: Linear Classifiers

Lecture 2 - 91


