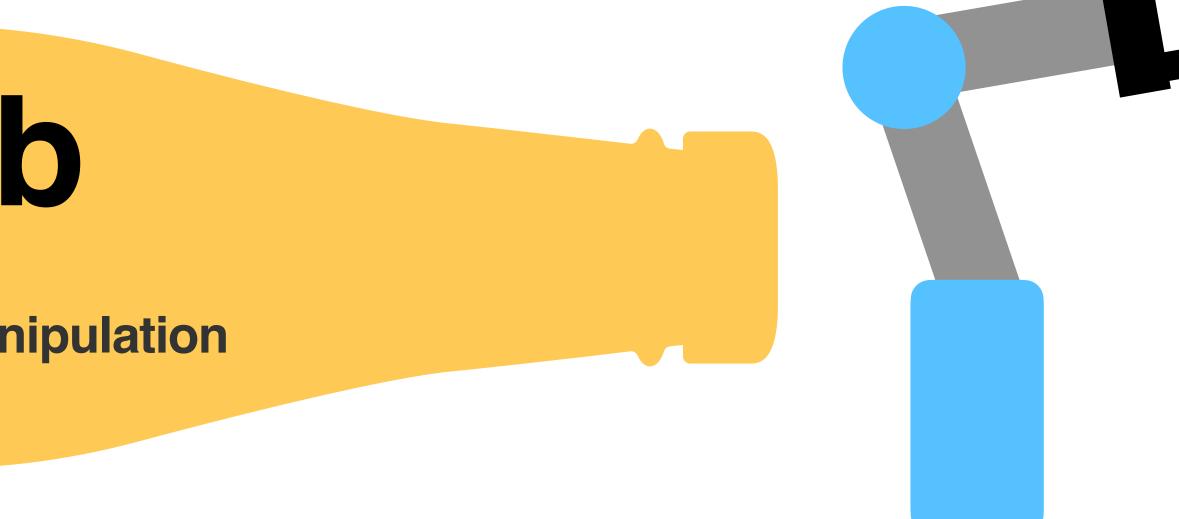


DeepRob Lecture 17

Pretraining for Robot Manipulation University of Minnesota



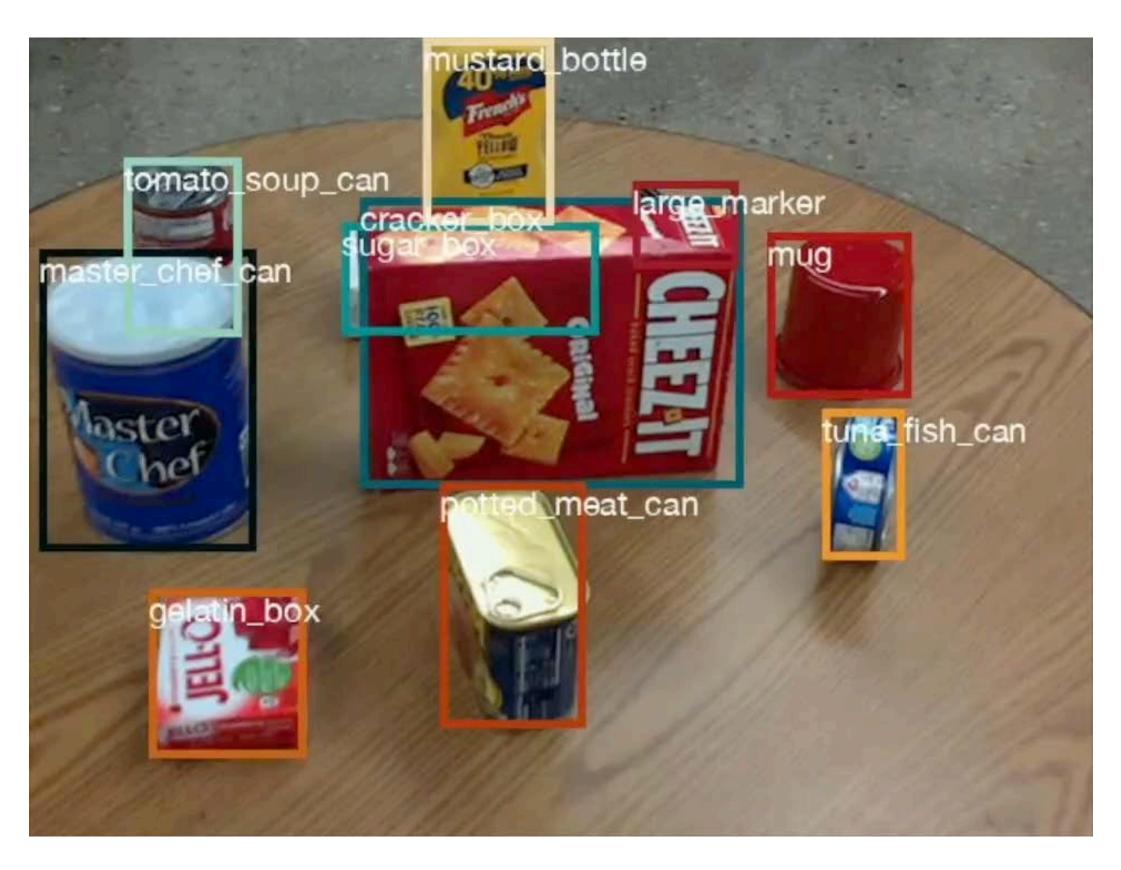
Slides prepared by Guanang (Shirley) Su and Karthik Desingh

Project 3 - deadline extended

- Instructions available on the website
 - Here: <u>https://rpm-lab.github.io/CSCI5980-F24-</u>

DeepRob/projects/project3/

- Uses PROPS Detection dataset
- Implement CNN for classification and Faster R-CNN for detection
- Autograder will be available soon!
- Due Monday, November 1st 11:59 PM CT



What is representation?

Cognitive Science:

Symbolic View:

Thinking through abstract symbols.

Computer Science:

Explicit Representations:

Clear, human-understandable forms like actions or labels.

Embodied View:

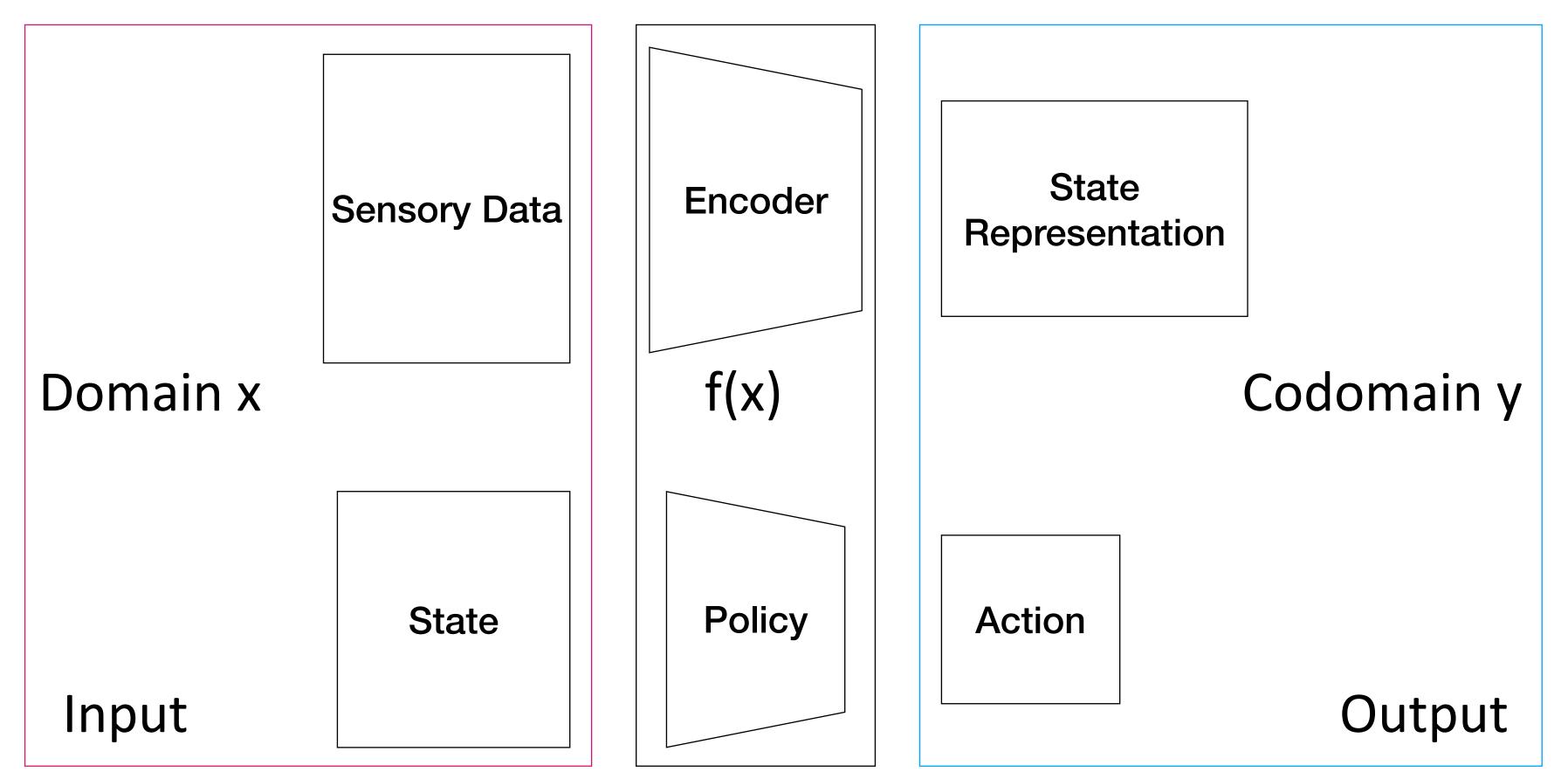
Thinking shaped by physical interactions and senses.

Implicit Representations:

Internal data structures, often numeric, such as matrices or vectors, that encode patterns, features, or properties extracted from data.

What is representation learning?

A process of discovering features or representations from data that capture essential information for a task, such as shapes, textures, or patterns.



Types of Learning Features

objects.

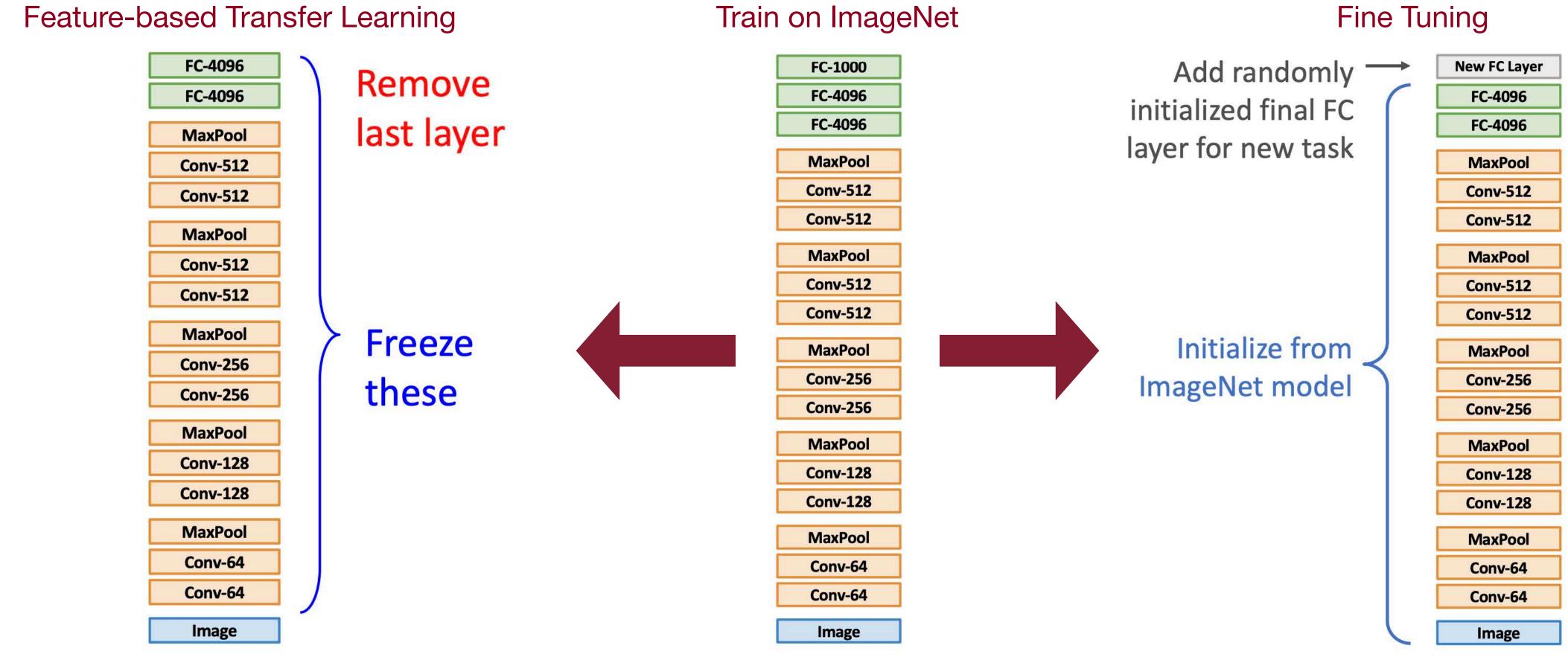
High-Level Features (objects, shapes) aid in scene understanding and object segmentation.

based tasks.

Spatial-Relational Features help understand 3D spaces, critical for robotics.

- Low-Level Features (edges, textures, colors) build the base for recognizing complex
- **Temporal Features** capture sequences and actions, essential for video or action-

How Transfer Learning Work?

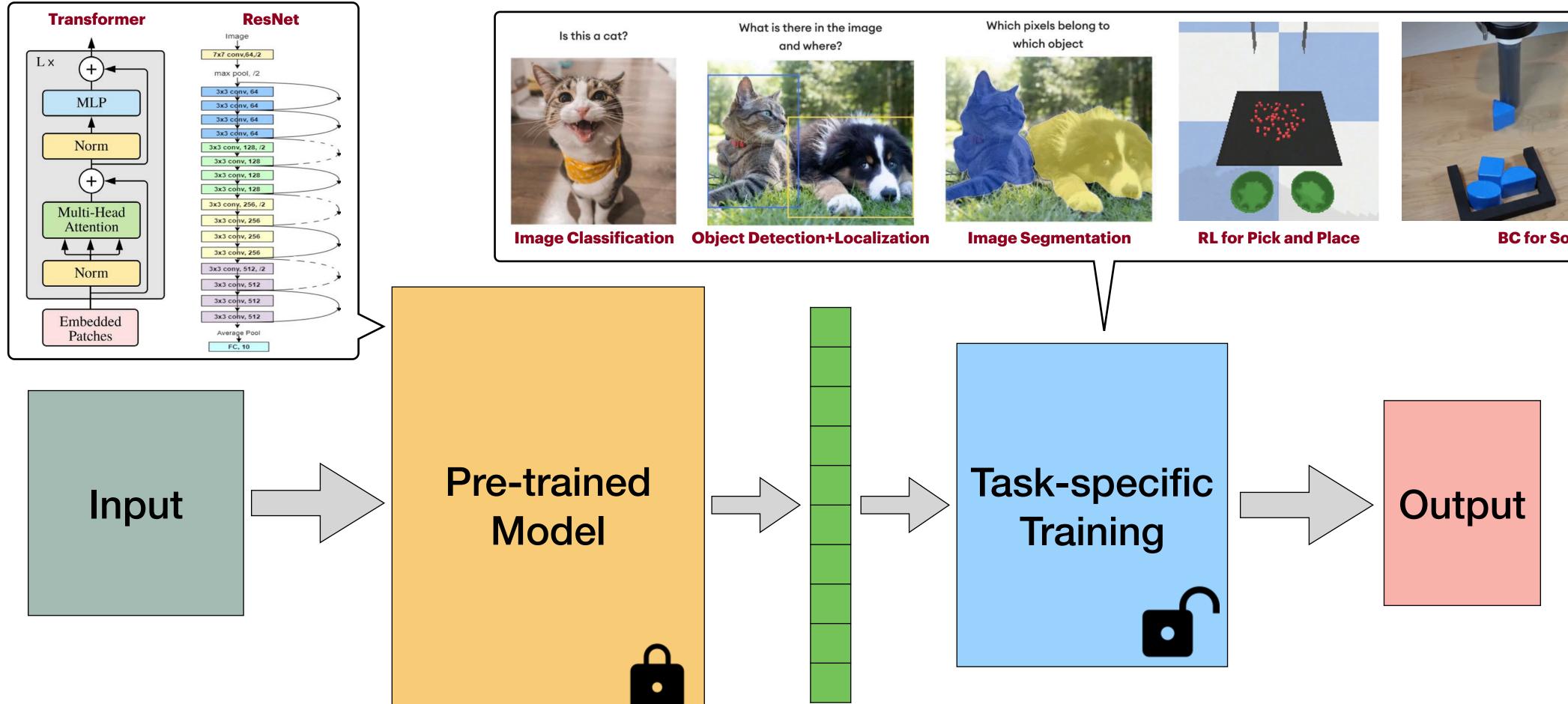


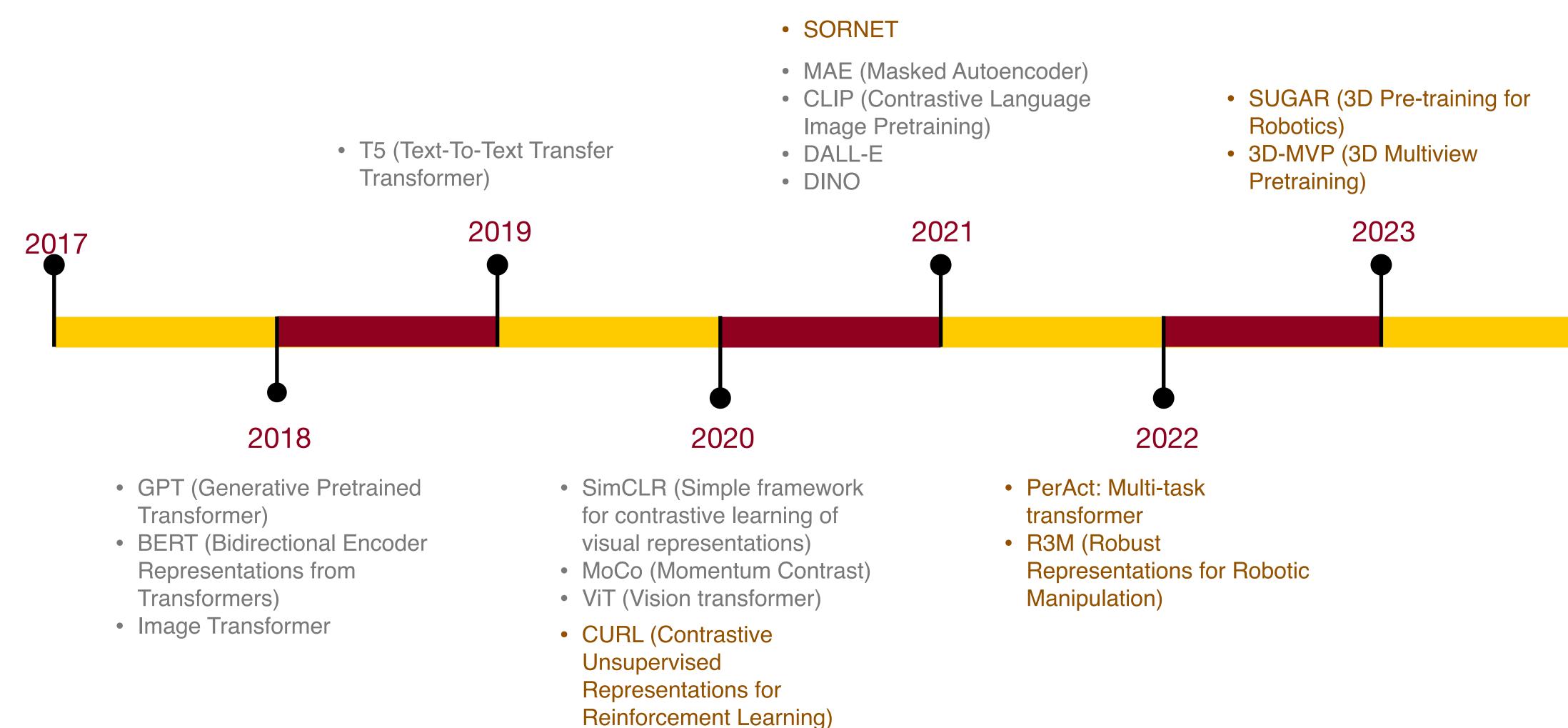
Use CNN as a feature extractor

What is Pretraining ?

- A process of initializing a model with pre-existing knowledge before fine-tuning it on specific tasks or datasets.
- **Pretraining** leverages representation learning on large, general datasets, preparing a model to recognize these features without task-specific training.

How Does Pretrain Work?





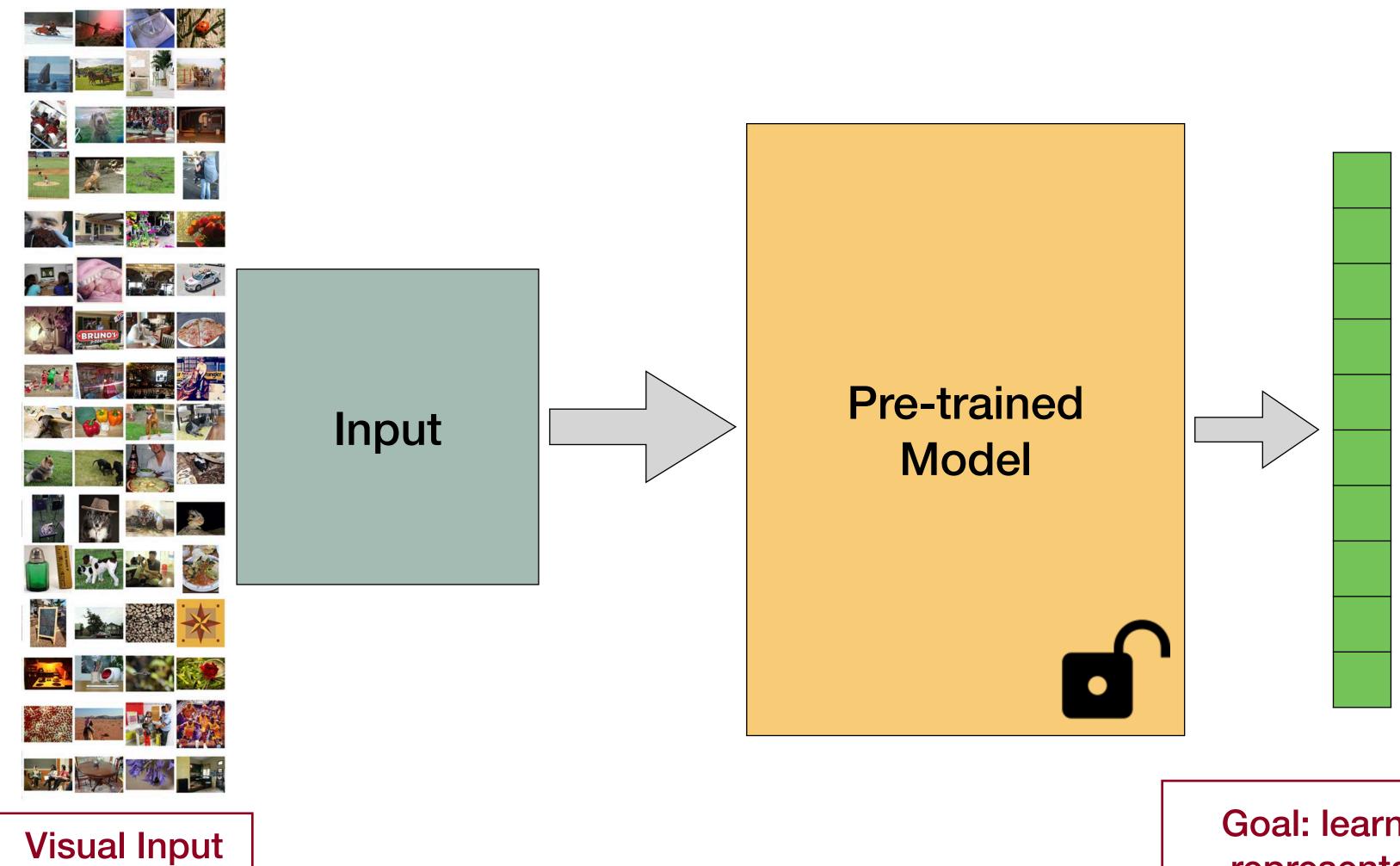
Related work and progression of using "pretraining"

9

Pretraining in Computer Vision

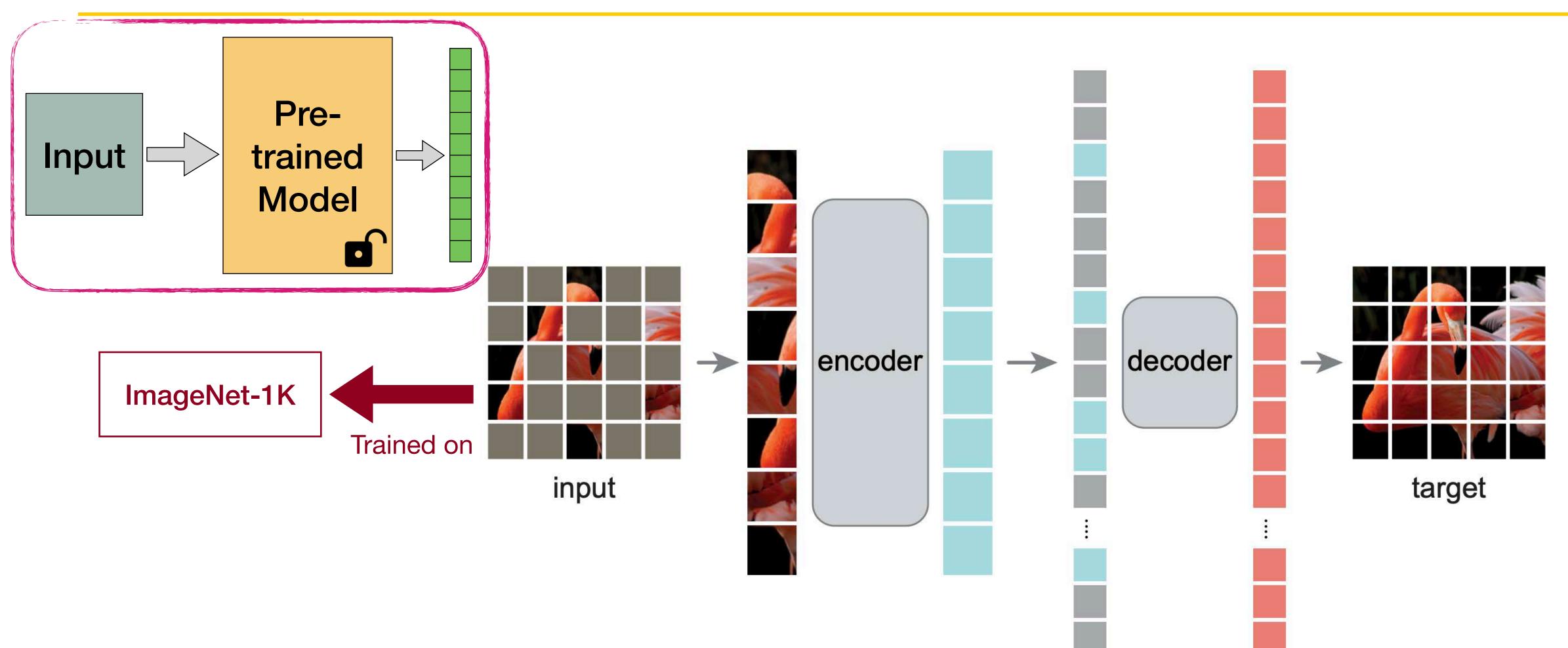
10

Pretraining Process

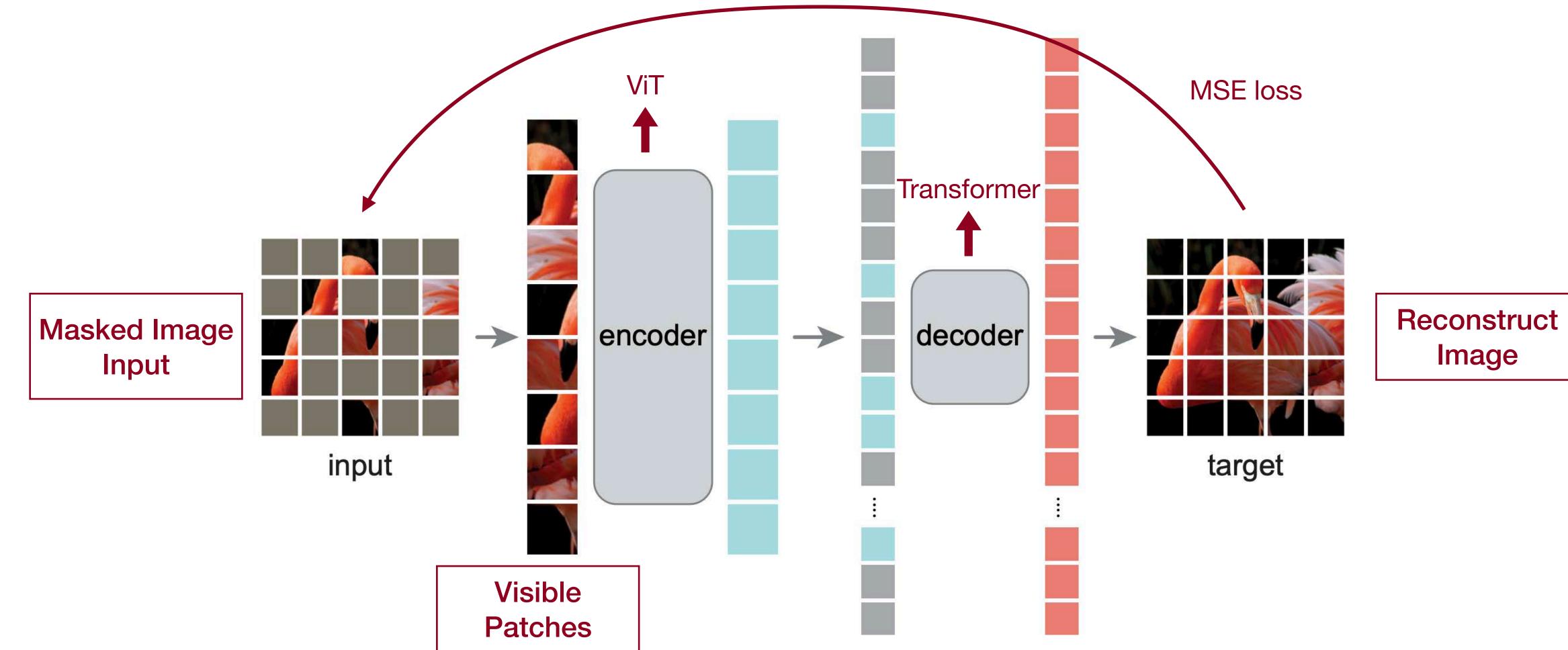


Goal: learn good representations

MAE (Masked Autoencoders)

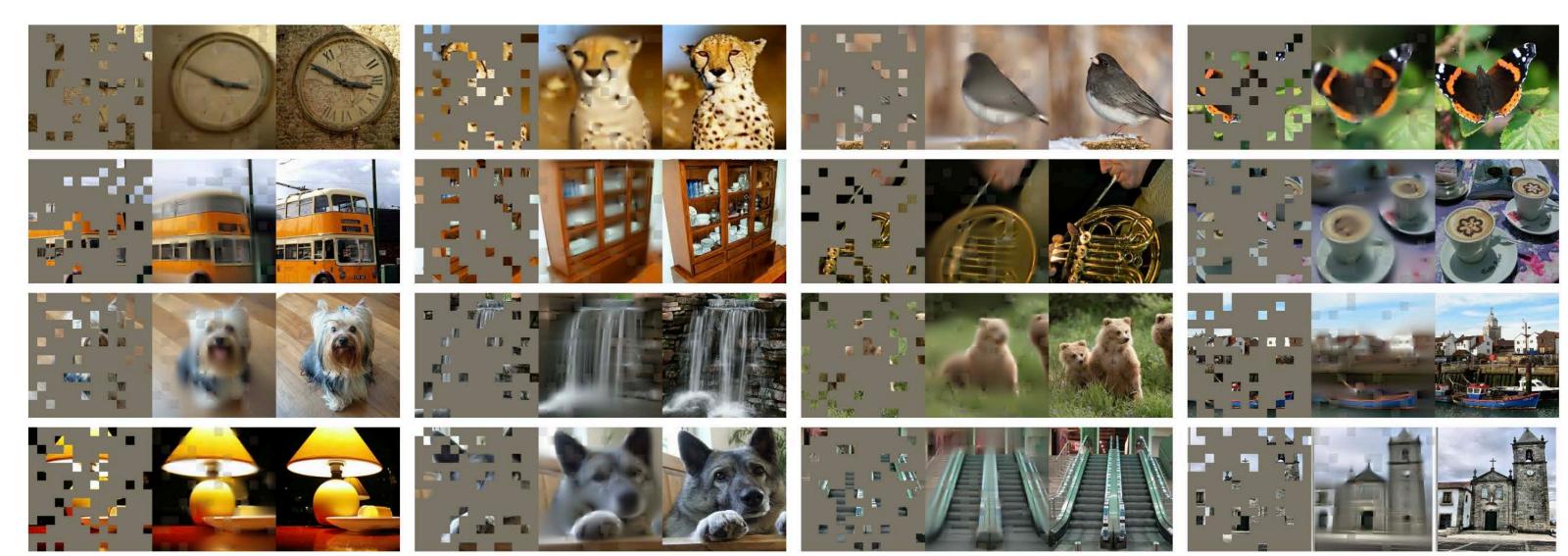


Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image database. In Conference on Computer Vision and Pattern Recognition (CVPR), 2009. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2022). Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR)* (pp. 16000-16009).



He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2022). Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 16000-16009).

MAE Architecture



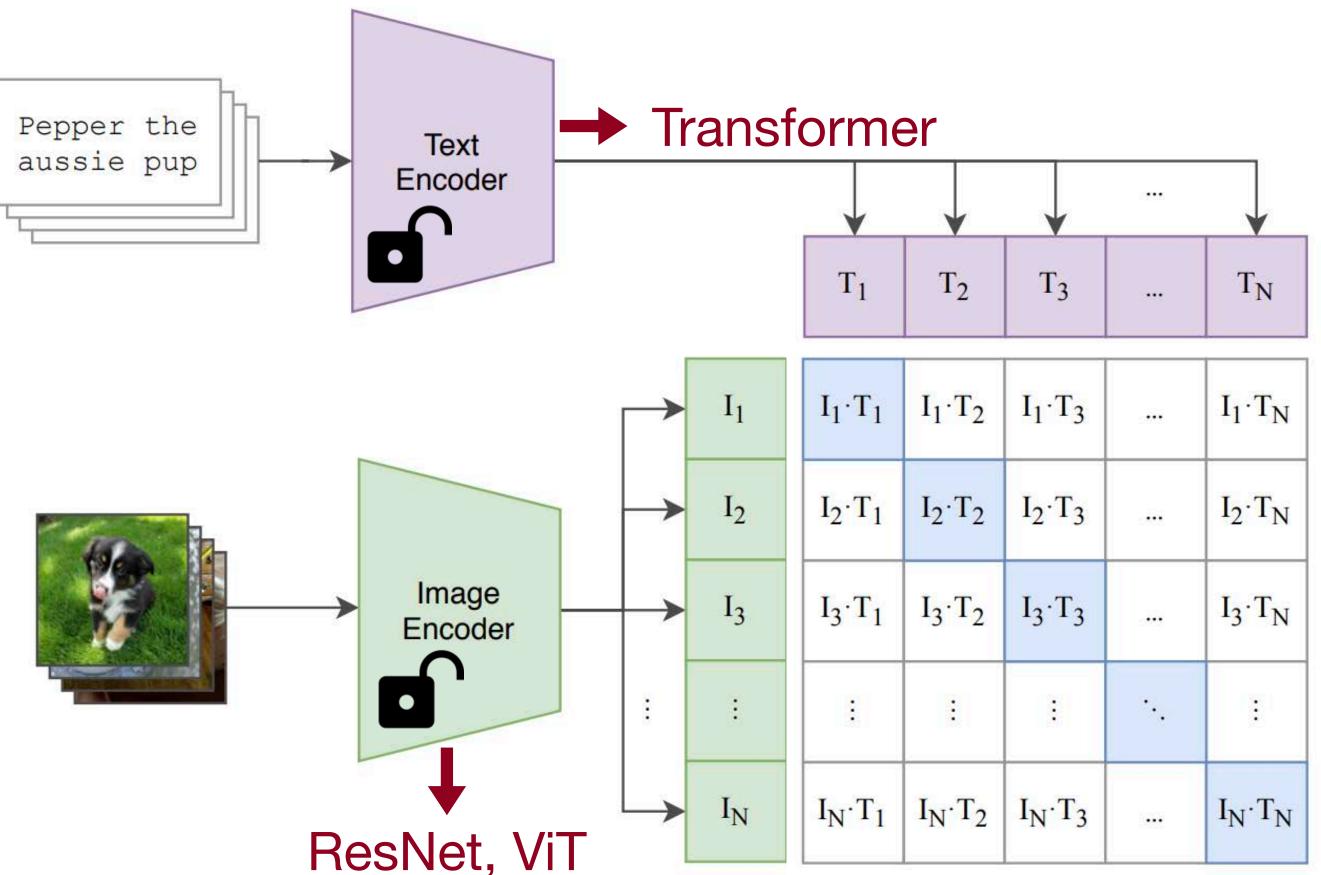
Example results on COCO dataset

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2022). Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 16000-16009).

MAE Results

Example results on ImageNet validation dataset - 80%

Contrastive Pre-training

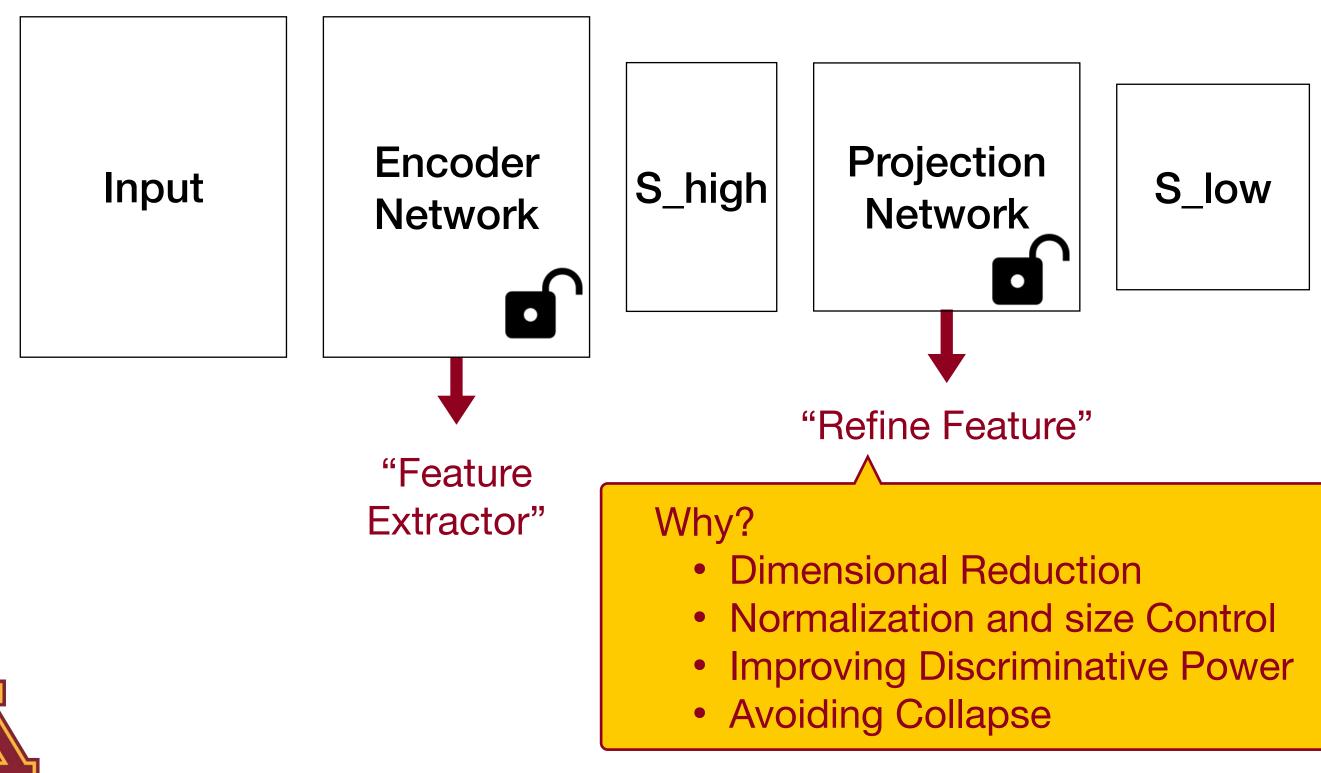


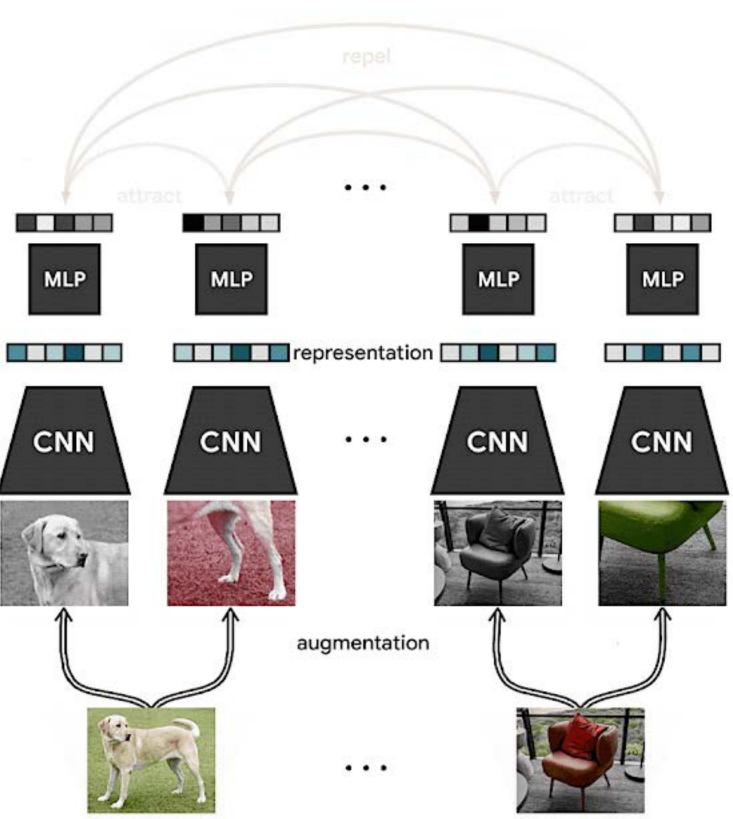
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In International Conference on Machine Learning (ICML) 2021, Vol. 139. 8748–8763. 15

CLIP (Contrastive Language-Image Pre-Training)

Contrastive Learning

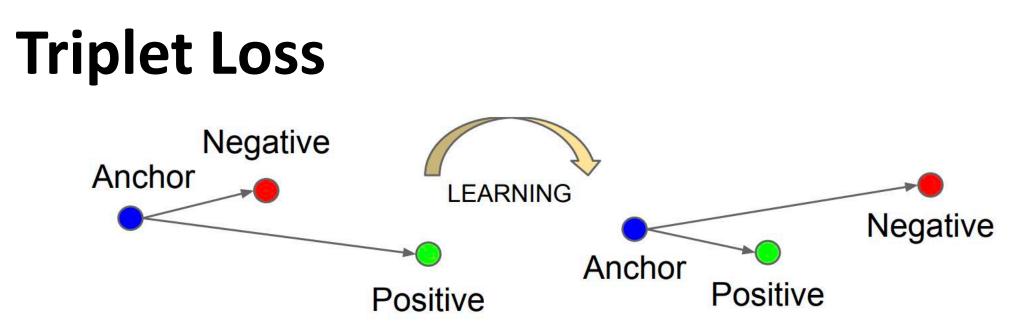
Contrastive learning is an approach that focuses on extracting meaningful representations by contrasting positive and negative pairs of instances.





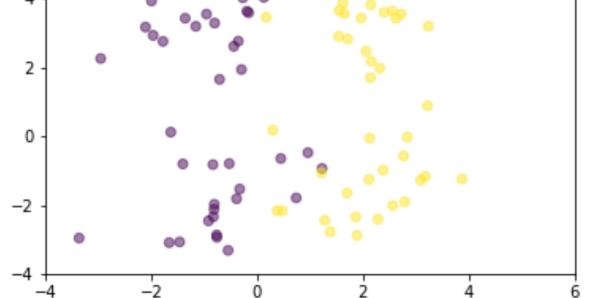
Source from SimCLR - <u>https://github.com/google-research/simclr</u>

Contrastive Loss



Calculate the squared Euclidean distance matrix based on the following equation:

 $\mathcal{L}_{\text{tri}}^{m}(x, x^{+}, x^{-}; f) = \max\left(0, \|f - f^{+}\|_{2}^{2} - \|f - f^{-}\|_{2}^{2} + m\right)$



Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In *Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)* (pp. 815-823).

N-pair Loss $\underbrace{f_{1}}_{ONN} \underbrace{f_{2}}_{OO-X \cdot OO} \underbrace{f_{1}}_{f_{2}} \underbrace{f_{2}}_{f_{3}} \underbrace{f_{4}}_{f_{5}} \underbrace{f_{5}}_{f_{5}} \underbrace{f_{$

Multi-Class N-pair loss (Sohn 2016)

N-1 negative example & 1 positive example

$$\mathcal{L}(\{x, x^+, \{x_i\}_{i=1}^{N-1}\}; f) = \log\left(1 + \sum_{i=1}^{N-1} \exp(f^\top f_i - f^\top f^+)\right)$$

Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss objective. *Advances in neural information processing systems*, *29*.

Contrastive Loss

InfoNCE loss (Information Noise-Contrastive Estimation loss)

Setup:

- f_A : The feature vector for the anchor (A)
- f_P : The feature vector for the positive sample (P)
- f_{N_i} : The feature vector for the i-th negative sample (N)

Steps:

- 1. Dot Products (Similarities): Compute the similarity between:
 - Anchor and Positive Anchor and Positive: $sim(A, P) = f_A^T f_P$
 - Anchor and each Negative Anchor and each Negative: $sim(A, N_i) = f_A^T f_{N_i}$ for each N_i
- 2. InfoNCE Loss Formula: The InfoNCE loss for a single anchor-positive pair is: $L = -\log \frac{\exp(\sin(A, P))}{\exp(\sin(A, P)) + \sum_{i=1}^{N} \exp(\sin(A, N_i))}$

This formula maximizes the similarity between the anchor and positive pair while minimizing the similarity between the anchor and all negative pairs.

Anchor-Positive Similarity: $sim(A, P) = f_A^T f_P = 2.5$

Anchor-Negative Similarities:

$$sim(A, N_1) = f_A^{\mathsf{T}} f_{N_1} = 0.5, sim(A, N_2) = f_A^{\mathsf{T}} f_{N_2} = 1.0, sim(A, N_3) = f_A^{\mathsf{T}} f_{N_3} = 0.2$$

1. Calculating exponentials for each similarity:

 $\exp(\sin(A, P)) = \exp(2.5) \approx 12.18$

 $\exp(\sin(A, N_1)) = \exp(0.5) \approx 1.65$

 $\exp(\sin(A, N_2)) = \exp(1.0) \approx 2.72$

 $\exp(\sin(A, N_3)) = \exp(0.2) \approx 1.22$

2. Sum of exponentials:

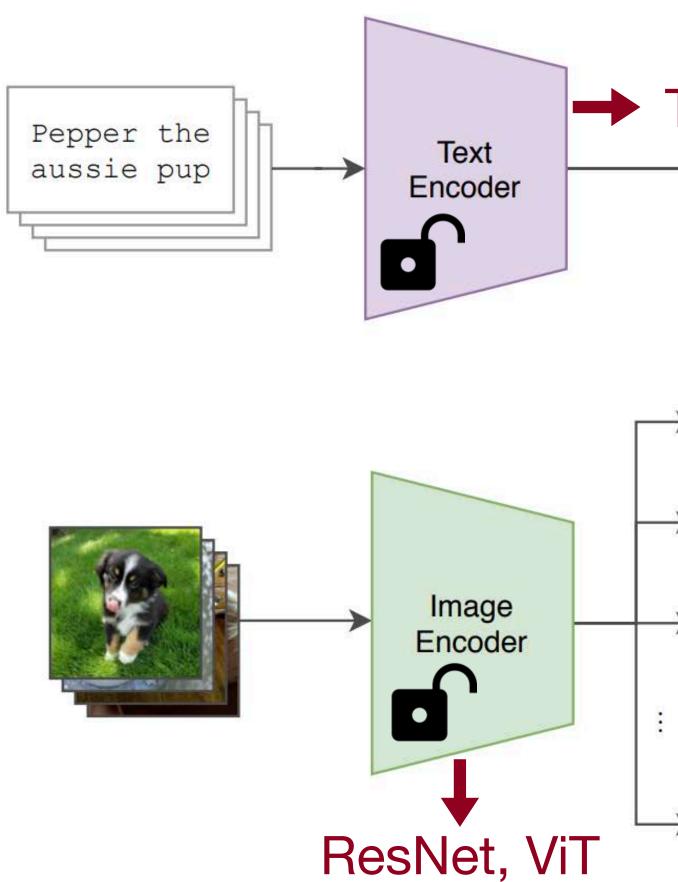
Total = 12.18 + 1.65 + 2.72 + 1.22 = 17.77

3. The InfoNCE loss calculation:

$$L = -\log\left(\frac{12.18}{17.77}\right)$$
$$L = -\log(0.686) \approx 0.376$$

CLIP - Pretraining

Contrastive Pre-training

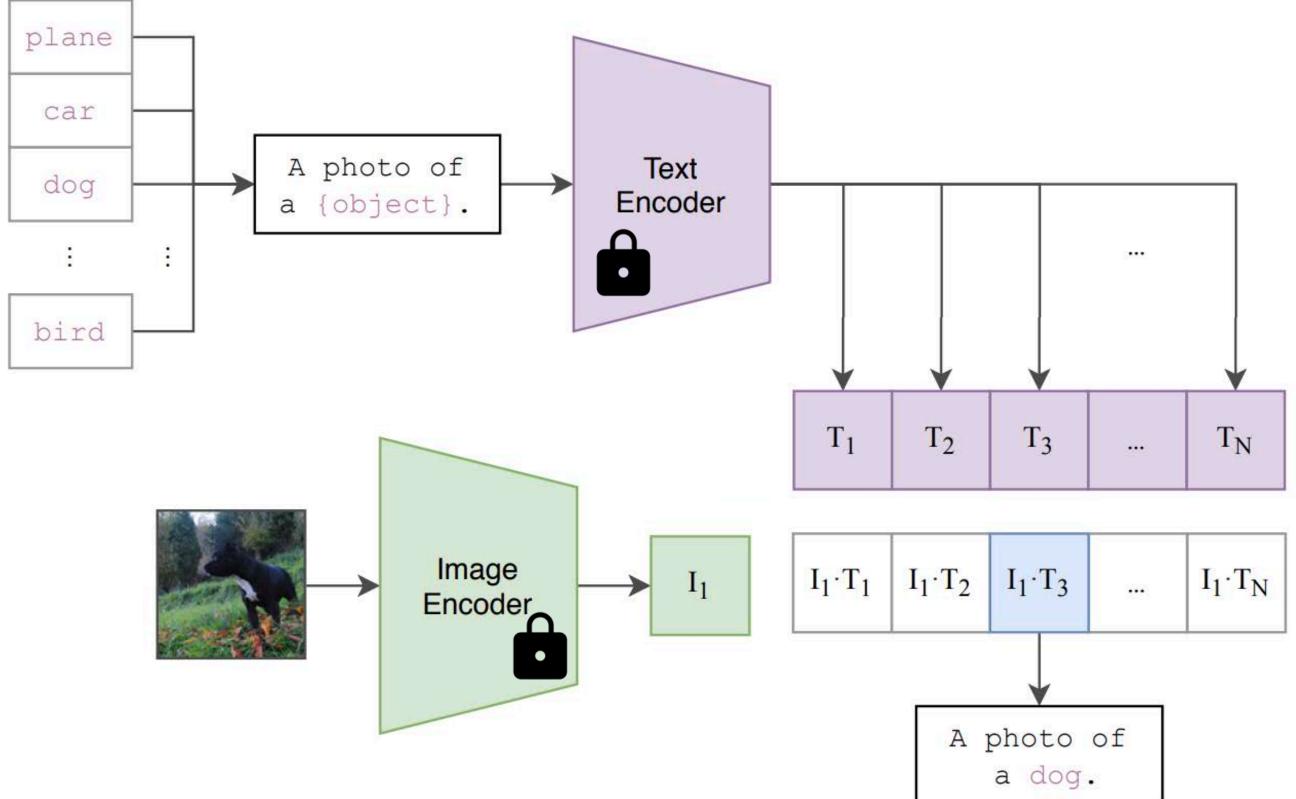


Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In International Conference on Machine Learning (ICML) 2021, Vol. 139. 8748–8763. 19

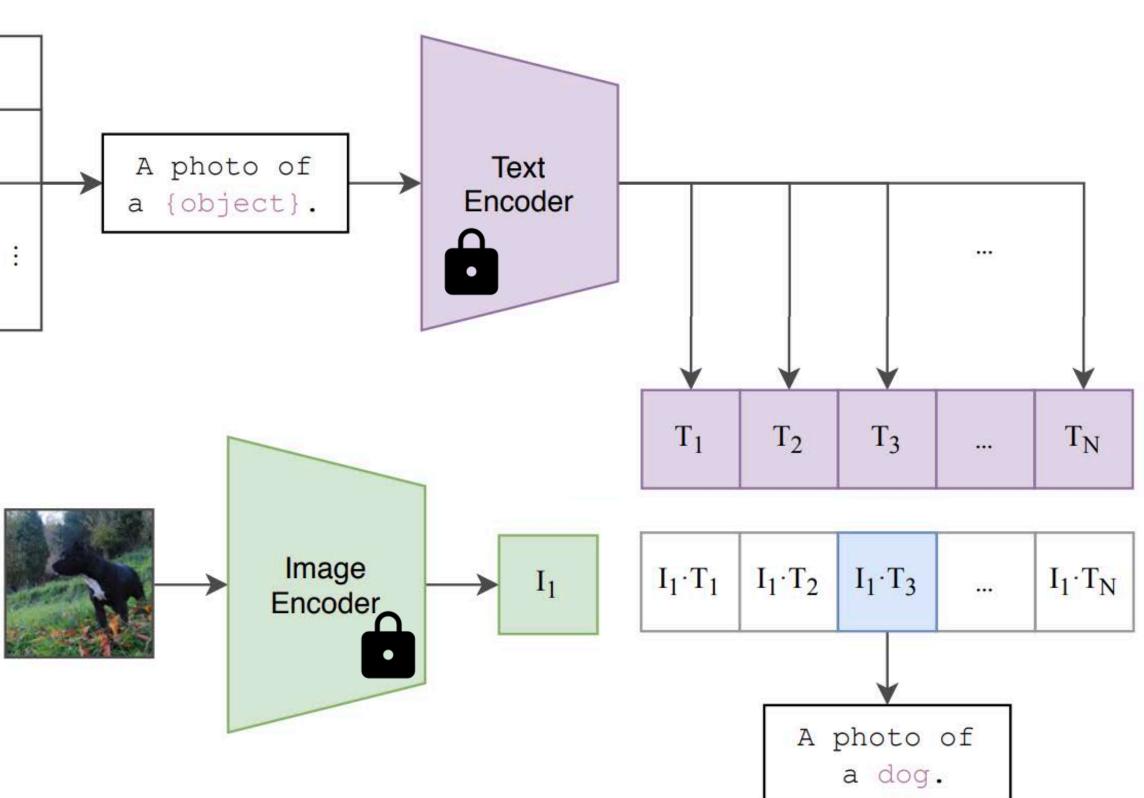
Transformer

		•	•			
		T ₁	T ₂	T ₃		T _N
→	I ₁	$I_1 \cdot T_1$	$I_1 \cdot T_2$	I ₁ ·T ₃	÷	$I_1 \cdot T_N$
>	I ₂	$I_2 \cdot T_1$	$I_2 \cdot T_2$	$I_2 \cdot T_3$		$I_2 \cdot T_N$
->	I ₃	$I_3 \cdot T_1$	I ₃ ·T ₂	I ₃ ·T ₃		I ₃ ·T _N
:	÷		:		•.	
→	I _N	$I_N \cdot T_1$	$I_N T_2$	I _N ·T ₃		$I_N \cdot T_N$

Create dataset classifier from label text



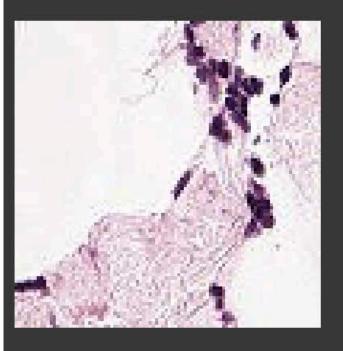
Use for Zero-shot Prediction



Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In International Conference on Machine Learning (ICML) 2021, Vol. 139. 8748–8763. 20

CLIP - Usage

healthy lymph node tissue (77.2%) Ranked 2 out of 2 labels



× this is a photo of **lymph node tumor tissue**

✓ this is a photo of healthy lymph node tissue

CIFAR-10 bird (40.9%) Ranked 1 out of 10 labels

✓ a photo of a bird.	
× a photo of a cat .	
× a photo of a deer .	
× a photo of a frog .	
× a photo of a dog .	

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In International Conference on Machine Learning (ICML) 2021, Vol. 139. 8748–8763. 21

CLIP - Results

ImageNet-A (Adversarial)

lynx (47.9%) Ranked 5 out of 200 labels

× a photo of a fox squirrel.

× a photo of a mongoose.

 \times a photo of a **skunk**.

× a photo of a red fox.

✓ a photo of a lynx.

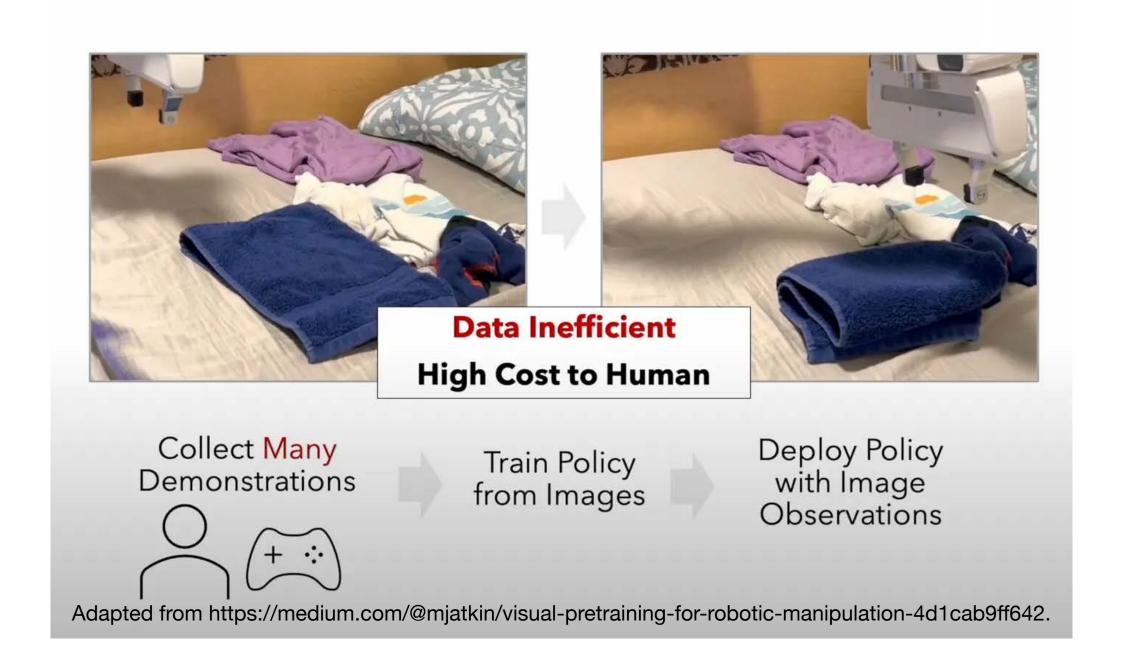
CLEVR Count

4 (75.0%) Ranked 2 out of 8 labels

× a photo of 3 objects.
\checkmark a photo of 4 objects.
× a photo of 5 objects.
× a photo of 6 objects.
× a photo of 10 objects.

Pretraining in Robotics

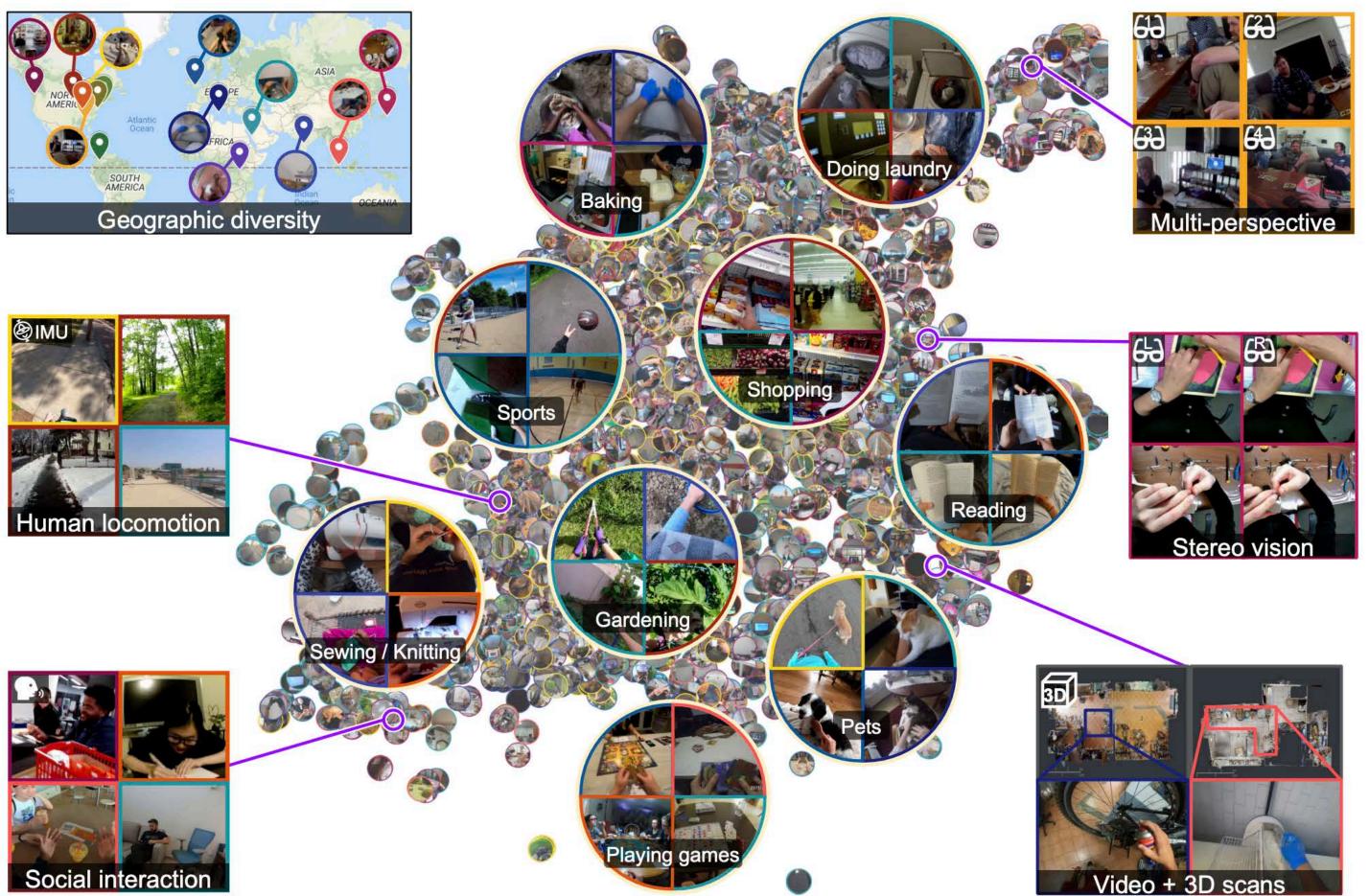
Download **Pre-Trained** Representation

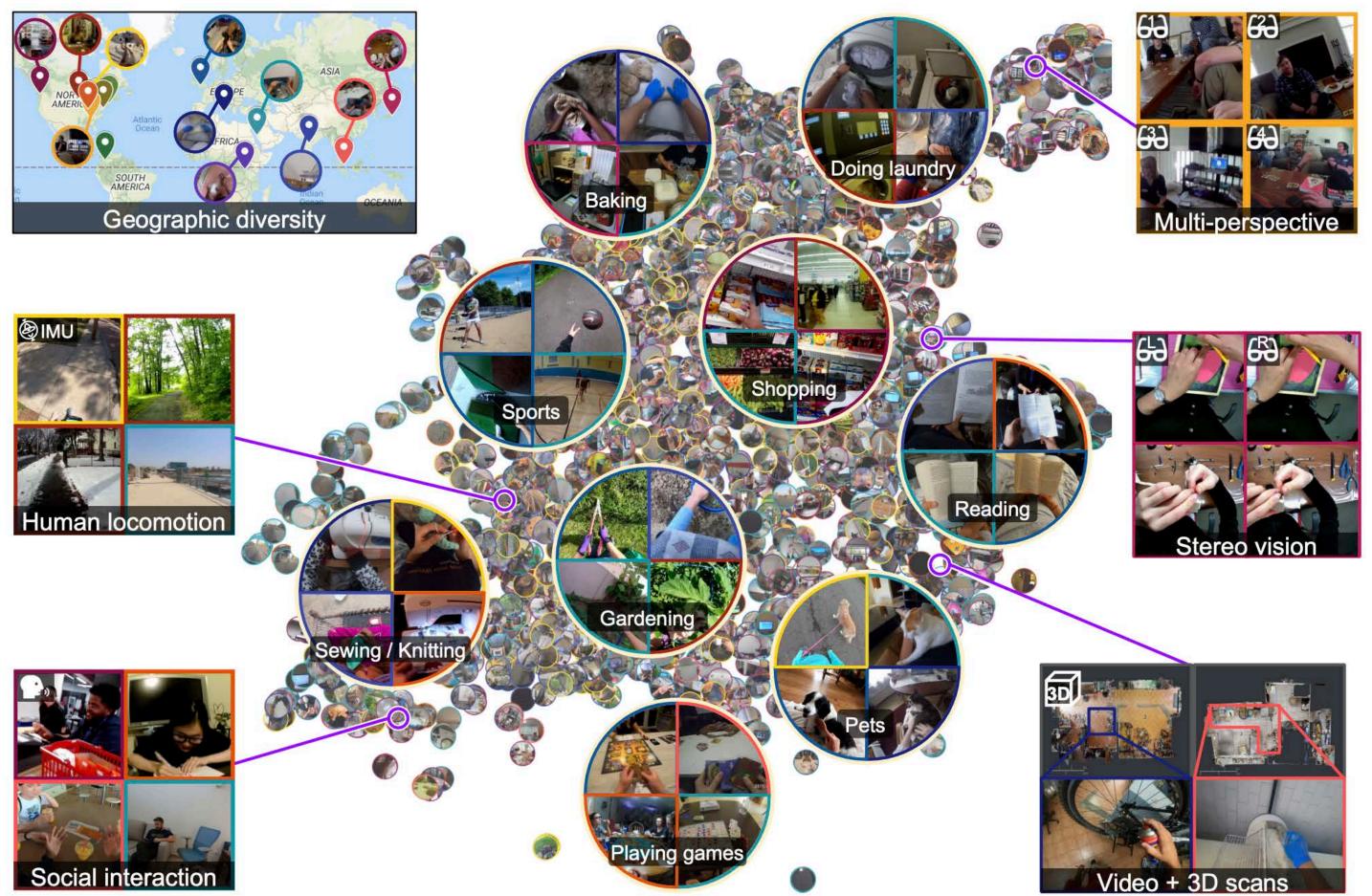


Robotics Pretrain Dataset

Ego4D

- Ego = egocentric
- 4D = 3D spatial + temporal information
- 3,670 hours of daily life activity video
- hundreds of scenarios





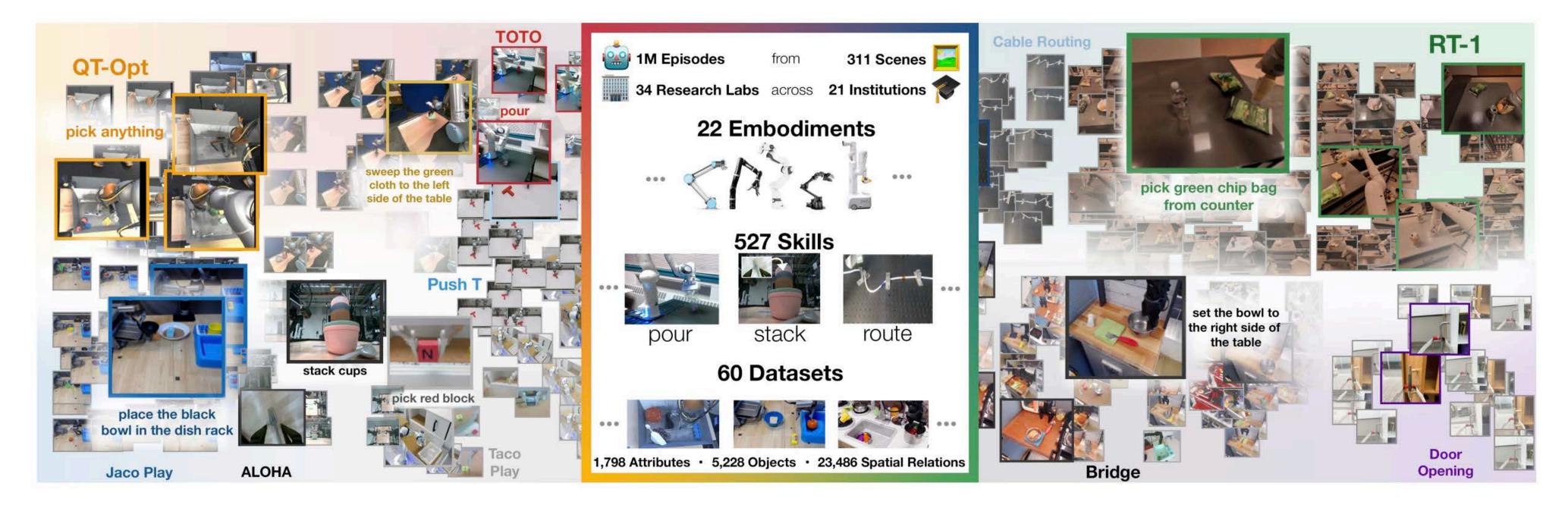
Goyal, R., Ebrahimi Kahou, S., Michalski, V., Materzynska, J., Westphal, S., Kim, H., ... & Memisevic, R. (2017). The something something video database for learning and evaluating visual common sense. In Proceedings of the IEEE international conference on computer vision (ICCV) (pp. 5842-5850).

Robotics Pretrain Dataset

Open X-Embodiment

22 different robots

527 skills (160266 tasks)



O'Neill, A., Rehman, A., Gupta, A., Maddukuri, A., Gupta, A., Padalkar, A., ... & Fei-Fei, L. (2023). Open x-embodiment: Robotic learning datasets and rt-x models. *arXiv preprint arXiv:2310.08864*.

Robotics Pretrain Dataset

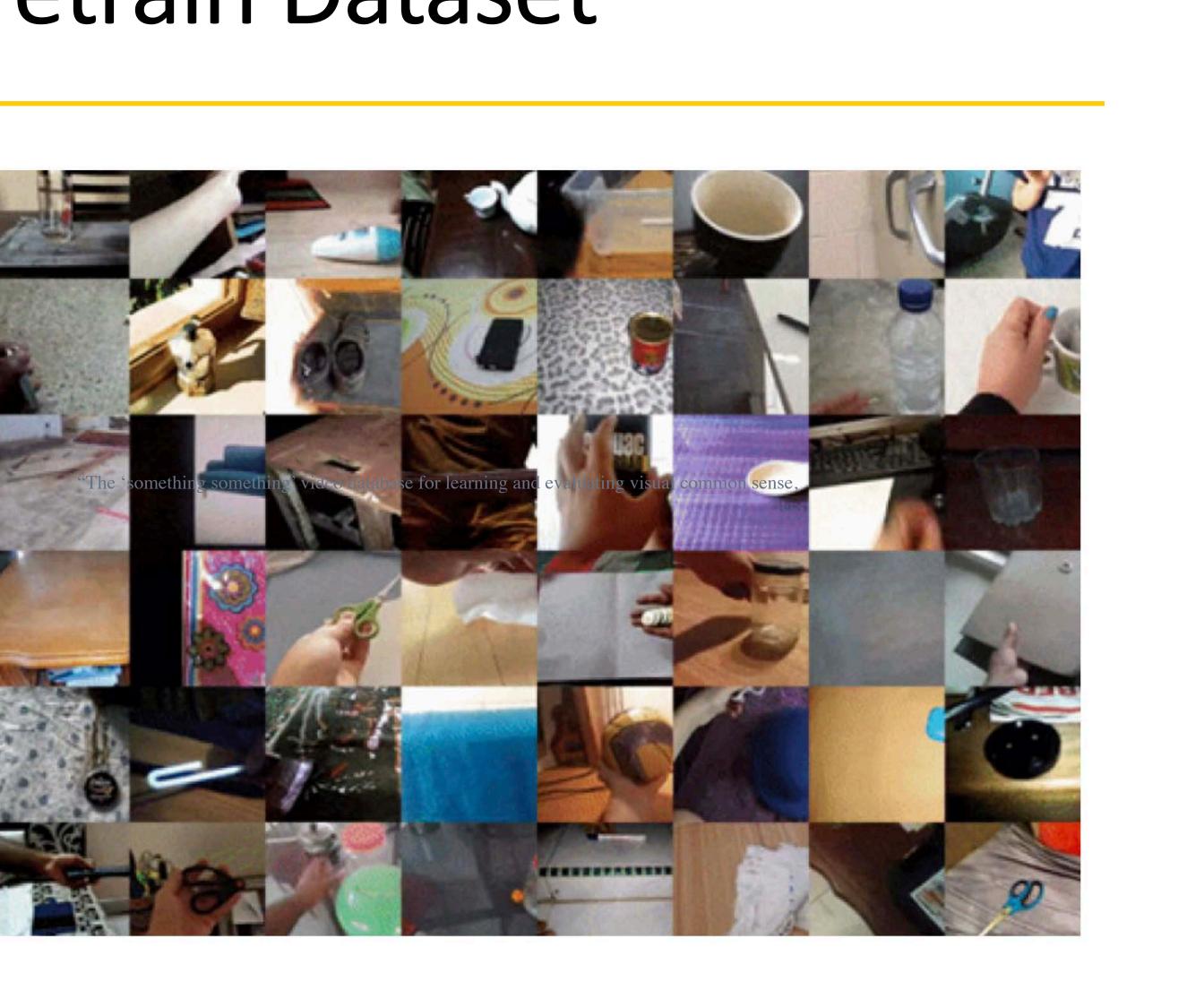
Something-something-v2

220,847 short video clips

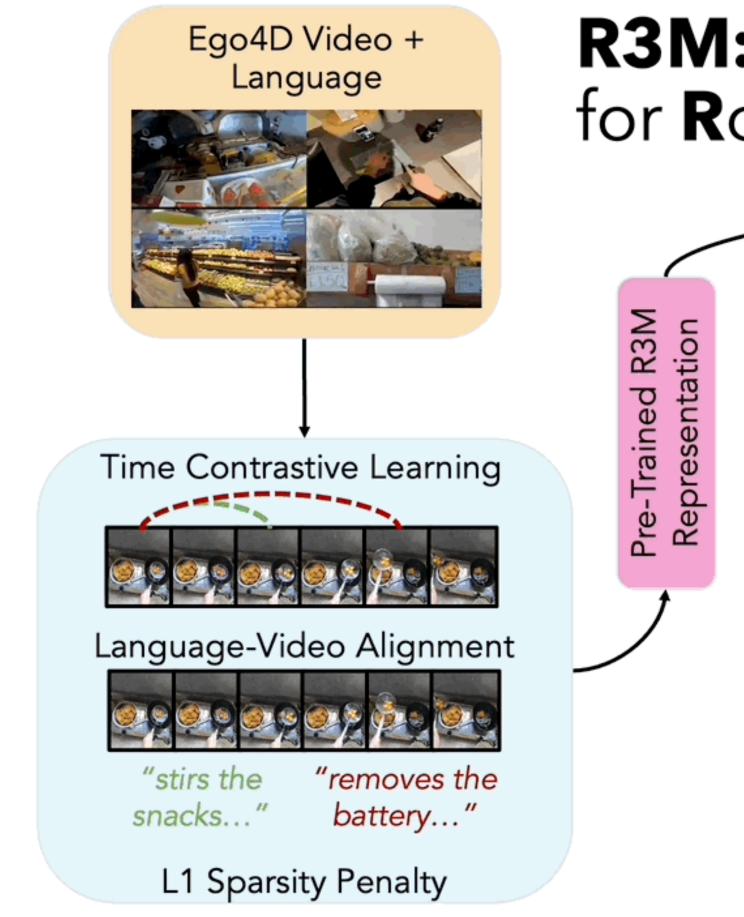
humans perform simple actions with everyday objects

174 unique action labels with a specific type of interaction

Goyal, R., Ebrahimi Kahou, S., Michalski, V., Materzynska, J., Westphal, S., Kim, H., ... & Memisevic, R. (2017). The something something video database for learning and evaluating visual common sense. In *Proceedings of the IEEE international conference on computer vision* (pp. 5842-5850).



R3M: A Universal Visual Representation for Robot Manipulation



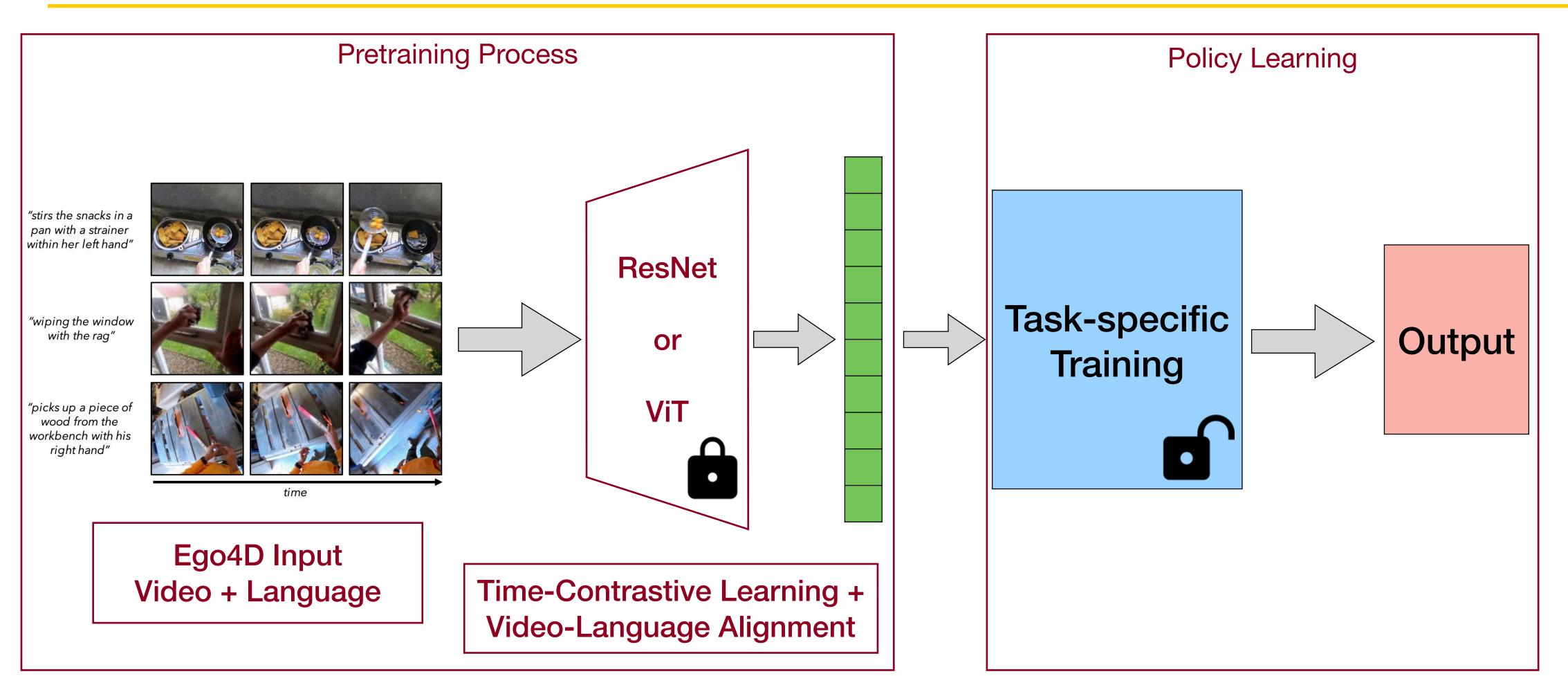
Nair, S., Rajeswaran, A., Kumar, V., Finn, C., & Gupta, A. R3M: A universal visual representation for robot manipulation. In Conference on Robot Learning (CoRL) 2022.

R3M: Reusable Representations for Robotic Manipulation

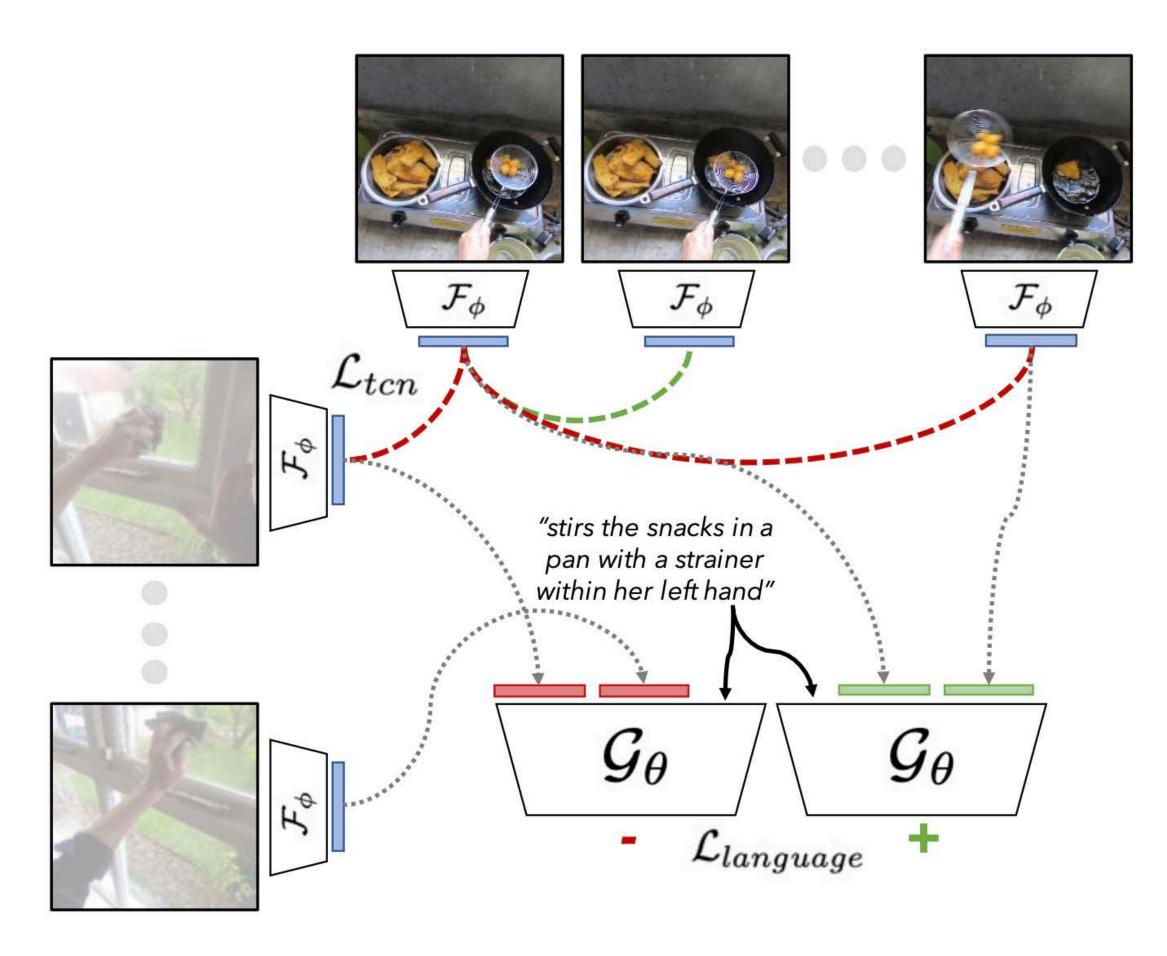
Efficient Robot Learning

New Environment, New Tasks

R3M - Pipeline



Nair, S., Rajeswaran, A., Kumar, V., Finn, C., & Gupta, A. R3M: A universal visual representation for robot manipulation. In Conference on Robot Learning (CoRL) 2022.

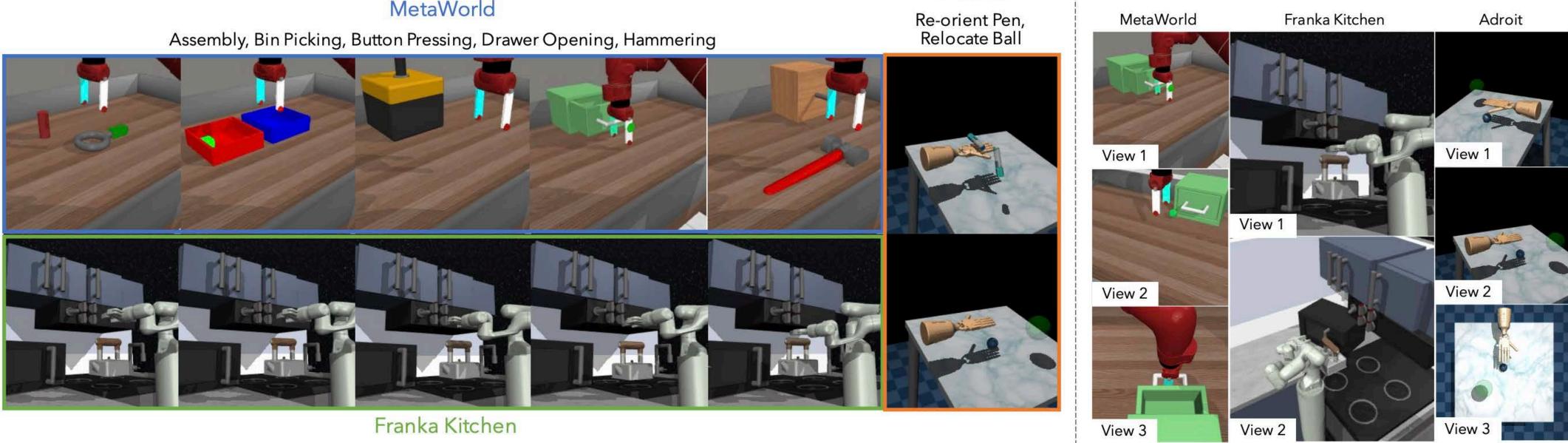


Conference on Robot Learning (CoRL) 2022.

R3M Training

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., & Gupta, A. R3M: A universal visual representation for robot manipulation. In

MetaWorld

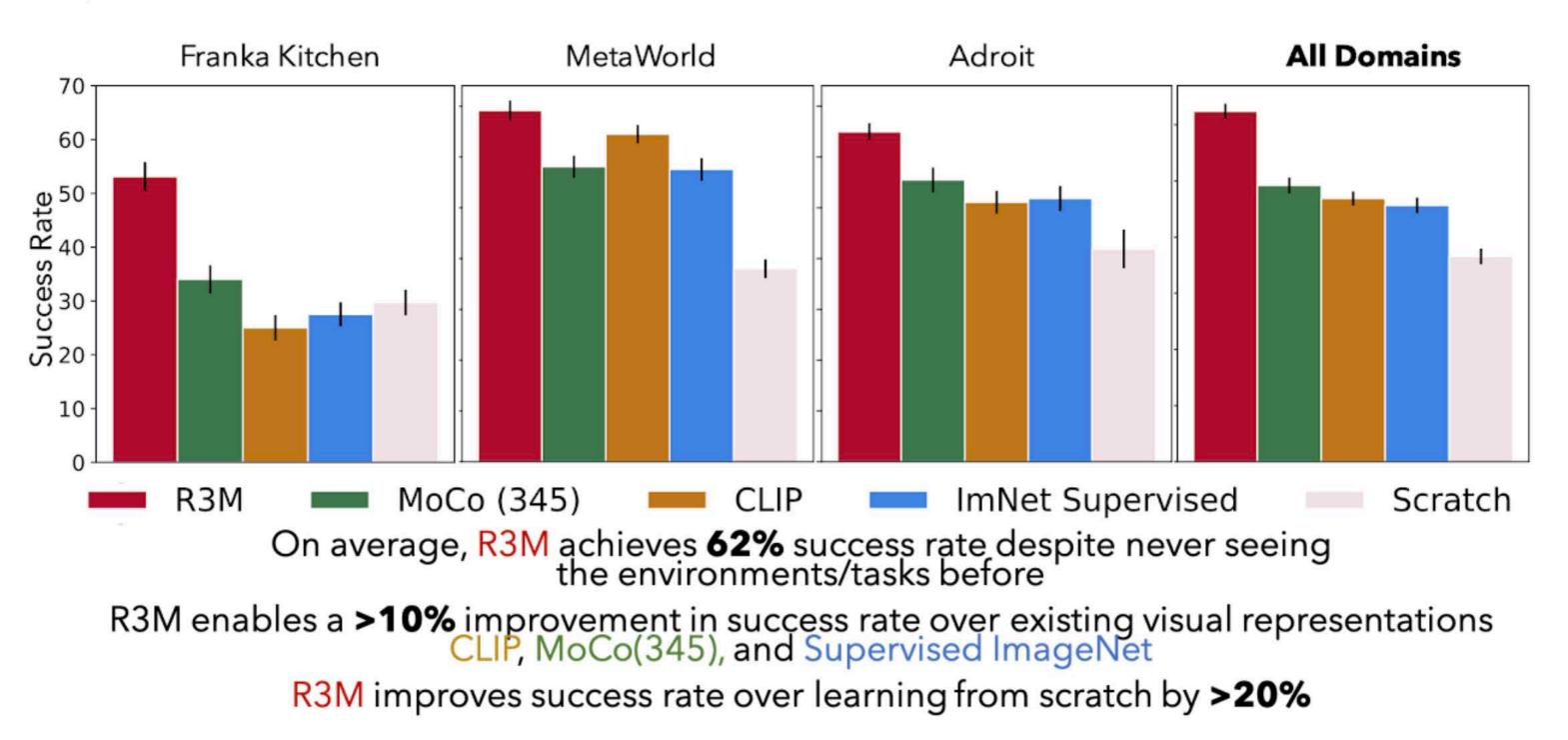


Sliding Door, Turning Light On, Opening Door, Turning Knob, Opening Microwave

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., & Gupta, A. R3M: A universal visual representation for robot manipulation. In Conference on Robot Learning (CoRL) 2022.

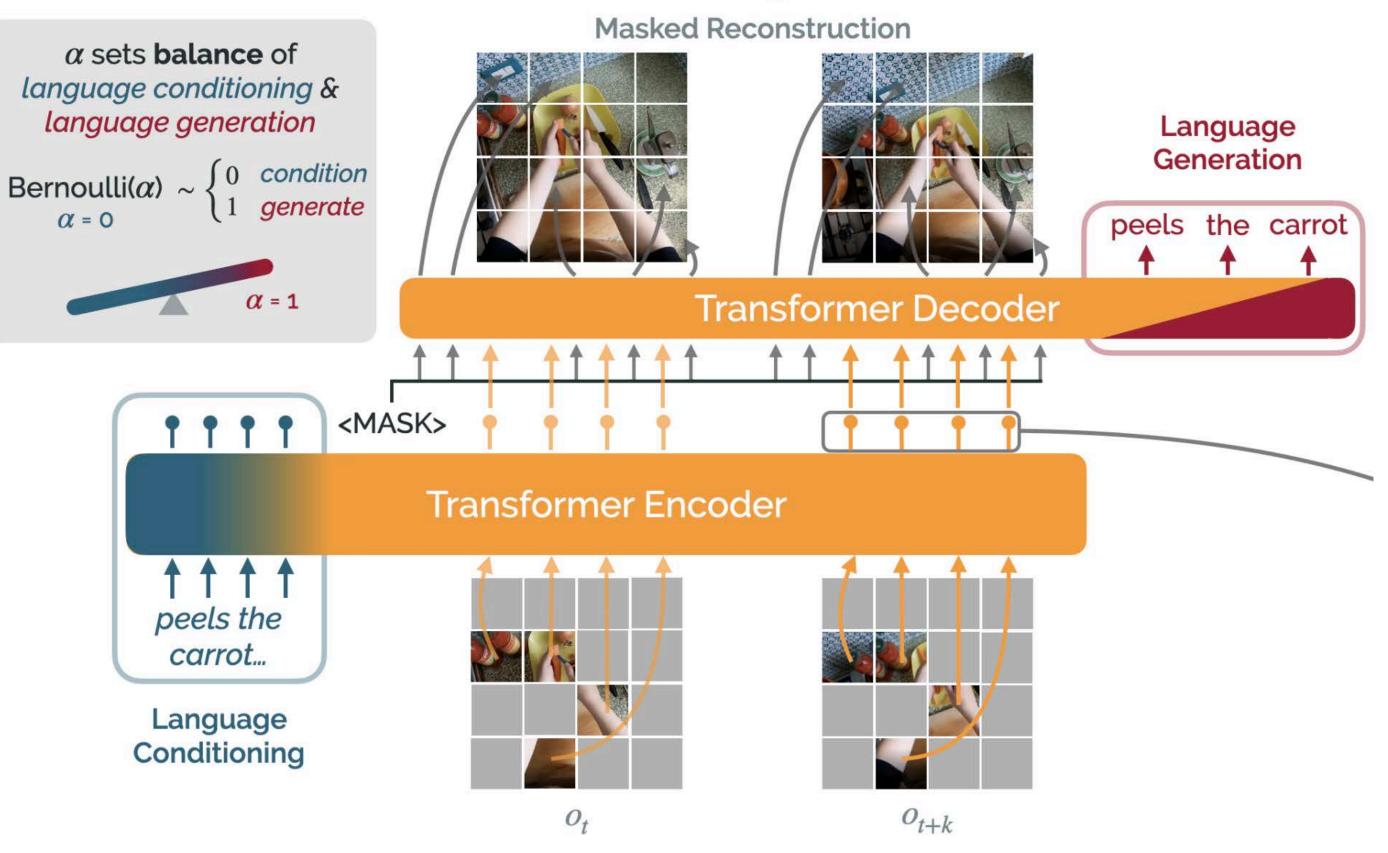
R3M - Evaluations

We also demonstrate that pre-trained R3M representation enables data efficient imitation learning in a comprehensive simulation evaluations across three different benchmarks



Nair, S., Rajeswaran, A., Kumar, V., Finn, C., & Gupta, A. R3M: A universal visual representation for robot manipulation. In Conference on Robot Learning (CoRL) 2022.

R3M - Results

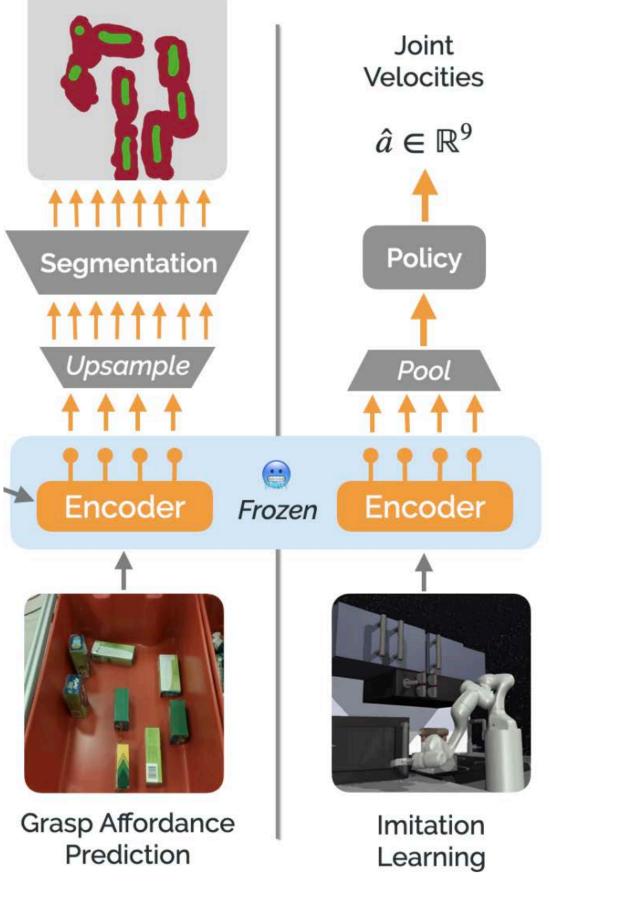


Karamcheti, S., Nair, S., Chen, A. S., Kollar, T., Finn, C., Sadigh, D., & Liang, P. (2023). Language-driven representation learning for robotics. arXiv preprint arXiv:2302.12766.

Voltron

Pretraining

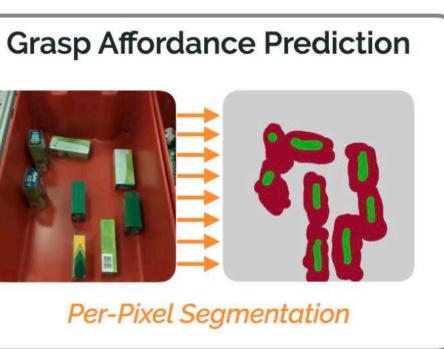
Downstream Adaptation

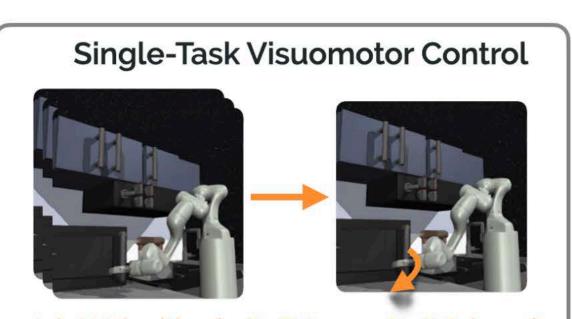


Per-Pixel Segmentation

Karamcheti, S., Nair, S., Chen, A. S., Kollar, T., Finn, C., Sadigh, D., & Liang, P. (2023). Language-driven representation learning for robotics. arXiv preprint arXiv:2302.12766.

Voltron Evaluation





Joint Velocities (7-DoF Arm, 2-DoF Gripper)

Referring Expression Grounding

"The blue black pen on the front left of the orange can."

Bounding Box Coordinates

Language-Conditioned Imitation

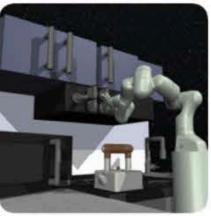
"Toss the bag of chips in the trash"

End-Effector Poses (Position, Orientation)

Voltron Results

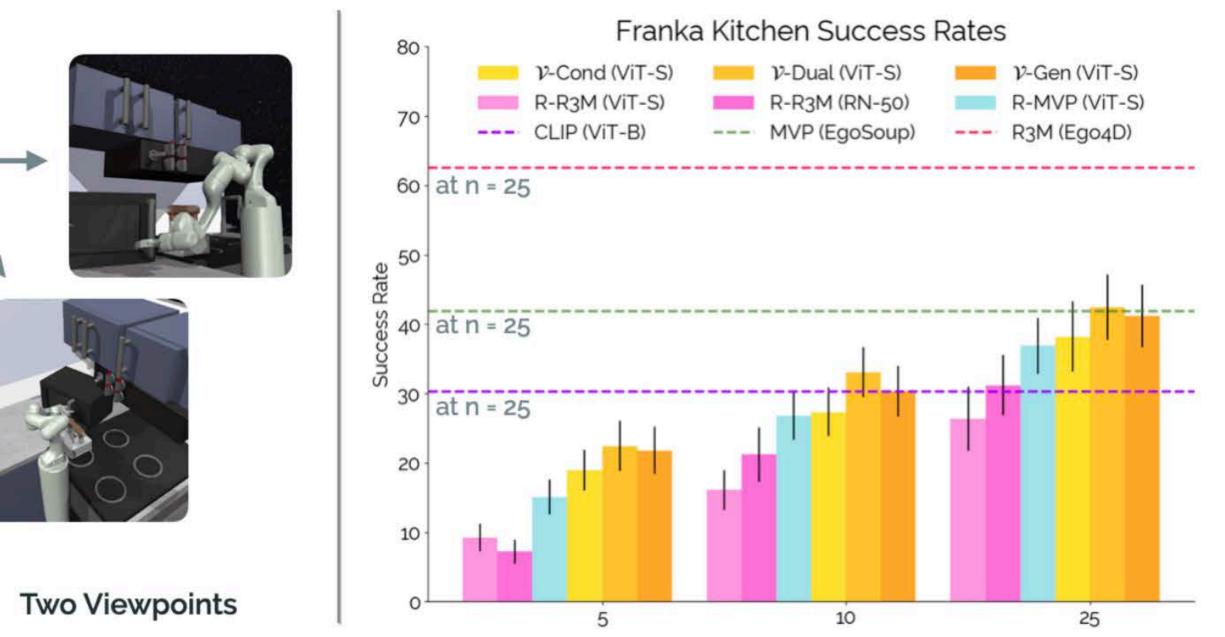
Franka Kitchen Environments

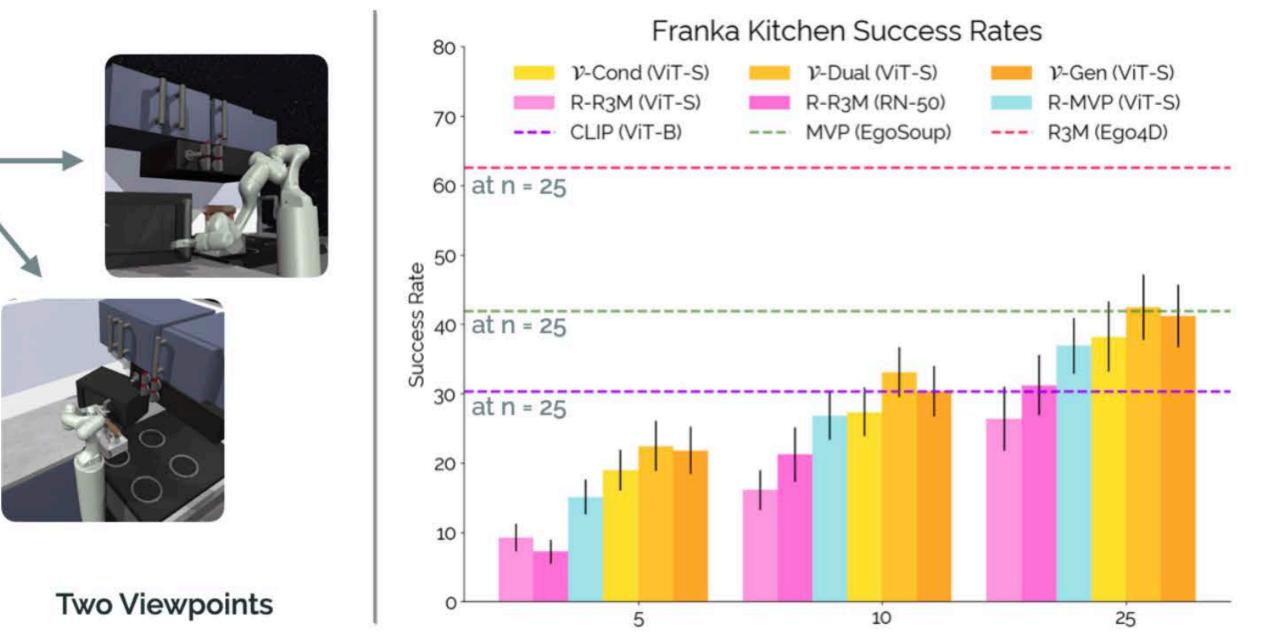
Slide Door



Turn Knob

Open Microwave





Flip Light Switch

Open Door

Five Tasks

Figure 5: Franka Kitchen - Single-Task Visuomotor Control Results. Visualization of the Franka Kitchen evaluation environments, comprised of five unique tasks, with two camera viewpoints [Left]. Results (success rate for each of n demonstrations) for V oltron and baselines, showing the benefit of language-driven learning (over 3 seeds) [Right]. In dashed lines (not directly comparable), we plot CLIP (*ViT-B*), *MVP* (*EgoSoup*), and *R3M* (*Ego4D*) trained with n = 25 demonstrations.

Karamcheti, S., Nair, S., Chen, A. S., Kollar, T., Finn, C., Sadigh, D., & Liang, P. (2023). Language-driven representation learning for robotics. arXiv preprint arXiv:2302.12766.

Why we need pretrain?

- Data Efficiency
- Transferability and Faster Learning
- Better Performance
- Generalization

Next Lecture: Student Lecture **RGB-D Networks and Manipulation**

DeepRob Lecture 17

Lecture 17 Pretraining for Robot Manipulation University of Minnesota

