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@ Project 3 — Releases today

* |nstructions available on the website
* Here: https://rpm-lab.qithub.io/CSCI5980-F24-

Chor—hos ;sllirg%marker
DeepRob/projects/project3/ | T

« Uses PROPS Detection dataset

ture fish_can

* Implement CNN for classification and Faster R-CNN

for detection

» Autograder will be available soon!

* Due Monday, October 28th 11:59 PM CT

L\ |



https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project3/
https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project3/
https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project3/
https://rpm-lab.github.io/CSCI5980-Spr23-DeepRob/datasets/props-detection/

@ Last lecture

Challenges in going from Prediction to Control| | There is feedback and associated issues!




L ast lecture
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A Reduction of Imitation Learning and Structured Prediction Step 1: Collect Human Demonstrations \) ”
to No-Regret Online Learning and Train initial policy 7 [
\ J
Stéphane Ross Geoffrey J. Gordon J. Andrew Bagnell 4
R(_)botics lnstitu_tc . Machine.beaming Demm R(?bodcs Institu.tc .
pEeMATUNTY  pmmeNdmineny e Step 2: Rollout 7( . ) to collect new states
stephaneross @cmu.edu ggordon@cs.cmu.edu dbagnell @ri.cmu.edu .
X, or observations o,
e
Initialize D « 0. 1
Initialize 7; to any policy in IL
fori = 1to N do Step 3: Ask human for correct action
Let m; = Bx* + (1 — B} Learned Data
Sample T'-step trajectories using ;. \
Get dataset D; = {(s,7*(s))} of visited states by T,
and actions given by expert. :
Aggregate datasets: D «— D | D;. .
Train classifier #:+1 on D. Step 4: Aggregate data & train 7z( . )
end for
Return best 7; on validation. N 7/
Algorithm 3.1: DAGGER Algorithm.

DAgger: Data Aggregation

Problem: the expert is asked to correct almost every time
step, which can be expensive or infeasible.
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@ HG-DAgger (Human-Gated DAgger)

( )
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2018 ' Step 1: Collect Human Demonstrations
and Train initial policy 7«
HG-DAgger: Interactive Imitation Learning with Human Experts . D
Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J. Kochenderfer ~ ~

Step 2: Rollout 7z( . ) to collect new states
X, or observations o,

Algorithm 1 HG-DAGGER

I: procedure HG-DAGGER(my, TN, Dgie) . y
2: D« Dgc

3: 1 []

4: for ecpochi=1: K s : . : A
.. for rollout j = 1: M Step 3: Ask human - is this action

6: for timestep ¢ € T of rollout | acceptable?

7: if °XP°“;“*S COD‘;:I'EI - If yes, record the state action pair as is

8: It I y 1nt : .

| TecOi expe . else, record the current state and action by

9: if expert 1s taking control he h
10: record doubt into . the human expert )
11: D«—DU DJ'
12: append Z; to Z a A
1 train 7y, on D Step 4: Aggregate data & train z( . )
14: T ¢ f(I)
15: return wy, . T - V),

“As a result, HG-DAGGER is not suitable for application in those realworld domains

where the human expert cannot quickly identify and react to unsafe situations.”
5




DAgger vs. HG-DAgger

Step 1: Collect Human Demonstrations
and Train initial policy 7

~
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Step 2: Rollout 7z( . ) to collect new states
X, or observations o,

W

Step 3: Ask human for correct action

_J

J

Step 4: Aggregate data & train 7( . )

W
J

Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell. "A reduction of imitation
learning and structured prediction to no-regret online learning." In Proceedings of
the fourteenth international conference on artificial intelligence and statistics, pp.

627-635. JMLR Workshop and Conference Proceedings, 2011.
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Step 1: Collect Human Demonstrations
and Train initial policy 7«

~

J

~

-

Step 2: Rollout 7z( . ) to collect new states
X, or observations o,

~

J

Step 3: Ask human - is this action
acceptable?
If yes, record the state action pair as is
else, record the current state and action
by the human expert

\_

Step 4: Aggregate data & train 7( . )

y

M. Kelly, C. Sidrane, K. Driggs-Campbell and M. J. Kochenderfer, "HG-DAgger:
Interactive Imitation Learning with Human Experts," 2079 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019



DAgger vs. HG-DAgger
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Fig. 3: Mean road departure rate per meter over training epochs.
Error bars represent standard deviation.

M. Kelly, C. Sidrane, K. Driggs-Campbell and M. J. Kochenderfer, "HG-DAgger:
Interactive Imitation Learning with Human Experts," 2079 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019




@ DAgger shows the human interventions are needed to
tackle the distributional shift problem we have when we
move from prediction tasks to control tasks

HG-DAgger shows that we reduce the number of human
interventions i.e. only when it is needed.

But can we get more information than just corrected
action from an expert?

In addition to correcting the actions, can we ask the expert to
provide us with cost?
M.e. not all errors are equal, there must be cost associated with it

8



AGGREVAI E:

Aggregate Values to Imitate

Reinforcement and Imitation Learning

via Interactive No-Regret Learning

Stéphane Ross  J. Andrew Bagnell
stephaneross@cmu.edu dbagnell@ri.cmu.edu
The Robotics Institute
Camegie Mellon University,

Pittsburgh, PA, USA

—

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

Initialize D <+ (), 71 to any policy in II.
for: =1to N do
Let m; = ;7 + (1 — B;)@; #Optionally mix in expert’s own behavior.
Collect m data points as follows:
for ) =1tomdo
Sample uniformly ¢ € {1,2,...,T}.
Start new trajectory in some initial state drawn from initial state distribution
Execute current policy 7; up to time £ — 1.
Execute some exploration action a; 1n current state s; at time ¢

Execute expert from time ¢ + 1 to 7', and observe estimate of cost-to-go Q starting at time ¢
end for )
Get dataset D; = {(s,t,a,Q)} of states, times, actions, with expert’s cost-to-go.
Aggregate datasets: D < D | D;.
Train cost-sensitive classifier m; .1 on D
(Alternately: use any online learner on the data-sets D; in sequence to get T; 1 )
end for
Return best 7; on validation.




Reinforcement and Imitation Learning
via Interactive No-Regret Learning

Stéphane Ross  J. Andrew Bagnell
stephaneross@cmu.edu dbagnell@ri.cmu.edu
The Robotics Institute
Camegie Mellon University,

Pittsburgh, PA, USA

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

Initialize D « (), 71 to any policy in II.
for: =1to N do
Let m; = B;7* + (1 — B;)#; #Optionally mix in expert’s own behavior.
Collect m data points as follows:
for j =1tomdo
Sample uniformly ¢ € {1,2,...,T}.
Start new trajectory in some initial state drawn from initial state distribution
Execute current policy 7r; up to time ¢ — 1.
Execute some exploration action a; in current state s; at time ¢

Execute expert from time ¢ 4+ 1 to 7', and observe estimate of cost-to-go () starting at time ¢
end for )
Get dataset D; = {(s,t, a, Q)} of states, times, actions, with expert’s cost-to-go.
Aggregate datasets: D < D D;.
Train cost-sensitive classifier ;.1 on D
(Alternately: use any online learner on the data-sets D; in sequence to get 7; 1 )
end for
Return best 7; on validation.

AGGREVA | E: Aggregate Values to Imitate

~ )
Step 1: Collect Human Demonstrations and Train

initial policy &
- »

e R
Step 2: Rollout 7( . ) to collect new states x, or

observations o,

Step 3: Ask human expert:

1. What is the expected future cost (or error) from
the current state if the agent were to follow its
own policy &

2. What is an optimal action from this current
state?

a )
Step 4: Aggregate data (state-action pairs, cost-

to-go estimates) & train 7( . ) to minimize both the
Immediate cost and the future cost

\_ 10/




DR

Cost-to-go in seems familiar to Reward signal
or Value function in Reinforcement learning!

So potentially we can combine this with
Reinforcement learning.

Bootstrapping RL via Imitation.

L\



Published as a conference paper at ICLR 2018

TRUNCATED HORIZON POLICY SEARCH: COMBINING |
| REINFORCEMENT LEARNING & IMITATION LEARNING

Wen Sun J. Andrew Bagnell Byron Boots
Robotics Institute Robotics Institute School of Interactive Computing
Carnegie Mellon University  Carnegie Mellon University  Georeia Institute of Technoloev
Pittsburgh, PA, USA Pittsburgh, PA, USA
wensunfcs.cmu.edu dbagnell@cs.cmu.edu
D Fast P olicy Learning thr Ollgh Imitation and Reinforcement
|
. . Ching-An Cheng Xinyan Yan Nolan Wagener Byron Boots
Dual POhcy Iteration Georgia Tech Georgia Tech Georgia Tech Georgia Tech
— Atlanta, GA 30332 Atlanta, GA 30332 Atlanta, GA 30332 Atlanta, GA 30332

Wen Sl.llll, Geon'rey J. Gordonl, Byron BO()(S“',, and J. An‘m’wm—

!School of Computer Science, Carnegie Mellon University, USA
2College of Computing, Georgia Institute of Technology, USA

3 Aurora Innovation, USA
{wensun, ggordon, dbagnell}@cs.cmu.edu, bboots@cc.gatech.edu
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DR

Coming back to Robot Manipulation




Evolving Policy Learning Methods ...

BC-MLP

BC-RNN

Be T- Behavior Transformers
IBC Implicit behavior cloning
Diffusion Policy

Action Chuncking Transformers

14
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BC-MLP (Behavior Cloning with Multi-Layered
Perceptron)

Predicted Actions u,

L — e e

Image Observation o,

Feature Vector

15



BC-RNN (Behavior Cloning with Recurrent Neural
Network)

Image Observation o,_,

~— Predicted Actions 1,

Image Observation o,

16



BeT- Behavior Transformers

A. Continuous action binning

Continuous action Clustering into
dataset (|A| x a) k bins

Categorical action bin

(1 x k)
, N I N ,
_— <Ej:l:1/ - o
Continuous ) Continuous
action Action offset action

(1 x a) k means (1 x a) k means (1 x a)
encoder decoder

Figure 3: Architecture of Behavior Transformer. (A) The continuous action binning using k-means algorithm
that lets BeT split every action into a discrete bin and a continuous offset, and later combine them into one
full action. (B) Training BeT using demonstrations offline; each ground truth action provides a ground truth
bin and residual action, which is used to train the minGPT trunk with its binning and action offset heads. (C)
Rollouts from BeT in test time, where it first chooses a bin and then picks the corresponding offset to reconstruct
a continuous action.

Shafiullah, Nur Muhammad, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. "Behavior transformers: Cloning $ k $ modes with
one stone." Advances in neural information processing systems 35 (2022): 22955-22968.




IBC: Implicit Behavior Cloning

predicted predicted Eg (O,a)
actions actions

Explicit Policy Implicit Policy

argmin [Fyg(o.,a)

(a) (b) argmin FEjy(o,a)
l =) Y . : l N I >, N ‘ . : - J
observations observations actons acA

Figure 1. (a) In contrast to explicit policies, implicit policies leverage parameterized energy functions that take both observations (e.g. images) and
actions as inputs, and optimize for actions that minimize the energy landscape (b). For learning complex, closed-loop, multimodal visuomotor tasks
such as precise block insertion (c¢) and sorting (d) from human demonstrations, implicit policies perform substantially better than explicit ones.

IM Florence, Pete, Corey Lynch, Andy Zeng, Oscar A. Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, and

Jonathan Tompson. "Implicit behavioral cloning." In Conference on Robot Learning, pp. 158-168. PMLR, 2022. 18




Diffusion Policy

Action
Representation
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(a) Explicit Policy (b) Implicit Policy (c) Diffusion Policy

EM@I Chi, Cheng, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. "Diffusion policy:

Visuomotor policy learning via action diffusion." The International Journal of Robotics Research (2023): 02783649241273668. 19



ACT: Action Chunking with Transformers

action sequence

O-0-0-00 0 BO00-E
T 1T T 1

transformer transformer
encoder decoder

[CLS) Joints  action sequence + PosEmb 4B0XEA0X3 Er“:o cam 1 cam4 joints 2 position embeddings (fixed)

| 2 style variable 1 g ,‘. '

transformer
encoder

Fig. 4: Architecture of Action Chunking with Transformers (ACT). We train ACT as a Conditional VAE (CVAE), which has an encoder and a
decoder. Left: The encoder of the CVAE compresses action sequence and joint observation into z, the style variable. The encoder is discarded
at test ime. Right: The decoder or policy of ACT synthesizes images from multiple viewpoints, joint positions, and z with a transformer

encoder, and predicts a sequence of actions with a transformer decoder. z 1s simply set to the mean of the prior (1.e. zero) at test ume.

EM@I Zhao, Tony Z., Vikash Kumar, Sergey Levine, and Chelsea Finn. "Learning fine-grained bimanual manipulation with low-cost

hardware." arXiv preprint arXiv:2304.13705 (2023). 50



@ ACT: Action Chunking with Transformers
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Fig. 5: We employ both Action Chunking and Temporal Ensembling
when applying actions, instead of interleaving observing and executing.

Zhao, Tony Z., Vikash Kumar, Sergey Levine, and Chelsea Finn. "Learning fine-grained bimanual manipulation with low-cost
hardware." arXiv preprint arXiv:2304.13705 (2023).



Handling Diverse Behaviors

Jia, Xiaogang, Denis Blessing, Xinkai Jiang, Moritz Reuss, Atalay Donat, Rudolf Lioutikov, and Gerhard Neumann. "Towards diverse
behaviors: A benchmark for imitation learning with human demonstrations." arXiv preprint arXiv:2402.14606 (2024).

(d) BeT (e) BESO (f) DDPM-ACT

22
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Next Lecture;:
Transformers
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