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Object Detection
University of Minnesota

1Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
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Deep Learning Software

Static Graphs vs Dynamic Graphs

PyTorch vs TensorFlow

Slides are posted on webpage
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So far: Image Classification

Justin Johnson March 7, 2022Lecture 13 -

So Far: Image Classification

9

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...This image is CC0 public domain Vector:

4096

Fully-Connected:
4096 to 1000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Chocolate Pretzels
Granola Bar
Potato Chips
Water Bottle

PopcornVector: 
4096

Fully connected: 
4096 to 10



4

Computer Vision Tasks

Classification
Semantic 

Segmentation
Object  

Detection
Instance  

Segmentation

“Chocolate Pretzels”

No spatial extent

Chocolate Pretzels,  
Shelf

No objects, just pixels

Flipz, Hershey’s, Keese's

Multiple objects



5

Computer Vision Tasks

Classification
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Segmentation
Object  

Detection
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Segmentation

“Chocolate Pretzels”

No spatial extent

Chocolate Pretzels,  
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No objects, just pixels
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Transfer Learning:
Generalizing to New Tasks
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Transfer Learning with CNNs

Justin Johnson February 9, 2022

Transfer Learning with CNNs

Lecture 10 - 73

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on ImageNet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

Freeze 
these

Remove 
last layer

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

2. Use CNN as a 
feature extractor

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014 
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Transfer Learning with CNNs

Lecture 10 - 73
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Freeze 
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Remove 
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Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

2. Use CNN as a 
feature extractor

Razavian et al, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014 

Justin Johnson February 9, 2022

Transfer Learning with CNNs

Lecture 10 - 77

Image
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MaxPool
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MaxPool
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2. Use CNN as a 
feature extractor

Image Classification

71.1

64

56.8

80.7

69.9

89.5

73.9

58.4
53.3

74.7
70.8

89

77.2

69

61.8

86.8

73

91.4

50
55
60
65
70
75
80
85
90
95

Objects Scenes Birds Flowers Human
Attriburtes

Object
Attributes

Prior State of the art CNN + SVM CNN + Augmentation + SVM

Razavian et al, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014

Transfer Learning: Feature Extraction
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Lecture 10 - 73
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Remove 
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Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

2. Use CNN as a 
feature extractor

Transfer Learning: Fine Tuning
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2. Use CNN as a 
feature extractor

Transfer Learning: Fine Tuning

Justin Johnson March 7, 2022Lecture 13 -

Transfer Learning: Fine-Tuning

22
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1. Train on ImageNet

Image

Conv-64
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MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool
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New FC Layer

Initialize from 
ImageNet model

Add randomly 
initialized final FC 
layer for new task

Continue training 
entire model for 
new task

Compared with Feature 
Extraction, Fine-Tuning:
- Requires more data
- Is more computationally 

expensive
- Can give higher accuracies
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New FC Layer

Initialize from 
ImageNet model

Add randomly 
initialized final FC 
layer for new task

Continue training 
entire model for 
new task

Compared with Feature 
Extraction, Fine-Tuning:
- Requires more data
- Is more computationally 

expensive
- Can give higher accuracies

Some tricks: 
• Train with feature extraction first 

before finetuning

• Lower the learning rate: use ~1/10 of 

LR used in original training

• Sometimes freeze lower layers to 

save computation

Transfer Learning: Fine Tuning
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Compared with feature extraction,  
fine-tuning: 
• Requires more data

• Is computationally expensive

• Can give higher accuracies

Transfer Learning: Fine Tuning
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Transfer Learning: Architecture Matters!

Improvements in CNN 
architecture leads to 
improvements in many down 
stream tasks thanks to transfer 
learning!

Justin Johnson March 7, 2022Lecture 13 -

Transfer Learning: Architecture Matters!

23

Improvements in CNN 
architectures lead to 
improvements in many 
downstream tasks thanks 
to transfer learning! 
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Transfer Learning: Architecture Matters!
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Transfer Learning: Architecture Matters!
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Object Detection on COCO

Ross Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN FPN
(ResNet-101)

Mask R-CNN FPN
(ResNeXt-152)

Ross Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition 




17

Transfer Learning with CNNs
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Transfer Learning with CNNs

Lecture 10 - 87
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Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool
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FC-4096
FC-1000

More generic

More specific

Dataset similar 
to ImageNet

Dataset very
different from 
ImageNet

very little 
data (10s 
to 100s)

Use Linear 
Classifier on 
top layer

You’re in trouble… 
Try linear 
classifier from 
different stages

quite a lot 
of data
(100s to 
1000s)

Finetune a 
few layers

Finetune a larger 
number 
of layers

Dataset similar to 
ImageNet

Dataset very different 
from ImageNet

Very little data (10s to 
100s) ? ?

Quite a lot of data 
(100s to 1000s) ? ?
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Transfer Learning with CNNs
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Transfer Learning with CNNs

Lecture 10 - 87
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Dataset similar to 
ImageNet

Dataset very different 
from ImageNet

Very little data (10s to 
100s)

Use Linear Classifier on 
top layer

You’re in trouble…

Try linear classifier from 

different stages

Quite a lot of data 
(100s to 1000s) Finetune a few layers Finetune a larger 

number of layers
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Transfer Learning can help you converge faster

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 2019 


If you have enough data and train for 
much longer, random initialization can 
sometimes do as well as transfer learning 


Justin Johnson March 7, 2022Lecture 13 -

Transfer Learning can help you converge faster

29

COCO object detection

If you have enough data and 
train for much longer, random 
initialization can sometimes 
do as well as transfer learning

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 2019
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Classification: Transferring to New Tasks

Classification
Semantic 

Segmentation
Object  

Detection
Instance  

Segmentation

“Chocolate Pretzels”

No spatial extent

Chocolate Pretzels,  
Shelf

No objects, just pixels

Flipz, Hershey’s, Keese's

Multiple objects
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Today: Object Detection

Classification
Semantic 

Segmentation
Object  

Detection
Instance  

Segmentation

“Chocolate Pretzels”

No spatial extent

Chocolate Pretzels,  
Shelf

No objects, just pixels

Flipz, Hershey’s, Keese's

Multiple objects
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Object Detection: Task definition

Input: Single RGB image


Output: A set of detected objects;

For each object predict:


1. Category label (from a fixed set 
of labels)


2. Bounding box (four numbers:   
x, y, width, height)
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Object Detection: Challenges

Multiple outputs: Need to output 
variable numbers of objects per 
image 

 

Multiple types of output: Need to 
predict ”what” (category label) as 
well as “where” (bounding box) 


Large images: Classification works 
at 224x224; need higher resolution 
for detection, often ~800x600 
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Bounding Boxes

Bounding boxes are typically axis-
aligned 



28

Bounding Boxes

Bounding boxes are typically axis-
aligned 

Oriented boxes are much less 
common
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Object Detection: Modal vs Amodal Boxes

Bounding boxes cover only the 
visible portion of the object

Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017 
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Object Detection: Modal vs Amodal Boxes

Bounding boxes cover only the 
visible portion of the object

Amodal detection: box covers the 
entire extent of the object, even 
occluded parts

Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017 
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Object Detection: Modal vs Amodal Boxes

“Modal” detection: Bounding boxes 
(usually) cover only the visible 
portion of the object 

Amodal detection: box covers the 
entire extent of the object, even 
occluded parts

Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017 
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Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?  

Ground truth

Our prediction
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Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?  

Ground truth

Our prediction
Intersection over Union (IoU) (Also called “Jaccard 
similarity” or “Jaccard index”):  

Area of Intersection 

Area of Union 
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Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?  

Our prediction
Intersection over Union (IoU) (Also called “Jaccard 
similarity” or “Jaccard index”):  

Area of Intersection 

Area of Union 

Ground truth
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Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?  

Our prediction
Intersection over Union (IoU) (Also called “Jaccard 
similarity” or “Jaccard index”):  

Area of Intersection 

Area of Union 

Ground truth

IoU = 0.51 

IoU > 0.5 is “decent”, 
IoU > 0.7 is “pretty good”, 


IoU > 0.9 is “almost perfect” 
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Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?  

Our predictionIntersection over Union (IoU) (Also called “Jaccard 
similarity” or “Jaccard index”):  

Area of Intersection 

Area of Union 

Ground truth

IoU = 0.72 

IoU > 0.5 is “decent”, 
IoU > 0.7 is “pretty good”, 


IoU > 0.9 is “almost perfect” 
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Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?  

Our prediction

Intersection over Union (IoU) (Also called “Jaccard 
similarity” or “Jaccard index”):  

Area of Intersection 

Area of Union 

Ground truth

IoU = 0.91 

IoU > 0.5 is “decent”, 
IoU > 0.7 is “pretty good”, 


IoU > 0.9 is “almost perfect” 
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Detecting a single object

Justin Johnson March 7, 2022Lecture 13 -

So Far: Image Classification

9

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...This image is CC0 public domain Vector:

4096

Fully-Connected:
4096 to 1000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Treat localization as a 
regression problem!
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Detecting a single object

Justin Johnson March 7, 2022Lecture 13 -

So Far: Image Classification

9

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...This image is CC0 public domain Vector:

4096

Fully-Connected:
4096 to 1000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Fully connected: 
4096 to 10

Class scores: 
Chocolate Pretzels: 
0.9 
Granola Bar: 0.02 
Potato Chips: 0.02 
Water Bottle: 0.02 
Popcorn: 0.01 
…. 

Correct Label: 
Chocolate Pretzels 

Softmax Loss 

What??


Treat localization as a 
regression problem!
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Detecting a single object

Justin Johnson March 7, 2022Lecture 13 -

So Far: Image Classification

9

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...This image is CC0 public domain Vector:

4096

Fully-Connected:
4096 to 1000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Fully connected: 
4096 to 10

Fully connected: 
4096 to 4

Class scores: 
Chocolate Pretzels: 
0.9 
Granola Bar: 0.02 
Potato Chips: 0.02 
Water Bottle: 0.02 
Popcorn: 0.01 
…. 

Box coordinates: 
(x, y, w, h) 

Correct Label: 
Chocolate Pretzels 

Softmax Loss 

What??


Where??


Treat localization as a 
regression problem!

Correct coordinates: 
(x’, y', w’, h’) 

L2 Loss 
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Detecting a single object

Justin Johnson March 7, 2022Lecture 13 -

So Far: Image Classification

9

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...This image is CC0 public domain Vector:

4096

Fully-Connected:
4096 to 1000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Fully connected: 
4096 to 10

Fully connected: 
4096 to 4

Class scores: 
Chocolate Pretzels: 
0.9 
Granola Bar: 0.02 
Potato Chips: 0.02 
Water Bottle: 0.02 
Popcorn: 0.01 
…. 

Box coordinates: 
(x, y, w, h) 

Correct Label: 
Chocolate Pretzels 

Softmax Loss 

Correct coordinates: 
(x’, y', w’, h’) 

L2 Loss 

Weighted Sum Loss 

Multitask Loss


What??


Where??


L = Lcls + λLreg

Treat localization as a 
regression problem!
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So Far: Image Classification

9

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...This image is CC0 public domain Vector:

4096

Fully-Connected:
4096 to 1000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Fully connected: 
4096 to 10

Fully connected: 
4096 to 4

Class scores: 
Chocolate Pretzels: 
0.9 
Granola Bar: 0.02 
Potato Chips: 0.02 
Water Bottle: 0.02 
Popcorn: 0.01 
…. 

Box coordinates: 
(x, y, w, h) 

Correct Label: 
Chocolate Pretzels 

Softmax Loss 

Correct coordinates: 
(x’, y', w’, h’) 

Weighted Sum Loss 

Multitask Loss


What??


Where??


L = Lcls + λLreg

Often pretrained on ImageNet: Transfer 
learning


Treat localization as a 
regression problem! L2 Loss 
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Detecting a single object
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So Far: Image Classification

9

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...This image is CC0 public domain Vector:

4096

Fully-Connected:
4096 to 1000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Fully connected: 
4096 to 10

Fully connected: 
4096 to 4

Class scores: 
Chocolate Pretzels: 
0.9 
Granola Bar: 0.02 
Potato Chips: 0.02 
Water Bottle: 0.02 
Popcorn: 0.01 
…. 

Box coordinates: 
(x, y, w, h) 

Correct Label: 
Chocolate Pretzels 

Softmax Loss 

Correct coordinates: 
(x’, y', w’, h’) 

Weighted Sum Loss 

Multitask Loss


What??


Where??


L = Lcls + λLreg

Treat localization as a 
regression problem!

Problem: Images can have 
more than one object!

L2 Loss 

Often pretrained on ImageNet: Transfer 
learning
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Detecting Multiple Objects
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Detecting Multiple Objects

CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

4 numbers

12 numbers

Many 
numbers!

Duck image is free to use under the Pixabay license

Need different numbers 
of outputs per image

Hershey’s: (x, y, w, h)

Hershey’s: (x, y, w, h) 
Flipz: (x, y, w, h) 
Reese’s (x, y, w, h)

Chips: (x, y, w, h) 
Chips: (x, y, w, h) 
…..

4 numbers

12 numbers

Many numbers!
Need different numbers of 
output per image
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Detecting Multiple Objects: Sliding Window

Justin Johnson March 7, 2022Lecture 13 - 51

Detecting Multiple Objects

CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

4 numbers

12 numbers

Many 
numbers!

Duck image is free to use under the Pixabay license

Need different numbers 
of outputs per image

Hershey’s: No 
Flipz: No 
Reese’s: No 
Background: Yes

Apply a CNN to many different crops 
of the image, CNN classifies each 

crop as object or background 
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Detecting Multiple Objects

CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
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DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

4 numbers

12 numbers

Many 
numbers!

Duck image is free to use under the Pixabay license

Need different numbers 
of outputs per image

Hershey’s: No 
Flipz: Yes 
Reese’s: No 
Background: No

Apply a CNN to many different crops 
of the image, CNN classifies each 

crop as object or background 
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Detecting Multiple Objects

CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

4 numbers

12 numbers

Many 
numbers!

Duck image is free to use under the Pixabay license

Need different numbers 
of outputs per image

Hershey’s: No 
Flipz: No 
Reese’s: Yes 
Background: No

Apply a CNN to many different crops 
of the image, CNN classifies each 

crop as object or background 
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops 
of the image, CNN classifies each 

crop as object or background 

Question: How many possible boxes 
are there in an image of size H x W?

Consider box of size h x w: 
Possible x positions: W - w + 1 
Possible y positions: H - h + 1 
Possible positions: 
(W-w+1) x (H-h+1) 

Total possible boxes:  

 
H

∑
h=1

W

∑
w=1

(W − w + 1)(H − h + 1)

=
H(H + 1)

2
W(W + 1)

2
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops 
of the image, CNN classifies each 

crop as object or background 

Question: How many possible boxes 
are there in an image of size H x W?

Consider box of size h x w: 
Possible x positions: W - w + 1 
Possible y positions: H - h + 1 
Possible positions: 
(W-w+1) x (H-h+1) 

800 x 600 image has 
~58M boxes. No way 
we can evaluate them 

all

Total possible boxes:  

 
H

∑
h=1

W

∑
w=1

(W − w + 1)(H − h + 1)

=
H(H + 1)

2
W(W + 1)

2
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Region Proposals
• Find a small set of boxes that are likely to cover all objects 

• Often based on heuristics: e.g. look for “blob-like” image regions 

• Relatively fast to run; e.g. Selective Search gives 2000 region  

proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012 
Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013 

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014 

Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014  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R-CNN: Region-Based CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. 
Figure copyright Ross Girshick, 2015; source. Reproduced with permission 
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R-CNN: Region-Based CNN

Input 
image

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. 
Figure copyright Ross Girshick, 2015; source. Reproduced with permission 
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R-CNN: Region-Based CNN

Input 
image

Regions of 
Interest (RoI) 
from a proposal 
method (~2k) Girshick et al, “Rich feature hierarchies for accurate object detection and 

semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. 
Figure copyright Ross Girshick, 2015; source. Reproduced with permission 
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R-CNN: Region-Based CNN

Input 
image

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k) Girshick et al, “Rich feature hierarchies for accurate object detection and 

semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. 
Figure copyright Ross Girshick, 2015; source. Reproduced with permission 
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R-CNN: Region-Based CNN

Input 
image

Conv
Net

Conv
Net

Conv
Net Warped image 

regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN

Input 
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

Class

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify each region
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R-CNN: Region-Based CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. 
Figure copyright Ross Girshick, 2015; source. Reproduced with permission 

Classify each region 

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN

Input 
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

Class

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox
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R-CNN: Region-Based CNN

Classify each region 

Bounding box regression: 
Predict “transform” to correct the RoI: 4 
numbers (tx, ty, th, tw)  

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. 
Figure copyright Ross Girshick, 2015; source. Reproduced with permission 

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0


R-CNN: Box Regression
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R-CNN: Box Regression

67

(px, py)
ph

pw

Consider a region proposal with 
center %', %( , width %), height %*

Model predicts a transform '', '(, '), '*
to correct the region proposal
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Consider a region proposal with 
center %', %( , width %), height %*

Model predicts a transform '', '(, '), '*
to correct the region proposal

The output box is defined by:
(' = %' + %)''
(( = %( + %*'(
() = %) exp ')
(* = %* exp '*

R-CNN: Box Regression

68

(px, py)
ph

pw

Shift center by amount 
relative to proposal size

Scale proposal; exp ensures 
that scaling factor is > 0

(bx, by)
bh

bw

R-CNN: Box Regression

58
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Consider a region proposal with 
center %', %( , width %), height %*

Model predicts a transform '', '(, '), '*
to correct the region proposal

The output box is defined by:
(' = %' + %)''
(( = %( + %*'(
() = %) exp ')
(* = %* exp '*

R-CNN: Box Regression

68

(px, py)
ph

pw

Shift center by amount 
relative to proposal size

Scale proposal; exp ensures 
that scaling factor is > 0

(bx, by)
bh

bw

R-CNN: Box Regression
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R-CNN: Box Regression

69

Consider a region proposal with 
center %', %( , width %), height %*

Model predicts a transform '', '(, '), '*
to correct the region proposal

The output box is:
(' = %' + %)''
(( = %( + %*'(
() = %) exp ')
(* = %* exp '*

(px, py)
ph

pw

(bx, by)
bh

bw

When transform is 0, 
output = proposal

L2 regularization 
encourages leaving
proposal unchanged 
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Consider a region proposal with 
center %', %( , width %), height %*

Model predicts a transform '', '(, '), '*
to correct the region proposal

The output box is defined by:
(' = %' + %)''
(( = %( + %*'(
() = %) exp ')
(* = %* exp '*

R-CNN: Box Regression

68

(px, py)
ph

pw

Shift center by amount 
relative to proposal size

Scale proposal; exp ensures 
that scaling factor is > 0

(bx, by)
bh

bw

R-CNN: Box Regression
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R-CNN: Box Regression

70

Consider a region proposal with 
center %', %( , width %), height %*

Model predicts a transform '', '(, '), '*
to correct the region proposal

The output box is:
(' = %' + %)''
(( = %( + %*'(
() = %) exp ')
(* = %* exp '*

(px, py)
ph

pw

(bx, by)
bh

bw

Scale / Translation invariance:
Transform encodes relative
difference between proposal
and output; important since
CNN doesn’t see absolute size
or position after cropping
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Consider a region proposal with 
center %', %( , width %), height %*

Model predicts a transform '', '(, '), '*
to correct the region proposal

The output box is defined by:
(' = %' + %)''
(( = %( + %*'(
() = %) exp ')
(* = %* exp '*

R-CNN: Box Regression

68

(px, py)
ph

pw

Shift center by amount 
relative to proposal size

Scale proposal; exp ensures 
that scaling factor is > 0

(bx, by)
bh

bw

R-CNN: Box Regression
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R-CNN: Box Regression

71

Consider a region proposal with 
center %', %( , width %), height %*

Model predicts a transform '', '(, '), '*
to correct the region proposal

The output box is:
(' = %' + %)''
(( = %( + %*'(
() = %) exp ')
(* = %* exp '*

(px, py)
ph

pw

(bx, by)
bh

bw

Given proposal and target output, 
we can solve for the transform the 
network should output:
'' = ((' − %')/%)
'( = ((( − %()/%*
') = log ()/%)
'* = log (*/%*



R-CNN: Training

62

Input Image

Ground Truth



R-CNN: Training
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Input Image

Region Proposals

Ground Truth



R-CNN: Training
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Input Image

Ground Truth

Neutral

Positive

Negative



R-CNN: Training

65

Input Image

Categorize each region proposal as positive, 
negative or neutral based on overlap with the 
Ground truth boxes:

Positive: > 0.5 IoU with a GT box

Negative: < 0.3 IoU with all GT boxes

Neutral: between 0.3 and 0.5 IoU with GT boxes 


Ground Truth

Neutral

Positive

Negative
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Input Image

Ground Truth

Neutral

Positive

Negative
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R-CNN Training

75

Input Image

GT Boxes

Neutral

Positive

Negative

Crop pixels from 
each positive and 
negative proposal, 
resize to 224 x 224
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R-CNN Training

76

Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Dog
Box target: 

Class target: Cat
Box target: 

Class target: Dog
Box target: 

Class target: Background
Box target: None

Run each region through CNN
Positive regions: predict class and transform
Negative regions: just predict class



R-CNN: Training
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Input Image
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R-CNN Training

76

Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Dog
Box target: 

Class target: Cat
Box target: 

Class target: Dog
Box target: 

Class target: Background
Box target: None

Run each region through CNN
Positive regions: predict class and transform
Negative regions: just predict class

Class target: Flipz

Box target: 

Class target: Hershey’s

Box target: 

Class target: Reese’s

Box target: 

Class target: Background

Box target: None

Ground Truth

Neutral

Positive

Negative
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R-CNN Training

76

Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Dog
Box target: 

Class target: Cat
Box target: 

Class target: Dog
Box target: 

Class target: Background
Box target: None

Run each region through CNN
Positive regions: predict class and transform
Negative regions: just predict class



R-CNN: Test time
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Input Image

Region Proposals

Run proposal method:  
1. Run CNN on each proposal to get class  

scores, transforms 

2. Threshold class scores to get a set of  

detections  

2 Problems: 
1. CNN often outputs overlapping boxes

2. How to set thresholds? 



Overlapping Boxes
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P(pretzels)=0.8

P(pretzels)=0.7

P(pretzels)=0.75
Problem: Object detectors often output 
many overlapping detections

P(pretzels)=0.9



Overlapping Boxes: Non-Max Suppression (NMS)
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Problem: Object detectors often output 
many overlapping detections

P(pretzels)=0.8

P(pretzels)=0.7

P(pretzels)=0.75

Solution: Post-process raw detections 
using Non-Max Suppression (NMS)

P(pretzels)=0.9
1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with 

IoU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1



Overlapping Boxes: Non-Max Suppression (NMS)
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Problem: Object detectors often output 
many overlapping detections

P(pretzels)=0.9

P(pretzels)=0.8

P(pretzels)=0.7

P(pretzels)=0.75

Solution: Post-process raw detections 
using Non-Max Suppression (NMS)

IoU(    ,    ) = 0.8

IoU(    ,    ) = 0.03

IoU(    ,    ) = 0.05

1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with 

IoU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1



Overlapping Boxes: Non-Max Suppression (NMS)
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Problem: Object detectors often output 
many overlapping detections

P(pretzels)=0.7

P(pretzels)=0.75

Solution: Post-process raw detections 
using Non-Max Suppression (NMS)

IoU(    ,    ) = 0.85


P(pretzels)=0.9
1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with 

IoU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1



Overlapping Boxes: Non-Max Suppression (NMS)
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Problem: Object detectors often output 
many overlapping detections P(pretzels)=0.75

Solution: Post-process raw detections 
using Non-Max Suppression (NMS)

P(pretzels)=0.9
1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with 

IoU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1



Overlapping Boxes: Non-Max Suppression (NMS)
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Problem: Object detectors often output 
many overlapping detections
Solution: Post-process raw detections 
using Non-Max Suppression (NMS)
1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with 

IoU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1

Problem: NMS may eliminate “good” 
boxes when objects are highly 
overlapping… no good solution

Justin Johnson March 7, 2022Lecture 13 - 83

Overlapping Boxes: Non-Max Suppression (NMS)

Crowd image is free for commercial use under the Pixabay license

Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw 
detections using Non-Max 
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Problem: NMS may eliminate ”good” 
boxes when objects are highly 
overlapping… no good solution =( Crowd image is free for commercial use under the Pixabay license

https://pixabay.com/photos/audience-crowd-people-persons-828584/
https://pixabay.com/service/license/


Evaluating Object Detectors: 
Mean Average Precision (mAP) 

75

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision 

(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest 

score)

1. If it matches some GT box with IoU > 0.5, 

mark it as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR curve


2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP 

for each category
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5

Evaluating Object Detectors: 
Mean Average Precision (mAP) 

76

All pretzel detections sorted by score

All ground-truth pretzel boxes

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision 

(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest 

score)

1. If it matches some GT box with IoU > 0.5, 

mark it as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR curve


2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP 

for each category
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

0.5

Evaluating Object Detectors: 
Mean Average Precision (mAP) 

77

All pretzel detections sorted by score

All ground-truth pretzel boxes

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision 

(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest 

score)

1. If it matches some GT box with IoU > 0.5, 

mark it as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR curve


2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP 

for each category
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

Precision = 1/1 = 1.0
Recall = 1/3 = 0.33

0.5

Pr
ec

isi
on

Recall 1.0

Evaluating Object Detectors: 
Mean Average Precision (mAP) 

78

All pretzel detections sorted by score

All ground-truth pretzel boxes

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision 

(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest 

score)

1. If it matches some GT box with IoU > 0.5, 

mark it as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR curve


2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP 

for each category

Precision = 1/1 = 1.0

Recall = 1/3 = 0.33

Precision

Recall 1.0

1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

Precision = 2/2 = 1.0
Recall = 2/3 = 0.67

0.5
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ec
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Recall 1.0

Evaluating Object Detectors: 
Mean Average Precision (mAP) 
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All pretzel detections sorted by score

All ground-truth pretzel boxes

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision 

(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest 

score)

1. If it matches some GT box with IoU > 0.5, 

mark it as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR curve


2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP 

for each category

Precision = 2/2 = 1.0

Recall = 2/3 = 0.67

Precision

Recall 1.0

1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

No match > 0.5 IoU with GT

Precision = 2/3 = 0.67
Recall = 2/3 = 0.67

0.5
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Recall 1.0

Evaluating Object Detectors: 
Mean Average Precision (mAP) 
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All pretzel detections sorted by score

All ground-truth pretzel boxes

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision 

(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest 

score)

1. If it matches some GT box with IoU > 0.5, 

mark it as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR curve


2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP 

for each category

Precision = 2/3 = 0.67

Recall = 2/3 = 0.67

Precision

Recall 1.0

1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

No match > 0.5 IoU with GT

Precision = 2/4 = 0.5
Recall = 2/3 = 0.67

0.5
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Recall 1.0

Evaluating Object Detectors: 
Mean Average Precision (mAP) 
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All pretzel detections sorted by score

All ground-truth pretzel boxes

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision 

(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest 

score)

1. If it matches some GT box with IoU > 0.5, 

mark it as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR curve


2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP 

for each category

Precision = 2/4 = 0.5

Recall = 2/3 = 0.67

Precision

Recall 1.0

1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: > 0.5 IoU

Precision = 3/5 = 0.6
Recall = 3/3 = 1.0

0.5
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Evaluating Object Detectors: 
Mean Average Precision (mAP) 
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All pretzel detections sorted by score

All ground-truth pretzel boxes

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision 

(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest 

score)

1. If it matches some GT box with IoU > 0.5, 

mark it as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR curve


2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP 

for each category

Precision = 3/5 = 0.6

Recall = 3/3 = 1.0

Precision

Recall 1.0

1.0



Justin Johnson March 7, 2022Lecture 13 - 92

Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5

Pr
ec
isi
on

Recall 1.0

Dog AP = 0.86
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All pretzel detections sorted by score

All ground-truth pretzel boxes

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision 

(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest 

score)

1. If it matches some GT box with IoU > 0.5, 

mark it as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR curve


2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP 

for each category
Precision

Recall 1.0

1.0

Pretzel AP = 0.86
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All pretzel detections sorted by score

All ground-truth pretzel boxes

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision 

(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest 

score)

1. If it matches some GT box with IoU > 0.5, 

mark it as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR curve


2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP 

for each category Justin Johnson March 7, 2022Lecture 13 - 93

Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5

Pr
ec
isi
on

Recall 1.0

Dog AP = 0.86
How to get AP = 1.0: Hit all GT 
boxes with IoU > 0.5, and have no 
“false positive” detections ranked 
above any “true positives” Precision

Recall 1.0

1.0

Pretzel AP = 0.86

How to get AP = 1.0: Hit all GT boxes with IoU > 
0.5, and have no “false positive” detections 
ranked above any “true positives”
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1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision 

(AP) = area under Precision vs Recall Curve

1. For each detection (highest score to lowest 

score)

1. If it matches some GT box with IoU > 0.5, 

mark it as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR curve


2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP 

for each category

Flipz AP = 0.60

Hershey’s AP = 0.85

Reese’s AP = 0.81

mAP@0.5 = 0.75
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Next Time: Object Detectors and Segmentation



Team task due 10/16
• Finalize the project. 
• Write a 3-pager:
• Read upto 3 related papers as a team and write a brief 

summary. 
• List these papers on the google-sheet.

• Write your project proposal and how the techniques 
from the above papers will be used. 
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https://docs.google.com/spreadsheets/d/1IIMXkYPwrUo8RU1DD8DTiTGloaEYsTPW0y9m_v6lpvg/edit?usp=sharing


DeepRob
Lecture 11
Object Detection
University of Minnesota

88Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

