DeepRob

Lecture 10

Training Neural Networks i
University of Minnesota

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course 1

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

R

* |nstructions available on the website
* Here: https://rpm-lab.qgithub.io/CSCI15980-F24-DeepRob/

Project 2—Updates

projects/project?/

* |Implement two-layer neural network and generalize to FCN

* Autograder fixed!
* Due Monday, October 14th, 11:59 PM CT

L\

https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project2/
https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project2/
https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project2/

R

1. One time setup: Last time

» Activation functions, data preprocessing, weight
Initialization, regularization

2. Training dynamics: Today

* |earning rate schedules; large-batch training;
hyperparameter optimization

3. After training:
* Model ensembles, transfer learning

L\ 3

Recap

DR

Sigmoid

i~
O Q)
> =2
-
~
=
—

Leaky RelLU
max(0.1x, x)

ELU

X x>0
aexp'—1) x<0

GELU
~ xa(1.702x)

| ast time: Activation Functions

J

¥ —1 10
10

/O
-2

J
-3 3
—1-

R

Last time: Data Preprocessing

original data zero-centered data normalized data

10 : . 10 . 10

@ Last time: Weight initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
ha =[] std = 1/sqrt(Din) nicely scaled for all layers!

X = np.random.randn(1l6, dims[0])
for Din, Dout in zip(dims[:-1 dims[1l:

W = np.random.randn(Din, Dout) / np.sqrt(Din)

X = np.tanh(x.dot(W))

hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

M Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010 6

®N

ow your model is training ... but it overfits!

Train Loss Accuracy
17.5 8 - —e— train
15.0 — val
12.5 0.8 1
10.0
0.7 -
15
5.0
0.6 -
49
0.0 0.5 -
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000

Regularization

DR

Regularization: Add term to the loss

N

1
L= D) max(0, fix; W), — fix; W), + 1) + AR(W)
=1 j#y,

In common use:

L2 regularization R(W) = Z Z sz, ;. (Weight decay)
ko1

L1 regularization R(W) = 2 | W,
ko1

Elastic net (L1 + L2) R(W) = Z ZﬁWil + | Wk,l‘
k[

@

Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probabillity of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

@

Regularization: Dropout

p = 0.5 # probab1lity of keeping a unit active. higher = less dropout Exam p I e fO r'wa rd paSS
with a 3-layer network

def train step(X): using erp()ut

""" X contains the data

y ~

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # first dropout mask
H1 *= Ul # drop!

H2 = np.maximum(®, np.dot(W2, Hl1l) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

,,,,,,,,

10

Regularization: Dropout

Forces the network to have a redundant
representation; prevents co-adaptation of features

- has 4 legs X

. 1S color

>has 1 arm X

O
O
Q - has joints
O

- has cuboid body x

11

Regularization: Dropout

Another interpretation:

Dropout Is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 11233 possible masks!
Only ~1082 atoms in the universe...

12

DR

Dropout: Test time

Dropout makes our output random! Random mask

y =1,&,2)

Output label Input image

Want to “average out” the randomness at test-time

y =fx,2) = E_[f(x,2)] = JP(Z)f(X, 2)dz

But this integral seems hard...

L\ :

DR

Dropout: Test time

War)t ;cé) a;;)pmximate
TMETE Y = flx,2) = E [f(x,2)] = [p(z)f(x, z)dz

Consider a single neuron:

At test time we have: Ela| = wix + w,y

DR

Dropout: Test time

War)t ;cg a;;)proximate
TMETE Y = flx,2) = E [f(x,2)] = [p(z)f(x, z)dz

Consider a single neuron:

At test time we have: Ela| = wix + w,y

| L | 1
During training time [E[4] = — (WX + w,oy) + —(w;x + Oy)
we have: + 4

| |
+Z(Ox + Oy) + Z(Ox + w,y)

= E(WNC + w,y)

DR

Want to approximate
the integral

At test time we have;

During training time
we have:

y =fx,2) = E,

Consider a single neuron:

Dropout: Test time

[f(x,)] = | p(2)f(x, 2)dz

“lal = wix +w,y

1 1
“[a] = Z(WNC + wyy) + Z(WNC + Oy)

At test time, drop nothing +Z(Ox +0y) + Z(Ox + Wyy)
and multiply by dropout

probability

= 5(w1x + w,y)

Dropout: Test time

def predict(X):
ensembled forward pass
Hl = np.maximum(©, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(©, np.dot(W2, H1l) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always

=> We must scale the activations so that for each neuron:
Output at test time = Expected output at training time

17

Dropout Summary

""" Vanilla Dropout: Not recommended implementation (see notes below)

dropout

o
D
VI
VI

/ of keeping a unit active. higher =
def train step(X):
wit X contains the data """
Torward pass for example 3-layer neural network
H1 = np.maximum(©®, np.dot(Wl, X) + bl)
Ul = np. random rand(*Hl.shape) < p # first dropout mask
Hl1 *= Ul # drop!
"H2 np.maximum(O np.dot(W2, HI) + b?) '
U2 = np.random.rand(*H2.shape) < p # second dropout mask DrOp In fOrward paSS
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not

I ~ =

perform parameter update... (not shown)

def predict(X):
ensembled forward pass

Hl = np.maximum(©, np.dot(Wl, X) + bl) * p # NOTE: scale the activations :
H2 = ' np.dot(W2, H1) + b2) * p # NOTE: scale the activations Scale at teSt tlme

np.maximum(©,
out = np.dot(W3, HZ) + b3

18

L\

More common: “Inverted dropout”

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train _step(X):
forward pass for example 3-layer neural network
H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
H1 *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, Hl) + b2)

U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

Drop and scale
during training

/ test time is unchanged!
def predict(X):
ensembled forward pass

H1 = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, Hl) + b2)
out = np.dot(W3, H2) + b3

19

DR

Dropout architectures

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

AlexNet vs VGG-16

(Params, M) Dropout here!
120000 /
100000 Later architectures (GooglLeNet, ResNet, etc) use
30000 global average pooling instead of fully-connected
60000 layers: they don’t use dropout at all!
40000
20000 I
0 N
convl conv2 conv3 conv4 conv5 fc6 fc7 fc8

B AlexNet VGG-16

L\ .

DR

Regularization: A common pattern

Training: Add some kind of
randomness

y = f,(X,2)

Testing: Average out randomness
(sometimes approximate)

y =fx,2) = E[f(x,2)] = Jp(z)f(x, 2)dz
L\

21

DR

Training: Add some kind of

randomness
For ResNet and later,

often L2 and Batch
Normalization are the

y — fW(x’ Z) only regularizers!

Testing: Average out randomness
(sometimes approximate)

y=fx,2) = Efx,2)] = Jp(z)f(x, 2)dz
Z¥\

Regularization: A common pattern

Example: Batch Normalization

Training: Normalize using stats
from random mini batches

Testing: Use fixed stats to
normalize

Load image
and label

Data Augmentation

“Chocolate
Pretzels” —

/

CNN

\

Compute
loss

23

Load image
and label

Data Augmentation

“Chocolate
Pretzels” —

Transform image

/

CNN

\

Compute
loss

24

Data Augmentation: Horizontal Flips

25

ata Augmentation: Random Crops and Scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

L\ .

Simple: Randomize contrast and brightness

Data Augmentation: Color Jitter

More complex:

1. Apply PCA to all [R, G, B]j
pixels in training set

2. Sample a “color offset”
along principal component
directions

3. Add offset to all pixels of a
training image

(Used in AlexNet, ResNet, etc)

27

L\

transforms = |

"Identity’, ’"AutoContrast’, ’"Equalize’,
fRotate’ ,;, "Solarize”, 7Color’, *Posterize’,
FContrast®, "Brightness”’, “Sharpness®,
ShearX’, ’'"ShearY’, ’"TranslateX’, ’'TranslateY’]

def randaugment (N, M) :
"WhGCenerate a set of distortions.

AXrgs:
N: Number of augmentation transformations to
apply sequentially.

M: Magnitude for all the transformations.
mmmn

sampled_ops = np.random.choice (transforms, N)
return [(op, M) for op in sampled_ops]

Data Augmentation: RandAugment

Apply random combinations
of transforms:

« Geometric: Rotate,
translate, shear

* Color: Sharpen, contrast,
brightness, solarize,
posterize, color

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurlPS 2020

28

Data Augmentation: RandAugment

Magnitude: 9

| = Apply random combinations
Shear toContract of transforms:

Magnitude: 17
« Geometric: Rotate,

translate, shear
* Color: Sharpen, contrast,
Shearx AutoContrast brightness, solarize,
Magnitude: 28 posterize, color

Original ShearX AutoContrast

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurlPS 2020

29

DR

Data Augmentation: Get creative for your problem!

Data augmentation encodes invariances in your model

Think for your problem: what changes to the image should not
change the network output?

Maybe different for different tasks!

AN\

DR

Regularization: A common pattern

Training: Add some randomness
Testing: Marginalize over randomness

Examples:

Dropout

Batch Normalization
Data Augmentation

31

DR

Regularization: DropConnect

Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

32

DR

Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions over different samples

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

M Graham, “Fractional Max Pooling”, arXiv 2014 33

Reqgularization: Stochastic Depth

Training: Skip some residual blocks in ResNet
Testing: Use the whole network

gxamp!ces. Starting to become common in recent

ropou L architectures:
Batch Normalization
Data Augmentation * Pham et al, “Very Deep Self-Attention Networks for
DropConnect End-to-End Speech Recognition”, INTERSPEECH

. . 2019

Fractlongl Max Pooling » Tan and Le, “EfficientNetV2: Smaller Models and
Stochastic Depth Faster Training”, ICML 2021

e Fan et al, “Multiscale Vision Transformers”, ICCV 2021

* Bello et al, “Revisiting ResNets: Improved Training and
Scaling Strategies”, NeurlPS 2021

e Steiner et al, “How to train your ViT? Data,
Augmentation, and Regularization in Vision
Transformers”, arXiv 2021

IMI Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Regularization: CutOut

Training: Set random image regions to 0O
Testing: Use the whole image

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
Stochastic Depth

Cutout / Random Erasing

Replace random regions with
mean value or random values

M DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017
Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020 35

Regularization: Mixup

Training: Train on random blends of images ‘ Sample blend probability from a
Testing: Use original images beta distribution Beta(a, b) with

o a=b=0 so blend weights are
Examples: close to 0/1

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
Stochastic Depth

Cutout / Random Erasing
Mixup

Target label:

CNN Pretzels: 0.6

Robot: 0.4
/

| Randomly blend the pixels of
pairs of training images, e.g.
| 60% pretzels, 40% robot

M Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018 36

Regularization: CutMix

Training: [rain on random blends of images
Testing: Use original images

Examples:

Dropout

Batch Normalization
Data Augmentation

/

DropConnect Target label:
Fractional Max Pooling CNN Pretzels: 0.6
Stochastic Depth Robot: 0.4

\

Cutout / Random Erasing
Mixup / CutMix

~# Replace random crops of one image
@ with another, e.g. 60% of pixels
from pretzels, 40% from robot

M Yun et al, “CutMix: Regularization Strategies to Train Strong Classifiers with Localizable Features”, ICCV 2019 37

DR

Regularization: Label Smoothing

Training: Irain on smooth labels
Testing: Use original images

Examples:

Dropout

Batch Normalization
Data Augmentation

Standard Training Label Smoothing

Pretzels: 100% Pretzels: 90%
Empfo”?iﬁt - Robot: 0% Robot: 5%
ractional Max Pooling . N0 . E0
Stochastic Depth Sugar: 0% Sugar: 5%
Cutout / Random Erasing K—-1

Mixup / CutMix Set target distribution to be 1 e on the correct category and €/K

_ K
Label Smoothing on all other categories, with K categories and ¢ € (0,1).

Loss is cross-entropy between predicted and target distribution.

M Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, CVPR 2015 38

DR

Regularization: Summary

Training:
Testing:
Examples:
ggsﬁ Llj\formalization - Use DropOut for large fully-connected layers
Data Augmentation - Data augmentation is always a good idea
- Use BatchNorm for CNNs (but not ViTs)
Stochastic Depth - Try Cutout, Mixup, CutMix, Stochastic Depth, Label
CL,JtOUt / Rand_om Erasing Smoothing to squeeze out a bit of extra performance
Mixup / CutMix

Label Smoothing

AN\

DR

Recap

1. One time setup:

» Activation functions, data preprocessing, weight
Initialization, regularization

2. Training dynamics:

* |earning rate schedules; large-batch training;
hyperparameter optimization

3. After training:
* Model ensembles, transfer learning

L\

Now

40

DR

L earning Rate Schedules

@ SGD, SGD+Momentum, Adagrad, RMSProp, Adam
all have learning rate as hyper parameter

loss

Q: Which one of these learning rates is
best to use”?

low |learning rate

high learning rate

good learning rate e ee—

L\

@ SGD, SGD+Momentum, Adagrad, RMSProp, Adam
all have learning rate as hyper parameter

loss

Q: Which one of these learning rates is
best to use?

low |learning rate

high learning rate

A: All of them! Start with large learning rate
and decay over time.

good learning rate e ee—

L\

43

Learning Rate Decay: Step

Step: Reduce learning rate at a few fixed

Training Loss points. E.g. for ResNets, multiply LR by 0.1

40
_ after epochs 30, 60, and 90.
33 Reduce learning rate
30 - Learning Rate
0.10 -
A 25
3 0.08 -
2.0 -
15 - 0.06 -
10 - 0.04 -
6 2'0 4b Sb Bb 100 ‘
Epoch bz
0.00 -
0 20 40 60 80 100

Epoch

earning Rate Decay: Cosine

Training Loss

Step: Reduce learning rate at a few fixed

Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019

10 points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.
0.8 -
oe - _ I
o Cosine: a, = —a(1 + cos(—))
)
3 2 T
-
0.4 1 Learning Rate
10 -
0.2 1 0.8 -
0.6 1
0.0 T T
0 50 100 150 200 250 300
Epoch o
0.2 1
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017 o T T T T T T
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 0 20 40 60 80 100
M Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019 Epoch

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

45

10 A

0.8 1

0.6 -

0.4 -

0.2 -

0.0 -

Learning Rate Decay: Linear

Learning rate

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

[
Cosine: a, = 5 o1 + COS(%))

Linear: a. = a,(1 — —
{ ()(T)

- —

40 60 80 100

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL 2018
Liu et al, “RoBERTa: A Robustly Optimized BERT Pretraining Approach”, 2019
Yang et al, “XLNet: Generalized Autoregressive Pretraining for Language Understanding”, NeurlPS 2019

46

DR

10 -

0.8 -

0.6 -

0.4 -

0.2 1

Learning Rate Decay: Inverse Sqrt

Learning rate Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

[
Cosine: o, = —a(1 + cos(—))
! N 0 T
Linear: a, = a(1 — ?)
2 4 60 a0 100 Inverse sqrt: o, = a,/ \/;

Epoch

Vaswani et al, “Attention is all you need”, NIPS 2017

47

DR

earning Rate Decay: Constant!

Learning Rate Step: Reduce learning rate at a few fixed

104 - points. E.g. for ResNets, multiply LR by 0.1
| after epochs 30, 60, and 90.
102 -
Cos (1 + cos(—))

e osine: o, = — coS(—

t N 0 T
0.98 -
0.96 - Linear: o, = (1 — ?)

: s 45 60 e 100 Inverse sqrt: a, = a,/ \/;

Epoch
Constant: o, = o)

Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019
Donahue and Simonyan, “Large Scale Adversarial Representation Learning”, NeurlPS 2019

How long to train? Early Stopping

Train

| 0SS Accuracy

|

Stop training here

lteration Iteration

Stop training the model when accuracy on the validation set decreases Or
train for a long time, but always keep track of the model snapshot that
worked best on val. Always a good idea to do this!

49

DR

Choosing Hyperparameters

DR

Choosing Hyperparameters: Grid Search

Choose several values for each hyper parameter
(Often space choices log-linearly)

Example:
Weight decay: [1x10-4, 1x10-3, 1x10-2, 1x10-"]
Learning rate: [1x10-4, 1x10-3, 1x10-2, 1x10-7]

Evaluate all possible choices on this hyperparameter grid

51

®C

hoosing Hyperparameters: Random Search

Choose several values for each hyper parameter
(Often space choices log-linearly)

Example:
Weight decay: log-uniform on [1x10-4, 1x10-1]
Learning rate: log-uniform on [1x10-4, 1x10-]

Run many different trials

52

@

Hyperparameters: Random vs Grid Search

Grid Layout Random Layout

...

o
Unimportant
Parameter
Unimportant
Parameter

Important Important
Parameter Parameter

Bergstra and Bengio, “Random Search for Hyper-Parameter Optimization”, JMLR 2012 53

- |—2 — 4 g -3 2 —1 N 0 —3 - —iZ —
learning rate (log10) learning rate (log10) learning rate (log10)

Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019 54

R

Choosing Hyperparameters
(without tons of GPUS)

55

@

Choosing Hyperparameters

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization
e.g. log(C) for softmax with C classes

56

DR

Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of training data
(~5-10 mini batches); fiddle with architecture, learning rate, weight initialization.
Turn off regularization.

Loss not going down? LR too low, bad initialization
Loss explodes to Inf or NaN? LR too high, bad initialization

L\

57

DR

Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on small
weight decay, find a learning rate that makes the loss drop significantly within ~100
iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

L\ .

@

Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around what worked from
Step 3, train a few models for ~1-5 epochs

Good learning rates to try: 1e-4, 1e-5, 0

L\

59

DR

Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 epochs) without
learning rate decay

L\

60

DR

Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at learning curves

L\

61

Training loss

Look at Learning Curves!

0.10
gg { —@— ftrain
~&— \val
0.08 4
96 -
006 4
Q4 -
04
0 QD -
'l
0.02 o0l |
0.00 T T T v ' J J 88 T T T T T T
0 100000 200000])OOOO 400000 500000600000 0 100000 200000 300000 400000 500000 600000
iteration lteration

Losses may be noisy, use a
scatter plot and also plot moving
average to see trends better

62

LosSS

‘///////

Bad initialization a prime suspect

time

63

Loss

Loss plateaus: Try learning
rate decay

time

64

LossS

Learning rate step decay

Loss was still going down when
learning rate dropped, you
decayed too early!

time

65

DR

Accuracy

Train

Accuracy still going up, you
need to train longer

time

66

@

Accuracy

Train

Huge train / val gap means
overfitting! Increase regularization,
get more data

time

67

DR

Accuracy

Train

No or small gap between train / val
means underfitting: train longer, use
a bigger model, maybe higher LR

time

68

DR

Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at learninrg-eurves loss curves
Step 7: GOTO step 5

L\

69

DR

Hyperparameters to play with:

* Network architecture
* Learning rate, its decay schedule, update type
* Regqularization (L2/ Dropout strength)

Neural networks practitioner
Music = loss function

This image by Paolo Guereta is licensed under CC-BY 2.0 70

https://commons.wikimedia.org/wiki/File:Pioneer_DJ_equipment_-_angled_left_-_Expomusic_2014.jpg
https://creativecommons.org/licenses/by/3.0/us/

Cross-validation “command center

— e S me—

p . . - . . - - " - ¢ - -
l 1l It |
|
' \
—— e Jaman i e | —_—— A e Wb bW - . . e - - - —_—— . = B e w - - [T N e) L R L)
[P sotaare ne o+ | [F reacamene ([P e 04 R gttt gty bt 00" ben IR R her ™94y LT reghi oo Poee svmess teve
‘ , | - - - , - - -
|
\ \
| |
‘ ' ' | !
| }
| |
| ‘ ‘ }
l ‘ :
| |)
| | |
‘ , ‘ !
1 | ‘
1 |
|
4 \ ‘
| | |
| | |
‘ . \ .
| |
| | |
| | |
| |
| | |
| . | . ' ' ' " Jis
|
|

\ \ - \ - - - \ - -
\
l J) | |
. .- 1r - 2 - - . - - .y -t
|]
|
| ‘
- e fam r - | M- —— — et A m— b M— - "o e —— R L PN - -
- L7 L P - L | il b soo | SODEA’ DOB Svwr WS4 e 1oer CEILILO0Y »ros Wh41TT bowe WO 00T Boos Ty 1477) hes @, te baoe L pas Baee w18 T
| ‘
|
| |
| !
| | {
| | ‘
| |
! | ‘
| ‘ |
1 |
| |]
i ‘ |
|
] |
i | }
I | |
J |
|
| 1
| | }
I |
1 | !
| | |
|
| | |
|] A] : (3 e L4 i '
|
|

]
\
1 |
|
- Bose e s | == b s S S fosce 5 sarse foee o= s LEE T = occa s ves e e
- . fovme urns e " L R LR e SrE e ey wras Ao O N L hras meEe L0 Bhme e b Boae mewe ihs L
I} |
| | |
| |
{ | {
! 1 | }
|
| i
| |
|)
‘l | |
| | i
1} }
| ! | |
|
| |
i | }
' \
{ }
| |
| {
| }
| | ‘ !
l |
|
I |
’ ‘ “ 4
.
| L - | ~\ \ — \ = Ly \ - N § s
‘ | ——
| ‘ .
d
{ \ 1 !
—h 1 TN et 11 M | Juwwt & 3000 b 1. T — 1% e e * LLIM e . P—) et T M T |
[ones trnnmn womes L L || onae wmann s wmmae [[ey teree T I Shed LAY B WA o e Phae FWMER LW Shes TuRe 0. »les WERE. Ve P R L Phes awme veaw Bhee v team
| | >
| ‘ |
| ‘ {
| |
| |
I | {
| | }
| ' ‘ |
] | | |
| | !
| }
|

DR

Track ratio of weight update / weight magnitude

assume parameter vector W and 1ts gradient vector dw
param scale = np.linalg.norm(W.ravel())
update = -learning rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update scale / param scale # want ~le-3

Ratio between the updates and values: ~0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

72

R

Overview

1. One time setup:

» Activation functions, data preprocessing, weight
Initialization, regularization

2. Training dynamics:
* Learning rate schedules; hyperparameter optimization
3. After training:

 Model ensembles, transfer learning, large-batch training

Next lecture

73

DR

Next Time:

Transfer Learning
Obiject Detection

L\

DR

Reminder: Form your final project teams

* Read the individual brainstorming documents from other students in the google-folder.
* Talk to your fellow classmates.
* Discuss your project idea with them.
« Start working toward more concrete project as a team.
* Adapt/Modify/Narrow down your ideas a team.
* Talk to Karthik during his OH to see the feasibility.
* Pick a few lecture topics from the list (provided here).
* Pick 3 papers to read.
* To reimplement as your project.
* To help your project.
* Form a team of 2-3 students by 10/07 EOD today using the google-sheet.
* You do not have to finalize your project by this date.

M * You should finalize your group.

75

https://docs.google.com/spreadsheets/d/1IIMXkYPwrUo8RU1DD8DTiTGloaEYsTPW0y9m_v6lpvg/edit?gid=1975374946#gid=1975374946
https://docs.google.com/spreadsheets/d/1IIMXkYPwrUo8RU1DD8DTiTGloaEYsTPW0y9m_v6lpvg/edit?gid=0#gid=0

DeepRob

Lecture 10

Training Neural Networks i
University of Minnesota

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course 76

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

