
Lecture 10
Training Neural Networks II
University of Minnesota

DeepRob

1Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Project 2—Updates
• Instructions available on the website
• Here: https://rpm-lab.github.io/CSCI5980-F24-DeepRob/

projects/project2/

• Implement two-layer neural network and generalize to FCN

• Autograder fixed!
• Due Monday, October 14th, 11:59 PM CT

2

https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project2/
https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project2/
https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project2/

3

Recap
1. One time setup:

• Activation functions, data preprocessing, weight
initialization, regularization

2. Training dynamics:
• Learning rate schedules; large-batch training;

hyperparameter optimization
3. After training:

• Model ensembles, transfer learning

Last time

Today

4

Last time: Activation Functions

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid

σ(x) =
1

1 + e−x

tanh
tanh(x)

ReLU
max(0,x)

Leaky ReLU
max(0.1x, x)

ELU

{x x ≥ 0
α(expx − 1) x < 0

GELU
≈ xα(1.702x)

5

Last time: Data Preprocessing

Justin Johnson February 6, 2022

Data Preprocessing

Lecture 10 - 39

(Assume X [NxD] is data matrix,
each example in a row)

6

Last time: Weight initialization
“Just right”: Activations are
nicely scaled for all layers!

Justin Johnson February 6, 2022

Weight Initialization: Xavier Initialization

Lecture 10 - 56

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Justin Johnson February 6, 2022

Weight Initialization: Xavier Initialization

Lecture 10 - 57

“Just right”: Activations are
nicely scaled for all layers!

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

7

Now your model is training … but it overfits!

Justin Johnson February 6, 2022

Now your model is training … but it overfits!

Lecture 10 - 70

RegularizationRegularization

8

Regularization: Add term to the loss

L =
1
N

N

∑
i=1

∑
j≠yi

max(0, f(xi; W)j − f(xi; W)yi
+ 1) + λR(W)

In common use:
L2 regularization (Weight decay)R(W) = ∑

k
∑

l

W2
k,l

L1 regularization R(W) = ∑
k

∑
l

|Wk,l |

Elastic net (L1 + L2) R(W) = ∑
k

∑
l

βW2
k,l + |Wk,l |

9

Regularization: Dropout
In each forward pass, randomly set some neurons to zero

Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

10

Regularization: Dropout
Example forward pass
with a 3-layer network
using dropout

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 73

Example forward
pass with a 3-layer
network using
dropout

11

Regularization: Dropout

Forces the network to have a redundant
representation; prevents co-adaptation of features

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 74

Forces the network to have a redundant
representation; Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws
mischievous
look

X

X

X

cat
score
cat
score

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 74

Forces the network to have a redundant
representation; Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws
mischievous
look

X

X

X

cat
score
cat
score

has 4 legs

is yellow color

has 1 arm

has joints

has cuboid body

Spot

robot

score

12

Regularization: Dropout

Another interpretation:

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has

24096 ~ 101233 possible masks!

Only ~1082 atoms in the universe…

13

Dropout: Test time

Dropout makes our output random!

y = fw(x, z)
Output label
 Input image

Random mask

Want to “average out” the randomness at test-time

y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz
But this integral seems hard…

14

Dropout: Test time
Want to approximate
the integral
 y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz

Consider a single neuron:

Justin Johnson February 6, 2022

Dropout: Test Time

Lecture 10 - 77

Want to approximate
the integral

Consider a single neuron:

At test time we have: ? @ = $%0 + $&A
a

x y

w1 w2

? = / " = A- / ", B = CD B / ", B EB

At test time we have:
𝔼[a] = w1x + w2y

15

Dropout: Test time
Want to approximate
the integral
 y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz

Consider a single neuron:

Justin Johnson February 6, 2022

Dropout: Test Time

Lecture 10 - 77

Want to approximate
the integral

Consider a single neuron:

At test time we have: ? @ = $%0 + $&A
a

x y

w1 w2

? = / " = A- / ", B = CD B / ", B EB

At test time we have:
𝔼[a] = w1x + w2y

𝔼[a] =
1
4

(w1x + w2y) +
1
4

(w1x + 0y)

+
1
4

(0x + 0y) +
1
4

(0x + w2y)

=
1
2

(w1x + w2y)

During training time

we have:

16

Dropout: Test time
Want to approximate
the integral
 y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz

Consider a single neuron:

Justin Johnson February 6, 2022

Dropout: Test Time

Lecture 10 - 77

Want to approximate
the integral

Consider a single neuron:

At test time we have: ? @ = $%0 + $&A
a

x y

w1 w2

? = / " = A- / ", B = CD B / ", B EB

At test time we have:
𝔼[a] = w1x + w2y

𝔼[a] =
1
4

(w1x + w2y) +
1
4

(w1x + 0y)

+
1
4

(0x + 0y) +
1
4

(0x + w2y)

=
1
2

(w1x + w2y)

During training time

we have:

At test time, drop nothing
and multiply by dropout
probability

17

Dropout: Test time

At test time all neurons are active always

=> We must scale the activations so that for each neuron:

Output at test time = Expected output at training time

Justin Johnson February 6, 2022

Dropout: Test Time

Lecture 10 - 80

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

18

Dropout Summary

Justin Johnson February 6, 2022

Dropout Summary

Lecture 10 - 81

drop in forward pass

scale at test time

Drop in forward pass

Scale at test time

19

More common: “Inverted dropout”

Justin Johnson February 6, 2022

More common: “Inverted dropout”

Lecture 10 - 82

test time is unchanged!

Drop and scale
during training

20

Dropout architectures

Justin Johnson February 6, 2022

Dropout architectures

Lecture 10 - 83

0

20000

40000

60000

80000

100000

120000

conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

AlexNet vs VGG-16
(Params, M)

AlexNet VGG-16

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

Dropout here!

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

Later architectures (GoogLeNet, ResNet, etc) use
global average pooling instead of fully-connected
layers: they don’t use dropout at all!

21

Regularization: A common pattern

Training: Add some kind of
randomness

Testing: Average out randomness
(sometimes approximate)

y = fw(x, z)

y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz

22

Regularization: A common pattern

Training: Add some kind of
randomness

Testing: Average out randomness
(sometimes approximate)

Example: Batch Normalization

Training: Normalize using stats
from random mini batches

Testing: Use fixed stats to
normalize

For ResNet and later,
often L2 and Batch
Normalization are the
only regularizers!
y = fw(x, z)

y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz

23

Data Augmentation

Justin Johnson February 6, 2022

Data Augmentation

Lecture 10 - 89

Transform image

Load image
and label “cat”

CNN

Compute
loss

Justin Johnson February 6, 2022

Data Augmentation

Lecture 10 - 89

Transform image

Load image
and label “cat”

CNN

Compute
loss

“Chocolate
Pretzels”

Justin Johnson February 6, 2022

Data Augmentation

Lecture 10 - 88

Load image
and label “cat”

CNN

Compute
loss

This image by Nikita is
licensed under CC-BY 2.0

Justin Johnson February 6, 2022

Data Augmentation

Lecture 10 - 89

Transform image

Load image
and label “cat”

CNN

Compute
loss

Justin Johnson February 6, 2022

Data Augmentation

Lecture 10 - 89

Transform image

Load image
and label “cat”

CNN

Compute
loss

24

Data Augmentation

Justin Johnson February 6, 2022

Data Augmentation

Lecture 10 - 89

Transform image

Load image
and label “cat”

CNN

Compute
loss

“Chocolate
Pretzels”

25

Data Augmentation: Horizontal Flips

Justin Johnson February 6, 2022

Data Augmentation: Horizontal Flips

Lecture 10 - 90

26

Data Augmentation: Random Crops and Scales

Training: sample random crops / scales

ResNet:
1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

27

Data Augmentation: Color Jitter

Simple: Randomize contrast and brightness

More complex:
1. Apply PCA to all [R, G, B]

pixels in training set

2. Sample a “color offset”

along principal component
directions

3. Add offset to all pixels of a
training image

Justin Johnson February 6, 2022

Data Augmentation: Color Jitter

Lecture 10 - 93

Simple: Randomize
contrast and brightness

More Complex:
1. Apply PCA to all [R, G, B]

pixels in training set
2. Sample a “color offset”

along principal
component directions

3. Add offset to all pixels
of a training image

(Used in AlexNet, ResNet, etc)
(Used in AlexNet, ResNet, etc)

28

Data Augmentation: RandAugment

Apply random combinations
of transforms:

• Geometric: Rotate,
translate, shear

• Color: Sharpen, contrast,
brightness, solarize,
posterize, color

Justin Johnson February 6, 2022

Data Augmentation: RandAugment

Lecture 10 - 94

Apply random combinations
of transforms:
- Geometric: Rotate,

translate, shear
- Color: Sharpen, contrast,

brightness, solarize,
posterize, color

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurIPS 2020
Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurIPS 2020

29

Data Augmentation: RandAugment

Apply random combinations
of transforms:

• Geometric: Rotate,
translate, shear

• Color: Sharpen, contrast,
brightness, solarize,
posterize, color

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurIPS 2020

Justin Johnson February 6, 2022

Data Augmentation: RandAugment

Lecture 10 - 95

Apply random combinations
of transforms:
- Geometric: Rotate,

translate, shear
- Color: Sharpen, contrast,

brightness, solarize,
posterize, color

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurIPS 2020

30

Data Augmentation: Get creative for your problem!

Data augmentation encodes invariances in your model

Think for your problem: what changes to the image should not
change the network output?

Maybe different for different tasks!

Regularization: A common pattern
Training: Add some randomness

Testing: Marginalize over randomness

Examples:
Dropout

Batch Normalization

Data Augmentation

31

Regularization: DropConnect
Training: Drop random connections between neurons (set weight=0)

Testing: Use all the connections

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

32

Justin Johnson February 6, 2022

Regularization: DropConnect

Lecture 10 - 98
Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Regularization: Fractional Pooling
Training: Use randomized pooling regions

Testing: Average predictions over different samples

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

33Graham, “Fractional Max Pooling”, arXiv 2014

Justin Johnson February 6, 2022

Regularization: Fractional Pooling

Lecture 10 - 99

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Training: Use randomized pooling regions
Testing: Average predictions over different samples

Graham, “Fractional Max Pooling”, arXiv 2014

Regularization: Stochastic Depth
Training: Skip some residual blocks in ResNet

Testing: Use the whole network

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

34Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Justin Johnson February 6, 2022

Regularization: Stochastic Depth

Lecture 10 - 100

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Training: Skip some residual blocks in ResNet
Testing: Use the whole network

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Starting to become common in recent
architectures:

• Pham et al, “Very Deep Self-Attention Networks for
End-to-End Speech Recognition”, INTERSPEECH
2019

• Tan and Le, “EfficientNetV2: Smaller Models and
Faster Training”, ICML 2021

• Fan et al, “Multiscale Vision Transformers”, ICCV 2021

• Bello et al, “Revisiting ResNets: Improved Training and

Scaling Strategies”, NeurIPS 2021

• Steiner et al, “How to train your ViT? Data,

Augmentation, and Regularization in Vision
Transformers”, arXiv 2021

Training: Set random image regions to 0

Testing: Use the whole image

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout / Random Erasing

Regularization: CutOut

35
DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017

Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020

Justin Johnson February 6, 2022

Regularization: CutOut

Lecture 10 - 102

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing

Training: Set random images regions to 0
Testing: Use the whole image

DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017
Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020

Replace random regions with
mean value or random values

Justin Johnson February 6, 2022

Regularization: CutOut

Lecture 10 - 102

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing

Training: Set random images regions to 0
Testing: Use the whole image

DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017
Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020

Replace random regions with
mean value or random values

Justin Johnson February 6, 2022

Regularization: CutOut

Lecture 10 - 102

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing

Training: Set random images regions to 0
Testing: Use the whole image

DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017
Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020

Replace random regions with
mean value or random values

Regularization: Mixup
Training: Train on random blends of images

Testing: Use original images

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout / Random Erasing

Mixup

36Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Justin Johnson February 6, 2022

Regularization: Mixup

Lecture 10 - 103

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

Training: Train on random blends of images
Testing: Use original images

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Randomly blend the pixels of
pairs of training images, e.g.
40% cat, 60% dog

CNN
Target label:
cat: 0.4
dog: 0.6

Justin Johnson February 6, 2022

Regularization: Mixup

Lecture 10 - 104

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

Training: Train on random blends of images
Testing: Use original images

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Randomly blend the pixels of
pairs of training images, e.g.
40% cat, 60% dog

CNN
Target label:
cat: 0.4
dog: 0.6

Sample blend
probability from a beta
distribution Beta(a, b)
with a=b≈0 so blend
weights are close to 0/1

Sample blend probability from a
beta distribution Beta(a, b) with
a=b=0 so blend weights are
close to 0/1

Randomly blend the pixels of
pairs of training images, e.g.
60% pretzels, 40% robot

Target label:

Pretzels: 0.6

Robot: 0.4

Training: Train on random blends of images

Testing: Use original images

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout / Random Erasing

Mixup / CutMix

Justin Johnson February 6, 2022

Regularization: Mixup

Lecture 10 - 103

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

Training: Train on random blends of images
Testing: Use original images

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Randomly blend the pixels of
pairs of training images, e.g.
40% cat, 60% dog

CNN
Target label:
cat: 0.4
dog: 0.6

Replace random crops of one image
with another, e.g. 60% of pixels
from pretzels, 40% from robot

Target label:

Pretzels: 0.6

Robot: 0.4

Regularization: CutMix

37Yun et al, “CutMix: Regularization Strategies to Train Strong Classifiers with Localizable Features”, ICCV 2019

Regularization: Label Smoothing
Training: Train on smooth labels

Testing: Use original images

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout / Random Erasing

Mixup / CutMix

Label Smoothing

38Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, CVPR 2015

Set target distribution to be on the correct category and

on all other categories, with categories and .

Loss is cross-entropy between predicted and target distribution.

1 −
K − 1

K
ϵ ϵ/K

K ϵ ∈ (0,1)

Standard Training
Pretzels: 100%

Robot: 0%

Sugar: 0%

Label Smoothing
Pretzels: 90%

Robot: 5%

Sugar: 5%

Regularization: Summary
Training: Add some randomness

Testing: Marginalize over randomness

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout / Random Erasing

Mixup / CutMix

Label Smoothing

39

- Use DropOut for large fully-connected layers

- Data augmentation is always a good idea

- Use BatchNorm for CNNs (but not ViTs)

- Try Cutout, Mixup, CutMix, Stochastic Depth, Label

Smoothing to squeeze out a bit of extra performance

40

Recap
1. One time setup:

• Activation functions, data preprocessing, weight
initialization, regularization

2. Training dynamics:
• Learning rate schedules; large-batch training;

hyperparameter optimization
3. After training:

• Model ensembles, transfer learning

Now

41

Learning Rate Schedules

SGD, SGD+Momentum, Adagrad, RMSProp, Adam
all have learning rate as hyper parameter

42Justin Johnson February 9, 2022Lecture 10 - 34

SGD, SGD+Momentum, Adagrad, RMSProp, Adam
all have learning rate as a hyperparameter.

Q: Which one of these learning rates is
best to use?

SGD, SGD+Momentum, Adagrad, RMSProp, Adam
all have learning rate as hyper parameter

43Justin Johnson February 9, 2022Lecture 10 - 34

SGD, SGD+Momentum, Adagrad, RMSProp, Adam
all have learning rate as a hyperparameter.

Q: Which one of these learning rates is
best to use?

A: All of them! Start with large learning rate
and decay over time.

Learning Rate Decay: Step

44

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Justin Johnson February 9, 2022

Learning Rate Decay: Step

Lecture 10 - 37

Reduce learning rate
Step: Reduce learning rate at a few fixed points.
E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Justin Johnson February 9, 2022

Learning Rate Decay: Step

Lecture 10 - 37

Reduce learning rate
Step: Reduce learning rate at a few fixed points.
E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Learning Rate Decay: Cosine

45

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Justin Johnson February 9, 2022

Learning Rate Decay: Cosine

Lecture 10 - 38

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019
Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed points.
E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Cosine: !! = "
#!$ 1 + cos !%

&
Cosine: αt =

1
2

α0(1 + cos(
tπ
T

))

Justin Johnson February 9, 2022

Learning Rate Decay: Cosine

Lecture 10 - 38

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019
Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed points.
E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Cosine: !! = "
#!$ 1 + cos !%

&

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019

Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Learning Rate Decay: Linear

46

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Cosine: αt =
1
2

α0(1 + cos(
tπ
T

))

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL 2018

Liu et al, “RoBERTa: A Robustly Optimized BERT Pretraining Approach”, 2019 

Yang et al, “XLNet: Generalized Autoregressive Pretraining for Language Understanding”, NeurIPS 2019

Justin Johnson February 9, 2022

Learning Rate Decay: Linear

Lecture 10 - 39

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL 2018
Liu et al, “RoBERTa: A Robustly Optimized BERT Pretraining Approach”, 2019
Yang et al, “XLNet: Generalized Autoregressive Pretraining for Language Understanding”, NeurIPS 2019

Step: Reduce learning rate at a few fixed points.
E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Cosine: !! = "
#!$ 1 + cos !%

&

Linear: !! = !$ 1 − !
&Linear: αt = α0(1 −

t
T

)

Justin Johnson February 9, 2022

Learning Rate Decay: Inverse Sqrt

Lecture 10 - 40
Vaswani et al, “Attention is all you need”, NIPS 2017

Step: Reduce learning rate at a few fixed points.
E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Cosine: !! = "
#!$ 1 + cos !%

&

Linear: !! = !$ 1 − !
&

Inverse sqrt: !! = !$/ *

Learning Rate Decay: Inverse Sqrt

47

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Cosine: αt =
1
2

α0(1 + cos(
tπ
T

))

Vaswani et al, “Attention is all you need”, NIPS 2017

Linear: αt = α0(1 −
t
T

)

Inverse sqrt: αt = α0/ t

Justin Johnson February 9, 2022

Learning Rate Decay: Constant!

Lecture 10 - 41

Step: Reduce learning rate at a few fixed points.
E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Cosine: !! = "
#!$ 1 + cos !%

&

Linear: !! = !$ 1 − !
&

Inverse sqrt: !! = !$/ *
Constant: !! = !$

Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019
Donahue and Simonyan, “Large Scale Adversarial Representation Learning”, NeurIPS 2019

Learning Rate Decay: Constant!

48

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Cosine: αt =
1
2

α0(1 + cos(
tπ
T

))

Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019

Donahue and Simonyan, “Large Scale Adversarial Representation Learning”, NeurIPS 2019

Linear: αt = α0(1 −
t
T

)

Inverse sqrt: αt = α0/ t

Constant: αt = α0

How long to train? Early Stopping

49

Stop training the model when accuracy on the validation set decreases Or
train for a long time, but always keep track of the model snapshot that
worked best on val. Always a good idea to do this!

Justin Johnson February 9, 2022

How long to train? Early Stopping

Lecture 10 - 42

Iteration

Loss

Iteration

Accuracy
Train
Val

Stop training here

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot that
worked best on val. Always a good idea to do this!

50

Choosing Hyperparameters

Choosing Hyperparameters: Grid Search

51

Choose several values for each hyper parameter

(Often space choices log-linearly)

Example:
Weight decay: [1x10-4, 1x10-3, 1x10-2, 1x10-1]

Learning rate: [1x10-4, 1x10-3, 1x10-2, 1x10-1]

Evaluate all possible choices on this hyperparameter grid

Choosing Hyperparameters: Random Search

52

Choose several values for each hyper parameter

(Often space choices log-linearly)

Example:
Weight decay: log-uniform on [1x10-4, 1x10-1]

Learning rate: log-uniform on [1x10-4, 1x10-1]

Run many different trials

Hyperparameters: Random vs Grid Search

53

Justin Johnson February 9, 2022

Hyperparameters: Random vs Grid Search

Lecture 10 - 46

Important
Parameter

Important
Parameter

U
ni

m
po

rta
nt

Pa

ra
m

et
er

U
ni

m
po

rta
nt

Pa

ra
m

et
er

Grid Layout Random Layout

Bergstra and Bengio, “Random Search for Hyper-Parameter Optimization”, JMLR 2012

Bergstra and Bengio, “Random Search for Hyper-Parameter Optimization”, JMLR 2012

Choosing Hyperparameters: Random Search

54Justin Johnson February 9, 2022

Choosing Hyperparameters: Random Search

Lecture 10 - 47

Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019

Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019

55

Choosing Hyperparameters
(without tons of GPUs)

Step 1: Check initial loss

Choosing Hyperparameters

56

Turn off weight decay, sanity check loss at initialization

e.g. log(C) for softmax with C classes

Step 1: Check initial loss
Step 2: Overfit a small sample

Choosing Hyperparameters

57

Try to train to 100% training accuracy on a small sample of training data

(~5-10 mini batches); fiddle with architecture, learning rate, weight initialization.
Turn off regularization.

Loss not going down? LR too low, bad initialization

Loss explodes to Inf or NaN? LR too high, bad initialization

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Choosing Hyperparameters

58

Use the architecture from the previous step, use all training data, turn on small
weight decay, find a learning rate that makes the loss drop significantly within ~100
iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs

Choosing Hyperparameters

59

Choose a few values of learning rate and weight decay around what worked from
Step 3, train a few models for ~1-5 epochs

Good learning rates to try: 1e-4, 1e-5, 0

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Choosing Hyperparameters

60

Pick best models from Step 4, train them for longer (~10-20 epochs) without
learning rate decay

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at learning curves

Choosing Hyperparameters

61

Look at Learning Curves!

62

Justin Johnson February 9, 2022

Look at Learning Curves!

Lecture 10 - 55

Losses may be noisy, use a scatter
plot and also plot moving average
to see trends better

Losses may be noisy, use a
scatter plot and also plot moving
average to see trends better

63

Justin Johnson February 9, 2022Lecture 10 - 56

Loss

time

Bad initialization a prime suspect

64

Justin Johnson February 9, 2022Lecture 10 - 57

Loss

time

Loss plateaus: Try learning
rate decay

65Justin Johnson February 9, 2022Lecture 10 - 58

Loss

time

Learning rate step decay Loss was still going down when
learning rate dropped, you
decayed too early!

66
Justin Johnson February 9, 2022Lecture 10 - 59

Accuracy

time

Train

Accuracy still going up, you
need to train longer

Val

67Justin Johnson February 9, 2022Lecture 10 - 60

Accuracy

time

Train

Huge train / val gap means
overfitting! Increase regularization,
get more data

Val

68Justin Johnson February 9, 2022Lecture 10 - 61

Accuracy

time

Train

No or small gap between train / val
means underfitting: train longer, use
a bigger model, maybe higher LR

Val

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at learning curves loss curves
Step 7: GOTO step 5

Choosing Hyperparameters

69

• Network architecture
• Learning rate, its decay schedule, update type
• Regularization (L2/ Dropout strength)

Hyperparameters to play with:

70

Neural networks practitioner

Music = loss function

This image by Paolo Guereta is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Pioneer_DJ_equipment_-_angled_left_-_Expomusic_2014.jpg
https://creativecommons.org/licenses/by/3.0/us/

Cross-validation “command center”

71Justin Johnson February 9, 2022Lecture 10 - 64

Cross-validation
“command center”

Track ratio of weight update / weight magnitude

72

Justin Johnson February 9, 2022

Track ratio of weight update / weight magnitude

Lecture 10 - 65

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or soRatio between the updates and values: ~0.0002 / 0.02 = 0.01 (about okay)

want this to be somewhere around 0.001 or so

73

Overview
1. One time setup:

• Activation functions, data preprocessing, weight
initialization, regularization

2. Training dynamics:
• Learning rate schedules; hyperparameter optimization

3. After training:
• Model ensembles, transfer learning, large-batch training

Next lecture

74

Next Time:

Transfer Learning
Object Detection

Reminder: Form your final project teams

75

• Read the individual brainstorming documents from other students in the google-folder.
• Talk to your fellow classmates.

• Discuss your project idea with them.
• Start working toward more concrete project as a team.

• Adapt/Modify/Narrow down your ideas a team.
• Talk to Karthik during his OH to see the feasibility.

• Pick a few lecture topics from the list (provided here).
• Pick 3 papers to read.

• To reimplement as your project.
• To help your project.

• Form a team of 2-3 students by 10/07 EOD today using the google-sheet.
• You do not have to finalize your project by this date.
• You should finalize your group.

https://docs.google.com/spreadsheets/d/1IIMXkYPwrUo8RU1DD8DTiTGloaEYsTPW0y9m_v6lpvg/edit?gid=1975374946#gid=1975374946
https://docs.google.com/spreadsheets/d/1IIMXkYPwrUo8RU1DD8DTiTGloaEYsTPW0y9m_v6lpvg/edit?gid=0#gid=0

Lecture 10
Training Neural Networks II
University of Minnesota

DeepRob

76Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

