





#### Project 1—Reminder

- Instructions and code available on the website
  - Here: <a href="https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project1/">https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project1/</a>
- Uses Python, PyTorch and Google Colab
- Implement KNN, linear SVM, and linear softmax classifiers
- Autograder is available!
- Due Monday, Sept 30th 11:59 PM CT





#### Recap from Previous Lecture

Represent complex expressions as computational graphs



- 1. Forward pass: Compute outputs
- 2. Backward pass: Compute gradients

During the backward pass, each node in the graph receives **upstream gradients** and multiplies them by **local gradients** to compute **downstream gradients** 







#### Recap from Previous Lecture



**Problem:** So far our classifiers don't respect the spatial structure of images!







#### Recap from Previous Lecture



**Problem**: So far our classifiers don't respect the spatial structure of images!

**Solution**: Define new computational nodes that operate on images!







# Components of Fully-Connected Networks

#### **Fully-Connected Layers**



#### **Activation Functions**





## Components of Convolutional Neural Networks

#### **Fully-Connected Layers**



#### **Convolution Layers**



#### **Pooling Layers**



#### **Activation Functions**



#### Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$





### Fully-Connected Layer

3x32x32 image → stretch to 3072x1







### Fully-Connected Layer

3x32x32 image ----- stretch to 3072x1



The result of taking a dot product between a row of W and the input





3x32x32 image: preserve spatial structure



3x5x5 filter



Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"











width

channels



#### 3x32x32 image







3x32x32 image 1x28x28 activation map







3x32x32 image

two 1x28x28 activation map







3x32x32 image six 1x28x28 activation map







3x32x32 image six 1x28x28 activation map





























N x 3 x 32 x 32















Q: What happens if we stack two convolution layers?

































#### Linear classifier: One template per class









MLP: Bank of whole-image templates









First-layer conv filters: local image templates (often learns oriented edges, opposing colors)



AlexNet: 96 filters, each 3x11x11







#### Feature Visualization

How neural networks build up their understanding of images



Feature visualization allows us to see how GoogLeNet [1], trained on the ImageNet [2] dataset, builds up its understanding of images over many layers. Visualizations of all channels are available in the <u>appendix</u>.

Olah, et al., "Feature Visualization", Distill, 2017.













Input: 7x7

Filter: 3x3







Input: 7x7

Filter: 3x3

5757





Input: 7x7

Filter: 3x3







Input: 7x7

Filter: 3x3







Input: 7x7

Filter: 3x3

Output: 5x5







Input: 7x7

Filter: 3x3

Output: 5x5

In general: Problem: Feature

with each layer!

Input: W maps "shrink"

Filter: K

Output: W - K + 1





| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Problem: Feature

Input: W maps "shrink"

Filter: K

with each layer!

Output: W - K + 1

Solution: padding

Add zeros around the input





| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 |   |   |   |   |   |   |   | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Very common:

Input: W Set P = (K - 1) / 2 to

Filter: K make output have

Padding: P same size as input!

Output: W - K + 1 + 2P





For convolution with kernel size K, each element in the output depends on a K x K receptive field in the input



Formally, it is the region in the input space that a particular CNN's feature is affected by.

Informally, it is the part of a tensor that after convolution results in a feature.





Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1+L\*(K-1)



Be careful – "receptive field in the input" vs "receptive field in the previous layer"

Hopefully clear from context!





Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1+L\*(K-1)







Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L \* (K-1)



Problem: For large images we need many layers for each output to "see" the whole image image

Solution: Downsample inside the network





Input: 7x7

Filter: 3x3

Stride: 2





|  | <br>= | = |  |  |
|--|-------|---|--|--|
|  |       |   |  |  |
|  |       |   |  |  |
|  |       |   |  |  |
|  |       |   |  |  |
|  |       |   |  |  |
|  |       |   |  |  |
|  |       |   |  |  |

Input: 7x7

Filter: 3x3

Stride: 2





Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2







Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

In general:

Input: W

Filter: K

Padding: P

Stride: S

Output: (W - K + 2P) / S + 1





Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Q: What is the output volume size?







Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Q: What is the output volume size?

$$(32-5+2*2)/1+1=32$$
 spatially

So, 10 x 32 x 32 output







Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Q: What is the number of learnable parameters?







Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Q: What is the number of learnable parameters?

Parmeters per filter: (3\*5\*5) + 1 = 76

10 filters, so total is 10\*76 = 760







Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Q: What is the number of multiply-add operations?







Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Q: What is the number of multiply-add operations?

10\*32\*32=10,240 outputs, each from inner product

of two 3x5x5 tensors, so total = 75 \* 10,240 =**768,000** 







### Example: 1x1 Convolution







### Example: 1x1 Convolution



Stacking 1x1 conv layers gives MLP operating on each input position





## Convolution Summary

Input: C<sub>in</sub> x H x W

**Hyperparameters:** 

- Kernel size: K<sub>H</sub> x K<sub>W</sub>

- Number filters: C<sub>out</sub>

- Padding: P

- Stride: S

Weight matrix: C<sub>out</sub> x C<sub>in</sub> x K<sub>H</sub> x K<sub>W</sub>

giving C<sub>out</sub> filters of size C<sub>in</sub> x K<sub>H</sub> x K<sub>W</sub>

Bias vector: C<sub>out</sub>

Output size: C<sub>out</sub> x H' x W' where:

- H' = (H - K + 2P) / S + 1

- W' = (W - K + 2P) / S + 1





### Convolution Summary

Input: C<sub>in</sub> x H x W

**Hyperparameters:** 

- Kernel size: K<sub>H</sub> x K<sub>W</sub>

- Number filters: C<sub>out</sub>

- Padding: P

- **Stride**: S

Weight matrix: C<sub>out</sub> x C<sub>in</sub> x K<sub>H</sub> x K<sub>W</sub>

giving C<sub>out</sub> filters of size C<sub>in</sub> x K<sub>H</sub> x K<sub>W</sub>

Bias vector: C<sub>out</sub>

Output size: C<sub>out</sub> x H' x W' where:

- H' = (H - K + 2P) / S + 1

- W' = (W - K + 2P) / S + 1

### Common settings:

 $K_H = K_W$  (Small square filters)

P = (K - 1) / 2 ("Same" padding)

 $C_{in}$ ,  $C_{out}$  = 32, 64, 128, 256 (powers of 2)

K = 3, P = 1, S = 1 (3x3 conv)

K = 5, P = 2, S = 1 (5x5 conv)

K = 1, P = 0, S = 1 (1x1 conv)

K = 3, P = 1, S = 2 (Downsample by 2)





### Other types of convolution

So far: 2D Convolution







### Other types of convolution

#### So far: 2D Convolution



#### 1D Convolution

Input: C<sub>in</sub> x W

Weights: C<sub>out</sub> x C<sub>in</sub> x K







### Other types of convolution

at each point

#### So far: 2D Convolution



#### 3D Convolution

Input: C<sub>in</sub> x H x W x D

Weights: C<sub>out</sub> x C<sub>in</sub> x K x K x K







### PyTorch Convolution Layer

#### Conv2d

[SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size  $(N,C_{
m in},H,W)$  and output  $(N,C_{
m out},H_{
m out},W_{
m out})$  can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$





## PyTorch Convolution Layer

#### Conv2d

[SOURCE]

#### Conv1d

[SOURCE] &

#### Conv3d

[SOURCE]



# DR

# Components of Convolutional Neural Networks

#### **Fully-Connected Layers**



#### **Convolution Layers**



### **Pooling Layers**



#### **Activation Functions**



#### Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$



# DR

## Pooling Layers: Another way to downsample



#### Hyperparameters:

Kernel size
Stride
Pooling function





## Max Pooling

### Single depth slice

| X | 1 | 1 | 2 | 4 |
|---|---|---|---|---|
|   | 5 | 6 | 7 | 8 |
|   | 3 | 2 | 1 | 0 |
|   | 1 | 2 | 3 | 4 |
|   |   |   |   |   |

Max pooling with 2x2 kernel size stride of 2

6834





### Max Pooling

### Single depth slice



Max pooling with 2x2 kernel size stride of 2

6834

V

Introduces invariance to small spatial shifts

No learnable parameters!





## Pooling Summary

Input: C x H x W

### Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Output: C x H' x W' where

- H' = (H K) / S + 1
- W' = (W K) / S + 1

Learnable parameters: None!

Common settings:

max, K = 2, S = 2

max, K = 3, S = 2 (AlexNet)



# Components of Convolutional Neural Networks

#### **Fully-Connected Layers**



### **Convolution Layers**



### **Pooling Layers**



#### **Activation Functions**



#### Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$





### Convolutional Neural Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5







## Example: LeNet-5

| Layer | <b>Output Size</b> | Weight Size |
|-------|--------------------|-------------|
| Input | 1 x 28 x 28        |             |







## Example: LeNet-5

| Layer                                      | <b>Output Size</b> | Weight Size    |
|--------------------------------------------|--------------------|----------------|
| Input                                      | 1 x 28 x 28        |                |
| Conv (C <sub>out</sub> =20, K=5, P=2, S=1) | 20 x 28 x 28       | 20 x 1 x 5 x 5 |
| ReLU                                       | 20 x 28 x 28       |                |







| Layer                                      | Output Size  | Weight Size    |
|--------------------------------------------|--------------|----------------|
| Input                                      | 1 x 28 x 28  |                |
| Conv (C <sub>out</sub> =20, K=5, P=2, S=1) | 20 x 28 x 28 | 20 x 1 x 5 x 5 |
| ReLU                                       | 20 x 28 x 28 |                |
| MaxPool(K=2, S=2)                          | 20 x 14 x 14 |                |







| Layer                                      | Output Size  | Weight Size     |
|--------------------------------------------|--------------|-----------------|
| Input                                      | 1 x 28 x 28  |                 |
| Conv (C <sub>out</sub> =20, K=5, P=2, S=1) | 20 x 28 x 28 | 20 x 1 x 5 x 5  |
| ReLU                                       | 20 x 28 x 28 |                 |
| MaxPool(K=2, S=2)                          | 20 x 14 x 14 |                 |
| Conv (C <sub>out</sub> =50, K=5, P=2, S=1) | 50 x 14 x 14 | 50 x 20 x 5 x 5 |
| ReLU                                       | 50 x 14 x 14 |                 |







| Layer                                      | Output Size  | Weight Size     |
|--------------------------------------------|--------------|-----------------|
| Input                                      | 1 x 28 x 28  |                 |
| Conv (C <sub>out</sub> =20, K=5, P=2, S=1) | 20 x 28 x 28 | 20 x 1 x 5 x 5  |
| ReLU                                       | 20 x 28 x 28 |                 |
| MaxPool(K=2, S=2)                          | 20 x 14 x 14 |                 |
| Conv (C <sub>out</sub> =50, K=5, P=2, S=1) | 50 x 14 x 14 | 50 x 20 x 5 x 5 |
| ReLU                                       | 50 x 14 x 14 |                 |
| MaxPool(K=2, S=2)                          | 50 x 7 x 7   |                 |







| Layer                                      | Output Size  | Weight Size     |
|--------------------------------------------|--------------|-----------------|
| Input                                      | 1 x 28 x 28  |                 |
| Conv (C <sub>out</sub> =20, K=5, P=2, S=1) | 20 x 28 x 28 | 20 x 1 x 5 x 5  |
| ReLU                                       | 20 x 28 x 28 |                 |
| MaxPool(K=2, S=2)                          | 20 x 14 x 14 |                 |
| Conv (C <sub>out</sub> =50, K=5, P=2, S=1) | 50 x 14 x 14 | 50 x 20 x 5 x 5 |
| ReLU                                       | 50 x 14 x 14 |                 |
| MaxPool(K=2, S=2)                          | 50 x 7 x 7   |                 |
| Flatten                                    | 2450         |                 |







| Layer                                      | Output Size  | Weight Size     |
|--------------------------------------------|--------------|-----------------|
| Input                                      | 1 x 28 x 28  |                 |
| Conv (C <sub>out</sub> =20, K=5, P=2, S=1) | 20 x 28 x 28 | 20 x 1 x 5 x 5  |
| ReLU                                       | 20 x 28 x 28 |                 |
| MaxPool(K=2, S=2)                          | 20 x 14 x 14 |                 |
| Conv (C <sub>out</sub> =50, K=5, P=2, S=1) | 50 x 14 x 14 | 50 x 20 x 5 x 5 |
| ReLU                                       | 50 x 14 x 14 |                 |
| MaxPool(K=2, S=2)                          | 50 x 7 x 7   |                 |
| Flatten                                    | 2450         |                 |
| Linear (2450 -> 500)                       | 500          | 2450 x 500      |
| ReLU                                       | 500          |                 |







| Layer                                      | Output Size  | Weight Size     |
|--------------------------------------------|--------------|-----------------|
| Input                                      | 1 x 28 x 28  |                 |
| Conv (C <sub>out</sub> =20, K=5, P=2, S=1) | 20 x 28 x 28 | 20 x 1 x 5 x 5  |
| ReLU                                       | 20 x 28 x 28 |                 |
| MaxPool(K=2, S=2)                          | 20 x 14 x 14 |                 |
| Conv (C <sub>out</sub> =50, K=5, P=2, S=1) | 50 x 14 x 14 | 50 x 20 x 5 x 5 |
| ReLU                                       | 50 x 14 x 14 |                 |
| MaxPool(K=2, S=2)                          | 50 x 7 x 7   |                 |
| Flatten                                    | 2450         |                 |
| Linear (2450 -> 500)                       | 500          | 2450 x 500      |
| ReLU                                       | 500          |                 |
| Linear (500 -> 10)                         | 10           | 500 x 10        |







| Layer                                      | Output Size  | Weight Size     |
|--------------------------------------------|--------------|-----------------|
| Input                                      | 1 x 28 x 28  |                 |
| Conv (C <sub>out</sub> =20, K=5, P=2, S=1) | 20 x 28 x 28 | 20 x 1 x 5 x 5  |
| ReLU                                       | 20 x 28 x 28 |                 |
| MaxPool(K=2, S=2)                          | 20 x 14 x 14 |                 |
| Conv (C <sub>out</sub> =50, K=5, P=2, S=1) | 50 x 14 x 14 | 50 x 20 x 5 x 5 |
| ReLU                                       | 50 x 14 x 14 |                 |
| MaxPool(K=2, S=2)                          | 50 x 7 x 7   |                 |
| Flatten                                    | 2450         |                 |
| Linear (2450 -> 500)                       | 500          | 2450 x 500      |
| ReLU                                       | 500          |                 |
| Linear (500 -> 10)                         | 10           | 500 x 10        |



As we progress through the network:

Spatial size **decreases** (using pooling or striped convolution)

Number of channels **increases** (total "volume" is preserved!)





| Layer                                      | Output Size  | Weight Size     |
|--------------------------------------------|--------------|-----------------|
| Input                                      | 1 x 28 x 28  |                 |
| Conv (C <sub>out</sub> =20, K=5, P=2, S=1) | 20 x 28 x 28 | 20 x 1 x 5 x 5  |
| ReLU                                       | 20 x 28 x 28 |                 |
| MaxPool(K=2, S=2)                          | 20 x 14 x 14 |                 |
| Conv (C <sub>out</sub> =50, K=5, P=2, S=1) | 50 x 14 x 14 | 50 x 20 x 5 x 5 |
| ReLU                                       | 50 x 14 x 14 |                 |
| MaxPool(K=2, S=2)                          | 50 x 7 x 7   |                 |
| Flatten                                    | 2450         |                 |
| Linear (2450 -> 500)                       | 500          | 2450 x 500      |
| ReLU                                       | 500          |                 |
| Linear (500 -> 10)                         | 10           | 500 x 10        |



As we progress through the network:

Spatial size **decreases** (using pooling or striped convolution)

Number of channels **increases** (total "volume" is preserved!)

Some modern architectures break this trend—stay tuned!





## Problem: Deep Networks very hard to train



# DR

# Components of Convolutional Neural Networks

#### **Fully-Connected Layers**



#### **Convolution Layers**



#### **Pooling Layers**



#### **Activation Functions**



#### **Normalization**

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$





### Batch Normalization

Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization results

We can normalize a batch of activations using:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$





### Batch Normalization

Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization results

We can normalize a batch of activations using:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

This is a differentiable function, so we can use it as an operator in our networks and backdrop through it!



# DR

# Summary: Components of Convolutional Network

#### **Fully-Connected Layers**



#### **Convolution Layers**



#### **Pooling Layers**



#### **Activation Functions**



#### Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$



### Summary: Components of Convolutional Network

Problem: What is the right way to combine all these components?







### Next time: CNN Architectures





