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Project 1—Reminder
• Instructions and code available on the website
• Here: https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project1/

• Uses Python, PyTorch and Google Colab

• Implement KNN, linear SVM, and linear softmax classifiers

• Autograder is available!
• Due Monday, Sept 30th 11:59 PM CT
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https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project1/


Recap from Previous Lecture
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Feature transform + Linear classifier 
allows nonlinear decision boundaries

Neural Networks as learnable feature 
transforms



Recap from Previous Lecture
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From linear classifiers to 
fully-connected networks

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10

  f(x) = W2 max(0,W1x + b1) + b2

Linear classifier: One template per class

Neural networks: Many reusable templates



Recap from Previous Lecture
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From linear classifiers to 
fully-connected networks

  f(x) = W2 max(0,W1x + b1) + b2

Universal approximation

Nonconvex

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 98

A function                                      is convex if for all                                     ,

Intuition: A convex function 
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can 
derive theoretical guarantees about 
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

Can get very wild!

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units 
per hidden layer, 10 categories, with softmax loss

x

Space Warping

Justin Johnson January 24, 2022

Setting the number of layers and their sizes

Lecture 5 - 67

More hidden units = more capacity

3 hidden units 6 hidden units 20 hidden units

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10



Problem: How to compute gradients?
                                 Nonlinear score function

                                     Per-element data loss

                                                         L2 regularization

 Total loss

If we can compute  then we can optimize with SGD

s = W2 max(0,W1x + b1) + b2

Li = ∑
j≠yi

max(0,sj − syi
+ 1)

R(W) = ∑
k

W2
k

L(W1, W2, b1, b2) =
1
N

N

∑
i=1

Li + λR(W1) + λR(W2)

δL
δW1

,
δL

δW2
,

δL
δb1

,
δL
δb2
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ReLU activation

Hinge loss

Regularization term

Data loss



(Bad) Idea: Derive  on paper∇W L
                                

   

   

s = f(x; W) = Wx
Li = ∑

j≠yi

max(0,sj − syi
+ 1)

= ∑
j≠yi

max(0,Wj,: x − Wyi,: x + 1)

L =
1
N

N

∑
i=1

Li + λ∑
k

W2
k

=
1
N

N

∑
i=1

∑
j≠yi

max(0,Wj,: x − Wyi,: x + 1) + λ∑
k

W2
k

∇W L = ∇W( 1
N

N

∑
i=1

∑
j≠yi

max(0,Wj,: x − Wyi,: x + 1) + λ∑
k

W2
k )
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Problem: Very tedious with lots 
of matrix calculus

Problem: What if we want to 
change the loss? E.g. use softmax 
instead of SVM? Need to re-derive 
from scratch. Not modular!

Problem: Not feasible for very 
complex models!



Better Idea: Computational Graphs
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x

W

* Hinge 
loss +

R

L

s = Wx Li = ∑
j≠yi

max(0,sj − syi
+ 1)

R(W)



Deep Network (AlexNet)
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Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z

Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0
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Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

−2

5

−4
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Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

−2

5

−4

3
−12
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Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

13

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z
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Backpropagation:
Simple Example
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Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

∂f
∂f
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Backpropagation:
Simple Example

Lecture 6 - 11
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Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

∂f
∂f

1
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Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1



∂f
∂z

= q
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Backpropagation:
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Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

∂f
∂z
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∂f
∂z

= q
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Backpropagation:
Simple Example
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Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1
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Backpropagation:
Simple Example
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Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

∂f
∂z

= q

1

3



∂f
∂q

= z
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Backpropagation:
Simple Example
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Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂q

3



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

21

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂q

= z

3
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Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂q

= z

3

−4



∂f
∂y

=
∂q
∂y

∂f
∂q
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Backpropagation:
Simple Example
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Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂y

3

−4
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x
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∂y

,
∂f
∂z

1

∂f
∂y

=
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∂y
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3

−4
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Backpropagation: Simple Example
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂y

=
∂q
∂y

∂f
∂q

3

−4

Downstream 
Gradient

Local 
Gradient

Upstream 
Gradient



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

26

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂y

=
∂q
∂y

∂f
∂q

3

Downstream 
Gradient

Local 
Gradient

Upstream 
Gradient

∂q
∂y

= 1

−4
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂y

=
∂q
∂y

∂f
∂q

3

Downstream 
Gradient

Local 
Gradient

Upstream 
Gradient

∂q
∂y

= 1

−4
−4
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂x

=
∂q
∂x

∂f
∂q

3

Downstream 
Gradient

Local 
Gradient

Upstream 
Gradient

∂q
∂x

= 1

−4
−4
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f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂x

=
∂q
∂x

∂f
∂q

3

Downstream 
Gradient

Local 
Gradient

Upstream 
Gradient

∂q
∂x

= 1

−4
−4

−4



Local Properties of Backpropagation
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x

y

z
f
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x

y

z
f

Local Properties of Backpropagation
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∂L
∂z

x

y

z
f

Upstream 
Gradient

Local Properties of Backpropagation
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∂L
∂z

x

y

z
f

∂z
∂x
∂z
∂y Local 

Gradients

Upstream 
Gradient

Local Properties of Backpropagation
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∂L
∂z

x

y

z
f

∂z
∂x
∂z
∂y Local 

Gradients

Upstream 
Gradient

∂L
∂y

=
∂z
∂y

∂L
∂z

∂L
∂x

=
∂z
∂x

∂L
∂z

Downstream 
Gradients

Local Properties of Backpropagation
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∂L
∂z

x

y

z
f

∂z
∂x
∂z
∂y Local 

Gradients

Upstream 
Gradient

∂L
∂y

=
∂z
∂y

∂L
∂z

∂L
∂x

=
∂z
∂x

∂L
∂z

Downstream 
Gradients

Local Properties of Backpropagation
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Another example
f(x, w) =

1
1 + e−(w0x0+w1x1+w2)
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Another example
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% &, ( = 1
1 + ,! "!#!$""#"$"#Another Examplef(x, w) =

1
1 + e−(w0x0+w1x1+w2)
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% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputsf(x, w) =

1
1 + e−(w0x0+w1x1+w2)
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Another example
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% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.731.370.37

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



40

Another example
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% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

2. Backward pass: Compute gradients

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.731.370.37

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)
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% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.73

2. Backward pass: Compute gradients

Base Case

1.00
1.370.37

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)
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% &, ( = 1
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2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)
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Upstream 
Gradient
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∂
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Downstream 
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2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)
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Upstream 
Gradient

1.00

∂
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Downstream 
Gradient

−0.53−0.53−0.200.20

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)
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1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

Upstream 
Gradient

1.00

Downstream 
Gradient
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∂
∂x [x + y] = 1

∂
∂y [x + y] = 1

Local Gradient

0.20

0.20

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)
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Upstream 
Gradient

1.00

Downstream 
Gradient
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∂
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∂
∂y [x + y] = 1

Local Gradient

0.20

0.20

0.20
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f(x, w) =
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1 + e−(w0x0+w1x1+w2)
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1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

Upstream 
Gradient

1.00

Downstream 
Gradient

−0.53−0.53−0.200.20

∂
∂x [x ⋅ y] = y

∂
∂y [x ⋅ y] = x

0.20

0.20

0.20

0.20

Local Gradient

−0.20

0.39

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)
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−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

Upstream 
Gradient

1.00
Downstream 

Gradient

−0.53−0.53−0.200.20

∂
∂x [x ⋅ y] = y

∂
∂y [x ⋅ y] = x

0.20

0.20

0.20

0.20

Local Gradient

−0.20

0.39

−0.59

−0.39

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)
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−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20

−0.20

0.39

−0.59

−0.39

= σ(w0x0 + w1x1 + w2)

σ(x) =
1

1 + e−x

Computational graph is not 
unique: we can use primitives 
that have simple local gradients

Sigmoid

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)
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−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20

−0.20

0.39

−0.59

−0.39

= σ(w0x0 + w1x1 + w2)

σ(x) =
1

1 + e−x

Computational graph is not 
unique: we can use primitives 
that have simple local gradients

Sigmoid

∂
∂x [σ(x)] =

e−x

(1 + e−x)2
= (1 + e−x − 1

1 + e−x )( 1
1 + e−x ) = (1 − σ(x))σ(x)Sigmoid local 

gradient:

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)
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2.00

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20

−0.20

0.39

−0.59

−0.39

= σ(w0x0 + w1x1 + w2)

σ(x) =
1

1 + e−x

Computational graph is not 
unique: we can use primitives 
that have simple local gradients

Sigmoid

∂
∂x [σ(x)] =

e−x

(1 + e−x)2
= (1 + e−x − 1

1 + e−x )( 1
1 + e−x ) = (1 − σ(x))σ(x)Sigmoid local 

gradient:

[Downstream]=[Local]⋅[Upstream]
=(1−0.73) ⋅ 0.73⋅1.00=0.20

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)
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mul gate: “swap multiplier”

max

copy gate: gradient adder

×
2

3
6
5
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5
5
9

0

9

7

7
7
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4

2

max gate: gradient router
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Compute grads

Forward pass: 
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Backprop Implementation:
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Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs

Base case

Backward pass: 
Compute gradients
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Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs

Sigmoid

Backward pass: 
Compute gradients
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Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs

Backward pass: 
Compute gradients

Add
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Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs

Backward pass: 
Compute gradients
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“Flat” Backprop: Do this for Project 1 & 2
Forward pass: 
Compute outputs

Backward pass: 
Compute gradients
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Backprop Implementation: Modular API

Lecture 6 - 61

Graph (or Net) object  (rough pseudo code)

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 51

Forward pass:
Compute output
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x

y

z
*

Need to stash some 
values for use in 
backward

Upstream 
gradient

Multiply upstream 
and local gradients
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(x,y,z are scalars)

x

y

z
*

Need to stash some 
values for use in 
backward

Upstream 
gradient

Multiply upstream 
and local gradients
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So far:  backprop with scalars
What about vector-valued functions?
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Recap: Vector Derivatives

Lecture 6 - 69

Regular derivative:

If x changes by a small 
amount, how much 
will y change?

. ∈ ℝ, / ∈ ℝ

!"
!# ∈ ℝ
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Recap: Vector Derivatives

Lecture 6 - 70

Regular derivative:

If x changes by a small 
amount, how much 
will y change?

Derivative is Gradient:

For each element of x, 
if it changes by a small 
amount then how 
much will y change?

. ∈ ℝ, / ∈ ℝ . ∈ ℝ0 , / ∈ ℝ

!"
!# ∈ ℝ

!"
!# ∈ ℝ

! ,
!"
!# "

= !"
!#"
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Recap: Vector Derivatives

Lecture 6 - 71

Regular derivative:

If x changes by a small 
amount, how much 
will y change?

Derivative is Gradient:

For each element of x, 
if it changes by a small 
amount then how 
much will y change?

Derivative is Jacobian:

For each element of x, if it 
changes by a small amount 
then how much will each 
element of y change?

. ∈ ℝ, / ∈ ℝ . ∈ ℝ0 , / ∈ ℝ . ∈ ℝ0 , / ∈ ℝ1

!"
!# ∈ ℝ

!"
!# ∈ ℝ

! ,
!"
!# "

= !"
!#"

!"
!# ∈ ℝ

!×$

!"
!# ",&

= !"&
!#"
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z
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Loss L still a scalar!Dx
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Dz
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Backprop with Vectors

x

y

z
f

Loss L still a scalar!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dx

Dy

Dz

Dz
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Backprop with Vectors

x

y

z
f

Dx

Dy

Dz

Loss L still a scalar!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dz

∂z
∂x
∂z
∂y Dy × Dz

Dx × Dz

Local Jacobians 
(matrices)
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Backprop with Vectors

x

y

z
f

Dx

Dy

Dz

Loss L still a scalar!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dz

∂z
∂x
∂z
∂y Dy × Dz

Dx × Dz

Local Jacobians 
(matrices)

∂L
∂y

=
∂z
∂y

∂L
∂z

∂L
∂x

=
∂z
∂x

∂L
∂z

Downstream 
Gradients

Matrix-vector 
multiply

Dx

Dy
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Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Jacobian is sparse: off-
diagonal entries all zero! 
Never explicitly form 
Jacobian; instead use 
implicit multiplication
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Backprop with Vectors

Lecture 6 - 82

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

34
3" $

= 5
34
36 $

, 7! "$ > 0
0, 9:ℎ1<=7>1

82

Backprop with Vectors

Jacobian is sparse: off-
diagonal entries all zero! 
Never explicitly form 
Jacobian; instead use 
implicit multiplication
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Backprop with Matrices (or Tensors)

x

y

z
f

Dx × Mx

Dy × My

Dz × Mz

Loss L still a scalar!
dL/dx always has the 
same shape as x!
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Backprop with Matrices (or Tensors)

x

y

z
f

Dx × Mx

Dy × My

Dz × Mz

Loss L still a scalar!
dL/dx always has the 
same shape as x!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dz × Mz
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Backprop with Matrices (or Tensors)

x

y

z
f

Dx × Mx

Dy × My

Dz × Mz

Loss L still a scalar!
dL/dx always has the 
same shape as x!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dz × Mz

∂z
∂x

∂z
∂y (Dy × My) × (Dz × Mz)

Local Jacobians 
(matrices)

(Dx × Mx) × (Dz × Mz)



86

Backprop with Matrices (or Tensors)

x

y

z
f

Dx × Mx

Dy × My

Dz × Mz

Loss L still a scalar!
dL/dx always has the 
same shape as x!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dz × Mz

∂z
∂x

∂z
∂y (Dy × My) × (Dz × Mz)

Local Jacobians 
(matrices)

(Dx × Mx) × (Dz × Mz)

∂L
∂y

=
∂z
∂y

∂L
∂z

∂L
∂x

=
∂z
∂x

∂L
∂z

Downstream 
Gradients

Matrix-vector 
multiply

Dx × Mx

Dy × My
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Example: Matrix Multiplication

Lecture 6 - 88

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 88

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 89

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply y = xw

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

"",& =*
'
#",'+',&
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Example: Matrix Multiplication
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Example: Matrix Multiplication

Lecture 6 - 88

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 90

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Jacobians:
dy/dx: [(N×D)×(N×M)]

dy/dw: [(D×M)×(N×M)]
For a neural net we may have 

N=64, D=M=4096
Each Jacobian takes 256 GB of memory! Must 

work with them implicitly!

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 88

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 88

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 91

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ ?  ?  ?  ? ]
[ ?  ?  ?  ? ]dL/dx1,1

= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 92

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ ?  ?  ?  ? ]
[ ?  ?  ?  ? ]

dy1,1/dx1,1dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 93

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ ?  ?  ?  ? ]
[ ?  ?  ?  ? ]

dy1,1/dx1,1

y1,1 = x1,1w1,1 + x1,2w2,1 +  x1,3w3,1

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 94

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  ?  ?  ? ]
[ ?  ?  ?  ? ]

dy1,1/dx1,1

y1,1 = x1,1w1,1 + x1,2w2,1 +  x1,3w3,1
=> dy1,1/dx1,1 = w1,1

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 95

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  ?  ?  ? ]
[ ?  ?  ?  ? ]

dy1,2/dx1,1dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 96

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  ?  ?  ? ]
[ ?  ?  ?  ? ]

dy1,2/dx1,1

y1,2 = x1,1w1,2 + x1,2w2,2 +  x1,3w3,2

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 97

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  ?  ? ]
[ ?  ?  ?  ? ]

dy1,2/dx1,1

y1,2 = x1,1w1,2 + x1,2w2,2 +  x1,3w3,2
=> dy1,2/dx1,1 = w1,2

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 98

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ ?  ?  ?  ? ]

dy1,2/dx1,1dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 99

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ ?  ?  ?  ? ]

dy1,2/dx1,1

y2,1 = x2,1w1,1 + x2,2w2,1 +  x2,3w3,1

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 100

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ 0  ?  ?  ? ]

dy1,2/dx1,1

y2,1 = x2,1w1,1 + x2,2w2,1 +  x2,3w3,1
=> dy2,1/dx1,1 = 0

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 101

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ 0  0  0  0 ]

dy1,2/dx1,1dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 102

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ 0  0  0  0 ]dL/dx1,1

= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 103

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

0 ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ 0  0  0  0 ]dL/dx1,1

= (dy/dx1,1) · (dL/dy)
= (w1,:) · (dL/dy1,:)
= 3*2 + 2*3 + 1*(-3) + (-1)*9 = 0

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 104

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

0 ? ?
? ? -30

Local Gradient Slice:
dy/dx2,3

[ 0  0  0  0 ]
[ 3  2  1 -2 ]dL/dx2,3

= (dy/dx2,3) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 105

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

0 ? ?
? ? -30

Local Gradient Slice:
dy/dx2,3

[ 0  0  0  0 ]
[ 3  2  1 -2 ]dL/dx2,3

= (dy/dx2,3) · (dL/dy)
= (w3,:) · (dL/dy2,:)
= 3*(-8) + 2*1 + 1*4 + (-2)*6 = -30

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 106

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

dL/dxi,j
= (dy/dxi,j) · (dL/dy)
= (wj,:) · (dL/dyi,:)

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 107

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

dL/dxi,j
= (dy/dxi,j) · (dL/dy)
= (wj,:) · (dL/dyi,:)

dL/dx = (dL/dy) wT

[N x D]        [N x M]  [M x D] Easy way to remember:
It’s the only way the 
shapes work out! 

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Example: Matrix Multiplication

Lecture 6 - 108

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

Easy way to remember:
It’s the only way the 
shapes work out! dL/dw = xT (dL/dy)

[D x M]   [D x N] [N x M]

dL/dx = (dL/dy) wT

[N x D]        [N x M]  [M x D] 

Matrix Multiply y = xw

"",& =*
'
#",'+',&
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Backpropagation: Another View

Lecture 6 - 109

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

Chain 
rule

&)
&$!

= &$"
&$!

&$#
&$"

&$$
&$#

&)
&$$
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Backpropagation: Another View

Lecture 6 - 110

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

Matrix multiplication is associative: we can compute products in any order

Chain 
rule

[D3][D2 x D3][D1 x D2][D0 x D1]

&)
&$!

= &$"
&$!

&$#
&$"

&$$
&$#

&)
&$$
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x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain 
rule

Reverse-Mode Automatic Differentiation

[D3][D2 x D3][D1 x D2][D0 x D1]

&)
&$!

= &$"
&$!

&$#
&$"

&$$
&$#

&)
&$$
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Reverse-Mode Automatic Differentiation

Lecture 6 - 112

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

[D3][D2 x D3][D1 x D2][D0 x D1]

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain 
rule

What if we want 
grads of scalar 
input w/respect 
to vector 
outputs?Compute grad of scalar output

w/respect to all vector inputs

&)
&$!

= &$"
&$!

&$#
&$"

&$$
&$#

&)
&$$
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Reverse-Mode Automatic Differentiation

Lecture 6 - 112

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

[D3][D2 x D3][D1 x D2][D0 x D1]

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain 
rule

What if we want 
grads of scalar 
input w/respect 
to vector 
outputs?Compute grad of scalar output

w/respect to all vector inputs

&)
&$!

= &$"
&$!

&$#
&$"

&$$
&$#

&)
&$$
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Forward-Mode Automatic Differentiation

Lecture 6 - 113

a
scalar

x0
D0

x3
D3

x1
D1

x2
D2

f1 f2 f3 f4

[D1 x D2][D0 x D1][D0]

Chain 
rule

[D2 x D3]

&$$
&* = &$!

&*
&$"
&$!

&$#
&$"

&$$
&$#
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Forward-Mode Automatic Differentiation

Lecture 6 - 114

a
scalar

x0
D0

x3
D3

x1
D1

x2
D2

f1 f2 f3 f4

Chain 
rule

Computing products left-to-right avoids matrix-matrix products; only needs matrix-vector

[D1 x D2][D0 x D1][D0] [D2 x D3]

&$$
&* = &$!

&*
&$"
&$!

&$#
&$"

&$$
&$#
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Forward-Mode Automatic Differentiation
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Summary

Lecture 6 - 123

x

W

hinge	
loss

R

+ Ls (scores)*

Represent complex expressions 
as computational graphs

Forward pass computes outputs

Backward pass computes gradients

f
Local	

gradients

Upstream	
gradient

Downstream
gradients

During the backward pass, each node in 
the graph receives upstream gradients
and multiplies them by local gradients to 
compute downstream gradients
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Summary

Lecture 6 - 124

Backprop can be implemented with “flat” code 
where the backward pass looks like forward pass 
reversed (Use this for A2!)

Backprop can be implemented with a modular API, 
as a set of paired forward/backward functions
(We will do this on A3!)
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Summary

Lecture 6 - 124

Backprop can be implemented with “flat” code 
where the backward pass looks like forward pass 
reversed (Use this for A2!)

Backprop can be implemented with a modular API, 
as a set of paired forward/backward functions
(We will do this on A3!)
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10

  f(x) = W2 max(0,W1x + b1) + b2

Problem: So far our classifiers don’t 
respect the spatial structure of images!
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Next time: Convolutional Neural Networks



Next: Individual brainstorming task
• Pick one of the 3 papers and write a) one 1-page summary, b) one thing from this paper that you can use for your ideated task.
• Data:

• Where will the data for your work come from?
• Real-robot vs. Simulation environment?
• Existing dataset or new data collection?
• Benchmarking task? 

• Network:
• What is the network architecture you found to be suitable from reading the papers?
• ResNet, PointNet, Transformers

• What training strategy would be applied?
• Supervised, Self-supervised, Semi-supervised

• Is there an existing code that you can build on?
• Compute:

• What compute requirements do you have? Memory, GPU etc.
• What compute resources do you have? Compute heavy laptop/desktop, MSI, etc.

• Evaluation:
• How do you know if a method could solve your problem? 
• Baselines from existing literature or your own baselines

• How do you measure how well your method works? 
• Evaluation metrics (existing ones vs. new ones)

• How will you choose hyperparameters in your project?
• Ablation study 
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120Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

DeepRob
Lecture 6
Backpropagation
University of Minnesota

∂L
∂Wℓ1

∂L
∂Wℓ2

∂L
∂Wℓ3

∂L
∂Wℓ4

∂L
∂Wℓ5

∂L
∂Out

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

