
1Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

DeepRob
Lecture 6
Backpropagation
University of Minnesota

∂L
∂Wℓ1

∂L
∂Wℓ2

∂L
∂Wℓ3

∂L
∂Wℓ4

∂L
∂Wℓ5

∂L
∂Out

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/


Project 1—Reminder
• Instructions and code available on the website
• Here: https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project1/

• Uses Python, PyTorch and Google Colab

• Implement KNN, linear SVM, and linear softmax classifiers

• Autograder is available!
• Due Monday, Sept 30th 11:59 PM CT

2

https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project1/


Recap from Previous Lecture

3

Feature transform + Linear classifier 
allows nonlinear decision boundaries

Neural Networks as learnable feature 
transforms



Recap from Previous Lecture

4

From linear classifiers to 
fully-connected networks

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10

  f(x) = W2 max(0,W1x + b1) + b2

Linear classifier: One template per class

Neural networks: Many reusable templates



Recap from Previous Lecture

5

From linear classifiers to 
fully-connected networks

  f(x) = W2 max(0,W1x + b1) + b2

Universal approximation

Nonconvex

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 98

A function                                      is convex if for all                                     ,

Intuition: A convex function 
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can 
derive theoretical guarantees about 
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

Can get very wild!

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units 
per hidden layer, 10 categories, with softmax loss

x

Space Warping

Justin Johnson January 24, 2022

Setting the number of layers and their sizes

Lecture 5 - 67

More hidden units = more capacity

3 hidden units 6 hidden units 20 hidden units

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10



Problem: How to compute gradients?
                                 Nonlinear score function

                                     Per-element data loss

                                                         L2 regularization

 Total loss

If we can compute  then we can optimize with SGD

s = W2 max(0,W1x + b1) + b2

Li = ∑
j≠yi

max(0,sj − syi
+ 1)

R(W) = ∑
k

W2
k

L(W1, W2, b1, b2) =
1
N

N

∑
i=1

Li + λR(W1) + λR(W2)

δL
δW1

,
δL

δW2
,

δL
δb1

,
δL
δb2

6

ReLU activation

Hinge loss

Regularization term

Data loss



(Bad) Idea: Derive  on paper∇W L
                                

   

   

s = f(x; W) = Wx
Li = ∑

j≠yi

max(0,sj − syi
+ 1)

= ∑
j≠yi

max(0,Wj,: x − Wyi,: x + 1)

L =
1
N

N

∑
i=1

Li + λ∑
k

W2
k

=
1
N

N

∑
i=1

∑
j≠yi

max(0,Wj,: x − Wyi,: x + 1) + λ∑
k

W2
k

∇W L = ∇W( 1
N

N

∑
i=1

∑
j≠yi

max(0,Wj,: x − Wyi,: x + 1) + λ∑
k

W2
k )

7

Problem: Very tedious with lots 
of matrix calculus

Problem: What if we want to 
change the loss? E.g. use softmax 
instead of SVM? Need to re-derive 
from scratch. Not modular!

Problem: Not feasible for very 
complex models!



Better Idea: Computational Graphs

8

x

W

* Hinge 
loss +

R

L

s = Wx Li = ∑
j≠yi

max(0,sj − syi
+ 1)

R(W)



Deep Network (AlexNet)

9

Figure
2:

A
n

illustration
ofthe

architecture
ofourC

N
N

,explicitly
show

ing
the

delineation
ofresponsibilities

betw
een

the
tw

o
G

PU
s.O

ne
G

PU
runsthe

layer-partsatthe
top

ofthe
figure

w
hile

the
otherrunsthe

layer-parts
atthe

bottom
.The

G
PU

scom
m

unicate
only

atcertain
layers.The

netw
ork’sinputis150,528-dim

ensional,and
the

num
berofneuronsin

the
netw

ork’srem
aining

layersisgiven
by

253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons
in

a
kernelm

ap).
The

second
convolutionallayertakes

as
inputthe

(response-norm
alized

and
pooled)outputofthe

firstconvolutionallayerand
filters

itw
ith

256
kernels

ofsize
5
⇥

5
⇥

48.
The

third,fourth,and
fifth

convolutionallayersare
connected

to
one

anotherw
ithoutany

intervening
pooling

or
norm

alization
layers.

The
third

convolutional
layer

has
384

kernels
of

size
3
⇥

3
⇥

256
connected

to
the

(norm
alized,pooled)

outputs
of

the
second

convolutionallayer.
The

fourth
convolutionallayerhas

384
kernels

ofsize
3
⇥

3
⇥

192
,and

the
fifth

convolutionallayerhas
256

kernels
ofsize

3
⇥

3
⇥

192.The
fully-connected

layers
have

4096
neurons

each.

4
R

educing
O

verfitting

O
urneuralnetw

ork
architecture

has
60

m
illion

param
eters.

A
lthough

the
1000

classes
ofILSV

R
C

m
ake

each
training

exam
ple

im
pose

10
bits

ofconstrainton
the

m
apping

from
im

age
to

label,this
turns

outto
be

insufficientto
learn

so
m

any
param

eters
w

ithoutconsiderable
overfitting.B

elow
,w

e
describe

the
tw

o
prim

ary
w

ays
in

w
hich

w
e

com
batoverfitting.

4.1
D

ata
Augm

entation

The
easiestand

m
ostcom

m
on

m
ethod

to
reduce

overfitting
on

im
age

data
is

to
artificially

enlarge
the

datasetusing
label-preserving

transform
ations

(e.g.,[25,4,5]).
W

e
em

ploy
tw

o
distinctform

s
of

data
augm

entation,both
of

w
hich

allow
transform

ed
im

ages
to

be
produced

from
the

original
im

ages
w

ith
very

little
com

putation,so
the

transform
ed

im
ages

do
notneed

to
be

stored
on

disk.
In

ourim
plem

entation,the
transform

ed
im

ages
are

generated
in

Python
code

on
the

C
PU

w
hile

the
G

PU
istraining

on
the

previousbatch
ofim

ages.So
these

data
augm

entation
schem

esare,in
effect,

com
putationally

free.

The
firstform

ofdata
augm

entation
consists

ofgenerating
im

age
translations

and
horizontalreflec-

tions.W
e

do
thisby

extracting
random

224⇥
224

patches(and
theirhorizontalreflections)from

the
256⇥

256
im

agesand
training

ournetw
ork

on
these

extracted
patches 4.Thisincreasesthe

size
ofour

training
setby

a
factorof2048,though

the
resulting

training
exam

ples
are,ofcourse,highly

inter-
dependent.W

ithoutthisschem
e,ournetw

ork
suffersfrom

substantialoverfitting,w
hich

w
ould

have
forced

us
to

use
m

uch
sm

allernetw
orks.A

ttesttim
e,the

netw
ork

m
akes

a
prediction

by
extracting

five
224

⇥
224

patches
(the

four
corner

patches
and

the
center

patch)
as

w
ellas

their
horizontal

reflections
(hence

ten
patches

in
all),and

averaging
the

predictions
m

ade
by

the
netw

ork’s
softm

ax
layeron

the
ten

patches.

The
second

form
of

data
augm

entation
consists

of
altering

the
intensities

of
the

R
G

B
channels

in
training

im
ages.

Specifically,
w

e
perform

PC
A

on
the

set
of

R
G

B
pixel

values
throughout

the
Im

ageN
ettraining

set.To
each

training
im

age,w
e

add
m

ultiplesofthe
found

principalcom
ponents,

4This
is

the
reason

w
hy

the
inputim

ages
in

Figure
2

are
224

⇥
224

⇥
3-dim

ensional.

5

Input image

Loss

Weights



Backpropagation: Simple Example

10

f(x, y, z) = (x + y) ⋅ z

Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

11

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

−2

5

−4



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

12

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

−2

5

−4

3
−12



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

13

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

14

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

∂f
∂f



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

15

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

∂f
∂f

1



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

16

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1



∂f
∂z

= q

Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

17

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

∂f
∂z

1



∂f
∂z

= q

Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

18

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

19

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

∂f
∂z

= q

1

3



∂f
∂q

= z

Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

20

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂q

3



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

21

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂q

= z

3



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

22

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂q

= z

3

−4



∂f
∂y

=
∂q
∂y

∂f
∂q

Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

23

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂y

3

−4



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

24

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂y

=
∂q
∂y

∂f
∂q

3

−4



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

25

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂y

=
∂q
∂y

∂f
∂q

3

−4

Downstream 
Gradient

Local 
Gradient

Upstream 
Gradient



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

26

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂y

=
∂q
∂y

∂f
∂q

3

Downstream 
Gradient

Local 
Gradient

Upstream 
Gradient

∂q
∂y

= 1

−4



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

27

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂y

=
∂q
∂y

∂f
∂q

3

Downstream 
Gradient

Local 
Gradient

Upstream 
Gradient

∂q
∂y

= 1

−4
−4



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

28

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂x

=
∂q
∂x

∂f
∂q

3

Downstream 
Gradient

Local 
Gradient

Upstream 
Gradient

∂q
∂x

= 1

−4
−4



Justin Johnson January 26, 2022

Backpropagation:
Simple Example

Lecture 6 - 11

- ., /, 0 = . + / ⋅ 0

Backpropagation: Simple Example

29

f(x, y, z) = (x + y) ⋅ z
e.g. x = − 2, y = 5, z = − 4

1. Forward pass: Compute outputs
q = x + y f = q ⋅ z

2. Backward pass: Compute derivatives

−2

5

−4

3
−12

Want: 
∂f
∂x

,
∂f
∂y

,
∂f
∂z

1

∂f
∂x

=
∂q
∂x

∂f
∂q

3

Downstream 
Gradient

Local 
Gradient

Upstream 
Gradient

∂q
∂x

= 1

−4
−4

−4



Local Properties of Backpropagation

30

x

y

z
f



31

x

y

z
f

Local Properties of Backpropagation



32

∂L
∂z

x

y

z
f

Upstream 
Gradient

Local Properties of Backpropagation



33

∂L
∂z

x

y

z
f

∂z
∂x
∂z
∂y Local 

Gradients

Upstream 
Gradient

Local Properties of Backpropagation



34

∂L
∂z

x

y

z
f

∂z
∂x
∂z
∂y Local 

Gradients

Upstream 
Gradient

∂L
∂y

=
∂z
∂y

∂L
∂z

∂L
∂x

=
∂z
∂x

∂L
∂z

Downstream 
Gradients

Local Properties of Backpropagation



35

∂L
∂z

x

y

z
f

∂z
∂x
∂z
∂y Local 

Gradients

Upstream 
Gradient

∂L
∂y

=
∂z
∂y

∂L
∂z

∂L
∂x

=
∂z
∂x

∂L
∂z

Downstream 
Gradients

Local Properties of Backpropagation



36

Another example
f(x, w) =

1
1 + e−(w0x0+w1x1+w2)



37

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Examplef(x, w) =

1
1 + e−(w0x0+w1x1+w2)



38

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputsf(x, w) =

1
1 + e−(w0x0+w1x1+w2)



39

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.731.370.37

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



40

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

2. Backward pass: Compute gradients

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.731.370.37

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



41

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.73

2. Backward pass: Compute gradients

Base Case

1.00
1.370.37

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



42

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 1.37 0.73

2. Backward pass: Compute gradients

Upstream 
Gradient

1.00

∂
∂x [ 1

x ] = −
1
x2

Local Gradient

Downstream 
Gradient

−0.53
0.37

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



43

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

Upstream 
Gradient

1.00

∂
∂x [x + 1] = 1

Local Gradient

Downstream 
Gradient

−0.53−0.53

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



44

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

Upstream 
Gradient

1.00

∂
∂x [ex] = ex

Local Gradient

Downstream 
Gradient

−0.53−0.53−0.20

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



45

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

Upstream 
Gradient

1.00

∂
∂x [ − 1 ⋅ x] = − 1

Local Gradient

Downstream 
Gradient

−0.53−0.53−0.200.20

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



46

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

Upstream 
Gradient

1.00

Downstream 
Gradient

−0.53−0.53−0.200.20

∂
∂x [x + y] = 1

∂
∂y [x + y] = 1

Local Gradient

0.20

0.20

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



47

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

Upstream 
Gradient

1.00

Downstream 
Gradient

−0.53−0.53−0.200.20

∂
∂x [x + y] = 1

∂
∂y [x + y] = 1

Local Gradient

0.20

0.20

0.20

0.20

2.00

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



48

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

2.00

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

Upstream 
Gradient

1.00

Downstream 
Gradient

−0.53−0.53−0.200.20

∂
∂x [x ⋅ y] = y

∂
∂y [x ⋅ y] = x

0.20

0.20

0.20

0.20

Local Gradient

−0.20

0.39

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



49

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

2.00

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

Upstream 
Gradient

1.00
Downstream 

Gradient

−0.53−0.53−0.200.20

∂
∂x [x ⋅ y] = y

∂
∂y [x ⋅ y] = x

0.20

0.20

0.20

0.20

Local Gradient

−0.20

0.39

−0.59

−0.39

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



50

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

2.00

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20

−0.20

0.39

−0.59

−0.39

= σ(w0x0 + w1x1 + w2)

σ(x) =
1

1 + e−x

Computational graph is not 
unique: we can use primitives 
that have simple local gradients

Sigmoid

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



51

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

2.00

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20

−0.20

0.39

−0.59

−0.39

= σ(w0x0 + w1x1 + w2)

σ(x) =
1

1 + e−x

Computational graph is not 
unique: we can use primitives 
that have simple local gradients

Sigmoid

∂
∂x [σ(x)] =

e−x

(1 + e−x)2
= (1 + e−x − 1

1 + e−x )( 1
1 + e−x ) = (1 − σ(x))σ(x)Sigmoid local 

gradient:

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



52

Another example

Justin Johnson January 26, 2022Lecture 6 - 33

% &, ( = 1
1 + ,! "!#!$""#"$"#Another Example 1. Forward pass: Compute outputs

2.00

−1.00

6.00

−2.00

−3.00

−3.00

−2.00

4.00

1.00 −1.00 0.37 1.37 0.73

2. Backward pass: Compute gradients

1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20

−0.20

0.39

−0.59

−0.39

= σ(w0x0 + w1x1 + w2)

σ(x) =
1

1 + e−x

Computational graph is not 
unique: we can use primitives 
that have simple local gradients

Sigmoid

∂
∂x [σ(x)] =

e−x

(1 + e−x)2
= (1 + e−x − 1

1 + e−x )( 1
1 + e−x ) = (1 − σ(x))σ(x)Sigmoid local 

gradient:

[Downstream]=[Local]⋅[Upstream]
=(1−0.73) ⋅ 0.73⋅1.00=0.20

f(x, w) =
1

1 + e−(w0x0+w1x1+w2)



53

Patterns in Gradient Flow

Justin Johnson January 26, 2022

Patterns in Gradient Flow

Lecture 6 - 50

add gate: gradient distributor

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6
4

2

max gate: gradient router



54

Patterns in Gradient Flow

Justin Johnson January 26, 2022

Patterns in Gradient Flow

Lecture 6 - 50

add gate: gradient distributor

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6
4

2

max gate: gradient router

Justin Johnson January 26, 2022

Patterns in Gradient Flow

Lecture 6 - 50

add gate: gradient distributor

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6
4

2

max gate: gradient router



55

Patterns in Gradient Flow

Justin Johnson January 26, 2022

Patterns in Gradient Flow

Lecture 6 - 50

add gate: gradient distributor

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6
4

2

max gate: gradient router

Justin Johnson January 26, 2022

Patterns in Gradient Flow

Lecture 6 - 50

add gate: gradient distributor

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6
4

2

max gate: gradient router

Justin Johnson January 26, 2022

Patterns in Gradient Flow

Lecture 6 - 50

add gate: gradient distributor

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6
4

2

max gate: gradient router



56

Patterns in Gradient Flow

Justin Johnson January 26, 2022

Patterns in Gradient Flow

Lecture 6 - 50

add gate: gradient distributor

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6
4

2

max gate: gradient router

Justin Johnson January 26, 2022

Patterns in Gradient Flow

Lecture 6 - 50

add gate: gradient distributor

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6
4

2

max gate: gradient router

Justin Johnson January 26, 2022

Patterns in Gradient Flow

Lecture 6 - 50

add gate: gradient distributor

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6
4

2

max gate: gradient router

Justin Johnson January 26, 2022

Patterns in Gradient Flow

Lecture 6 - 50

add gate: gradient distributor

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6
4

2

max gate: gradient router



57

Backprop Implementation: “Flat” gradient code

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 51

Forward pass:
Compute output

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs



58

Backprop Implementation: “Flat” gradient code

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 51

Forward pass:
Compute output

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs

Backward pass: 
Compute gradients



59

Backprop Implementation: “Flat” gradient code

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 51

Forward pass:
Compute output

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs

Base case

Backward pass: 
Compute gradients



60

Backprop Implementation: “Flat” gradient code

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 51

Forward pass:
Compute output

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs

Sigmoid

Backward pass: 
Compute gradients



61

Backprop Implementation: “Flat” gradient code

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 51

Forward pass:
Compute output

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs

Backward pass: 
Compute gradients

Add



62

Backprop Implementation: “Flat” gradient code

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 51

Forward pass:
Compute output

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs

Backward pass: 
Compute gradients

Add



63

Backprop Implementation: “Flat” gradient code

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 51

Forward pass:
Compute output

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs

Backward pass: 
Compute gradients

Multiply



64

Backprop Implementation: “Flat” gradient code

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 51

Forward pass:
Compute output

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 52

Forward pass:
Compute output

Backward pass:
Compute grads

Forward pass: 
Compute outputs

Backward pass: 
Compute gradients

Multiply



65

“Flat” Backprop: Do this for Project 1 & 2
Forward pass: 
Compute outputs

Backward pass: 
Compute gradients



66

Backprop Implementation: Modular API

Justin Johnson January 26, 2022

Backprop Implementation: Modular API

Lecture 6 - 61

Graph (or Net) object  (rough pseudo code)

Justin Johnson January 26, 2022

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 51

Forward pass:
Compute output



67

Example: PyTorch Autograd Functions

Justin Johnson January 26, 2022

Example: PyTorch Autograd Functions

Lecture 6 - 62

(x,y,z are scalars)

x

y

z
*

Need to stash some 
values for use in 
backward

Upstream 
gradient

Multiply upstream 
and local gradients

Justin Johnson January 26, 2022

Example: PyTorch Autograd Functions

Lecture 6 - 62

(x,y,z are scalars)

x

y

z
*

Need to stash some 
values for use in 
backward

Upstream 
gradient

Multiply upstream 
and local gradients



68

So far:  backprop with scalars
What about vector-valued functions?



69

Recap: Vector Derivatives

Justin Johnson January 26, 2022

Recap: Vector Derivatives

Lecture 6 - 69

Regular derivative:

If x changes by a small 
amount, how much 
will y change?

. ∈ ℝ, / ∈ ℝ

!"
!# ∈ ℝ



70

Recap: Vector Derivatives

Justin Johnson January 26, 2022

Recap: Vector Derivatives

Lecture 6 - 69

Regular derivative:

If x changes by a small 
amount, how much 
will y change?

. ∈ ℝ, / ∈ ℝ

!"
!# ∈ ℝ

Justin Johnson January 26, 2022

Recap: Vector Derivatives

Lecture 6 - 70

Regular derivative:

If x changes by a small 
amount, how much 
will y change?

Derivative is Gradient:

For each element of x, 
if it changes by a small 
amount then how 
much will y change?

. ∈ ℝ, / ∈ ℝ . ∈ ℝ0 , / ∈ ℝ

!"
!# ∈ ℝ

!"
!# ∈ ℝ

! ,
!"
!# "

= !"
!#"



71

Recap: Vector Derivatives

Justin Johnson January 26, 2022

Recap: Vector Derivatives

Lecture 6 - 69

Regular derivative:

If x changes by a small 
amount, how much 
will y change?

. ∈ ℝ, / ∈ ℝ

!"
!# ∈ ℝ

Justin Johnson January 26, 2022

Recap: Vector Derivatives

Lecture 6 - 70

Regular derivative:

If x changes by a small 
amount, how much 
will y change?

Derivative is Gradient:

For each element of x, 
if it changes by a small 
amount then how 
much will y change?

. ∈ ℝ, / ∈ ℝ . ∈ ℝ0 , / ∈ ℝ

!"
!# ∈ ℝ

!"
!# ∈ ℝ

! ,
!"
!# "

= !"
!#"

Justin Johnson January 26, 2022

Recap: Vector Derivatives

Lecture 6 - 71

Regular derivative:

If x changes by a small 
amount, how much 
will y change?

Derivative is Gradient:

For each element of x, 
if it changes by a small 
amount then how 
much will y change?

Derivative is Jacobian:

For each element of x, if it 
changes by a small amount 
then how much will each 
element of y change?

. ∈ ℝ, / ∈ ℝ . ∈ ℝ0 , / ∈ ℝ . ∈ ℝ0 , / ∈ ℝ1

!"
!# ∈ ℝ

!"
!# ∈ ℝ

! ,
!"
!# "

= !"
!#"

!"
!# ∈ ℝ

!×$

!"
!# ",&

= !"&
!#"



72

Backprop with Vectors

x

y

z
f



73

Backprop with Vectors

x

y

z
f

Loss L still a scalar!Dx

Dy

Dz



74

Backprop with Vectors

x

y

z
f

Loss L still a scalar!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dx

Dy

Dz

Dz



75

Backprop with Vectors

x

y

z
f

Dx

Dy

Dz

Loss L still a scalar!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dz

∂z
∂x
∂z
∂y Dy × Dz

Dx × Dz

Local Jacobians 
(matrices)



76

Backprop with Vectors

x

y

z
f

Dx

Dy

Dz

Loss L still a scalar!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dz

∂z
∂x
∂z
∂y Dy × Dz

Dx × Dz

Local Jacobians 
(matrices)

∂L
∂y

=
∂z
∂y

∂L
∂z

∂L
∂x

=
∂z
∂x

∂L
∂z

Downstream 
Gradients

Matrix-vector 
multiply

Dx

Dy



77

Backprop with Vectors

Justin Johnson January 26, 2022

Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]



78

Backprop with Vectors

Justin Johnson January 26, 2022

Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Justin Johnson January 26, 2022

Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]



79

Backprop with Vectors

Justin Johnson January 26, 2022

Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Justin Johnson January 26, 2022

Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]



80

Backprop with Vectors

Justin Johnson January 26, 2022

Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]



81

Backprop with Vectors

Justin Johnson January 26, 2022

Backprop with Vectors

Lecture 6 - 81

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Jacobian is sparse: off-
diagonal entries all zero! 
Never explicitly form 
Jacobian; instead use 
implicit multiplication



Justin Johnson January 26, 2022

Backprop with Vectors

Lecture 6 - 82

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

34
3" $

= 5
34
36 $

, 7! "$ > 0
0, 9:ℎ1<=7>1

82

Backprop with Vectors

Jacobian is sparse: off-
diagonal entries all zero! 
Never explicitly form 
Jacobian; instead use 
implicit multiplication



83

Backprop with Matrices (or Tensors)

x

y

z
f

Dx × Mx

Dy × My

Dz × Mz

Loss L still a scalar!
dL/dx always has the 
same shape as x!



84

Backprop with Matrices (or Tensors)

x

y

z
f

Dx × Mx

Dy × My

Dz × Mz

Loss L still a scalar!
dL/dx always has the 
same shape as x!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dz × Mz



85

Backprop with Matrices (or Tensors)

x

y

z
f

Dx × Mx

Dy × My

Dz × Mz

Loss L still a scalar!
dL/dx always has the 
same shape as x!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dz × Mz

∂z
∂x

∂z
∂y (Dy × My) × (Dz × Mz)

Local Jacobians 
(matrices)

(Dx × Mx) × (Dz × Mz)



86

Backprop with Matrices (or Tensors)

x

y

z
f

Dx × Mx

Dy × My

Dz × Mz

Loss L still a scalar!
dL/dx always has the 
same shape as x!

∂L
∂z Upstream 

Gradient
For each element of , how 
much does it influence L?

z

Dz × Mz

∂z
∂x

∂z
∂y (Dy × My) × (Dz × Mz)

Local Jacobians 
(matrices)

(Dx × Mx) × (Dz × Mz)

∂L
∂y

=
∂z
∂y

∂L
∂z

∂L
∂x

=
∂z
∂x

∂L
∂z

Downstream 
Gradients

Matrix-vector 
multiply

Dx × Mx

Dy × My



87

Example: Matrix Multiplication

Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 88

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]Matrix Multiply y = xw

"",& =*
'
#",'+',&

Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 88

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]Matrix Multiply y = xw

"",& =*
'
#",'+',&



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 89

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply y = xw

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

"",& =*
'
#",'+',&

88

Example: Matrix Multiplication

Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 88

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]Matrix Multiply y = xw

"",& =*
'
#",'+',&



89

Example: Matrix Multiplication

Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 90

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Jacobians:
dy/dx: [(N×D)×(N×M)]

dy/dw: [(D×M)×(N×M)]
For a neural net we may have 

N=64, D=M=4096
Each Jacobian takes 256 GB of memory! Must 

work with them implicitly!

Matrix Multiply y = xw

"",& =*
'
#",'+',&

Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 88

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]Matrix Multiply y = xw

"",& =*
'
#",'+',&



90

Example: Matrix Multiplication

Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 88

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]Matrix Multiply y = xw

"",& =*
'
#",'+',&

Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 91

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ ?  ?  ?  ? ]
[ ?  ?  ?  ? ]dL/dx1,1

= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 92

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ ?  ?  ?  ? ]
[ ?  ?  ?  ? ]

dy1,1/dx1,1dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

91

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 93

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ ?  ?  ?  ? ]
[ ?  ?  ?  ? ]

dy1,1/dx1,1

y1,1 = x1,1w1,1 + x1,2w2,1 +  x1,3w3,1

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

92

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 94

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  ?  ?  ? ]
[ ?  ?  ?  ? ]

dy1,1/dx1,1

y1,1 = x1,1w1,1 + x1,2w2,1 +  x1,3w3,1
=> dy1,1/dx1,1 = w1,1

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

93

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 95

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  ?  ?  ? ]
[ ?  ?  ?  ? ]

dy1,2/dx1,1dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

94

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 96

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  ?  ?  ? ]
[ ?  ?  ?  ? ]

dy1,2/dx1,1

y1,2 = x1,1w1,2 + x1,2w2,2 +  x1,3w3,2

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

95

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 97

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  ?  ? ]
[ ?  ?  ?  ? ]

dy1,2/dx1,1

y1,2 = x1,1w1,2 + x1,2w2,2 +  x1,3w3,2
=> dy1,2/dx1,1 = w1,2

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

96

Example: Matrix Multiplication



97

Example: Matrix Multiplication

Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 98

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ ?  ?  ?  ? ]

dy1,2/dx1,1dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 99

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ ?  ?  ?  ? ]

dy1,2/dx1,1

y2,1 = x2,1w1,1 + x2,2w2,1 +  x2,3w3,1

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

98

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 100

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ 0  ?  ?  ? ]

dy1,2/dx1,1

y2,1 = x2,1w1,1 + x2,2w2,1 +  x2,3w3,1
=> dy2,1/dx1,1 = 0

dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

99

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 101

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ 0  0  0  0 ]

dy1,2/dx1,1dL/dx1,1
= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

100

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 102

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

? ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ 0  0  0  0 ]dL/dx1,1

= (dy/dx1,1) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

101

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 103

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

0 ? ?
? ? ?

Local Gradient Slice:
dy/dx1,1

[ 3  2  1 -1 ]
[ 0  0  0  0 ]dL/dx1,1

= (dy/dx1,1) · (dL/dy)
= (w1,:) · (dL/dy1,:)
= 3*2 + 2*3 + 1*(-3) + (-1)*9 = 0

Matrix Multiply y = xw

"",& =*
'
#",'+',&

102

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 104

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

0 ? ?
? ? -30

Local Gradient Slice:
dy/dx2,3

[ 0  0  0  0 ]
[ 3  2  1 -2 ]dL/dx2,3

= (dy/dx2,3) · (dL/dy)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

103

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 105

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

0 ? ?
? ? -30

Local Gradient Slice:
dy/dx2,3

[ 0  0  0  0 ]
[ 3  2  1 -2 ]dL/dx2,3

= (dy/dx2,3) · (dL/dy)
= (w3,:) · (dL/dy2,:)
= 3*(-8) + 2*1 + 1*4 + (-2)*6 = -30

Matrix Multiply y = xw

"",& =*
'
#",'+',&

104

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 106

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

dL/dxi,j
= (dy/dxi,j) · (dL/dy)
= (wj,:) · (dL/dyi,:)

Matrix Multiply y = xw

"",& =*
'
#",'+',&

105

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 107

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

dL/dxi,j
= (dy/dxi,j) · (dL/dy)
= (wj,:) · (dL/dyi,:)

dL/dx = (dL/dy) wT

[N x D]        [N x M]  [M x D] Easy way to remember:
It’s the only way the 
shapes work out! 

Matrix Multiply y = xw

"",& =*
'
#",'+',&

106

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Example: Matrix Multiplication

Lecture 6 - 108

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]

w: [D×M]
[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

y: [N×M]
[-1 -1 2  6 ]
[ 5 2  11 7 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]dL/dx: [N×D]

[ 0 16 -9 ]
[-24 9 -30 ]

Easy way to remember:
It’s the only way the 
shapes work out! dL/dw = xT (dL/dy)

[D x M]   [D x N] [N x M]

dL/dx = (dL/dy) wT

[N x D]        [N x M]  [M x D] 

Matrix Multiply y = xw

"",& =*
'
#",'+',&

107

Example: Matrix Multiplication



Justin Johnson January 26, 2022

Backpropagation: Another View

Lecture 6 - 109

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

Chain 
rule

&)
&$!

= &$"
&$!

&$#
&$"

&$$
&$#

&)
&$$

108

Backpropagation: Another View



Justin Johnson January 26, 2022

Backpropagation: Another View

Lecture 6 - 110

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

Matrix multiplication is associative: we can compute products in any order

Chain 
rule

[D3][D2 x D3][D1 x D2][D0 x D1]

&)
&$!

= &$"
&$!

&$#
&$"

&$$
&$#

&)
&$$

109

Backpropagation: Another View



Justin Johnson January 26, 2022Lecture 6 - 111

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain 
rule

Reverse-Mode Automatic Differentiation

[D3][D2 x D3][D1 x D2][D0 x D1]

&)
&$!

= &$"
&$!

&$#
&$"

&$$
&$#

&)
&$$

110

Reverse-Mode Automatic Differentiation



Justin Johnson January 26, 2022

Reverse-Mode Automatic Differentiation

Lecture 6 - 112

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

[D3][D2 x D3][D1 x D2][D0 x D1]

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain 
rule

What if we want 
grads of scalar 
input w/respect 
to vector 
outputs?Compute grad of scalar output

w/respect to all vector inputs

&)
&$!

= &$"
&$!

&$#
&$"

&$$
&$#

&)
&$$

111

Reverse-Mode Automatic Differentiation



Justin Johnson January 26, 2022

Reverse-Mode Automatic Differentiation

Lecture 6 - 112

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

[D3][D2 x D3][D1 x D2][D0 x D1]

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain 
rule

What if we want 
grads of scalar 
input w/respect 
to vector 
outputs?Compute grad of scalar output

w/respect to all vector inputs

&)
&$!

= &$"
&$!

&$#
&$"

&$$
&$#

&)
&$$

112

Reverse-Mode Automatic Differentiation



Justin Johnson January 26, 2022

Forward-Mode Automatic Differentiation

Lecture 6 - 113

a
scalar

x0
D0

x3
D3

x1
D1

x2
D2

f1 f2 f3 f4

[D1 x D2][D0 x D1][D0]

Chain 
rule

[D2 x D3]

&$$
&* = &$!

&*
&$"
&$!

&$#
&$"

&$$
&$#

113

Forward-Mode Automatic Differentiation



Justin Johnson January 26, 2022

Forward-Mode Automatic Differentiation

Lecture 6 - 114

a
scalar

x0
D0

x3
D3

x1
D1

x2
D2

f1 f2 f3 f4

Chain 
rule

Computing products left-to-right avoids matrix-matrix products; only needs matrix-vector

[D1 x D2][D0 x D1][D0] [D2 x D3]

&$$
&* = &$!

&*
&$"
&$!

&$#
&$"

&$$
&$#

114

Forward-Mode Automatic Differentiation



115

Summary

Justin Johnson January 26, 2022

Summary

Lecture 6 - 123

x

W

hinge	
loss

R

+ Ls (scores)*

Represent complex expressions 
as computational graphs

Forward pass computes outputs

Backward pass computes gradients

f
Local	

gradients

Upstream	
gradient

Downstream
gradients

During the backward pass, each node in 
the graph receives upstream gradients
and multiplies them by local gradients to 
compute downstream gradients



Justin Johnson January 26, 2022

Summary

Lecture 6 - 124

Backprop can be implemented with “flat” code 
where the backward pass looks like forward pass 
reversed (Use this for A2!)

Backprop can be implemented with a modular API, 
as a set of paired forward/backward functions
(We will do this on A3!)

116

Summary

Justin Johnson January 26, 2022

Summary

Lecture 6 - 124

Backprop can be implemented with “flat” code 
where the backward pass looks like forward pass 
reversed (Use this for A2!)

Backprop can be implemented with a modular API, 
as a set of paired forward/backward functions
(We will do this on A3!)

Justin Johnson January 26, 2022

Summary

Lecture 6 - 124

Backprop can be implemented with “flat” code 
where the backward pass looks like forward pass 
reversed (Use this for A2!)

Backprop can be implemented with a modular API, 
as a set of paired forward/backward functions
(We will do this on A3!)



117

Summary

Justin Johnson January 12, 2022

Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10

  f(x) = W2 max(0,W1x + b1) + b2

Problem: So far our classifiers don’t 
respect the spatial structure of images!



118

Next time: Convolutional Neural Networks



Next: Individual brainstorming task
• Pick one of the 3 papers and write a) one 1-page summary, b) one thing from this paper that you can use for your ideated task.
• Data:

• Where will the data for your work come from?
• Real-robot vs. Simulation environment?
• Existing dataset or new data collection?
• Benchmarking task? 

• Network:
• What is the network architecture you found to be suitable from reading the papers?
• ResNet, PointNet, Transformers

• What training strategy would be applied?
• Supervised, Self-supervised, Semi-supervised

• Is there an existing code that you can build on?
• Compute:

• What compute requirements do you have? Memory, GPU etc.
• What compute resources do you have? Compute heavy laptop/desktop, MSI, etc.

• Evaluation:
• How do you know if a method could solve your problem? 
• Baselines from existing literature or your own baselines

• How do you measure how well your method works? 
• Evaluation metrics (existing ones vs. new ones)

• How will you choose hyperparameters in your project?
• Ablation study 

119



120Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

DeepRob
Lecture 6
Backpropagation
University of Minnesota

∂L
∂Wℓ1

∂L
∂Wℓ2

∂L
∂Wℓ3

∂L
∂Wℓ4

∂L
∂Wℓ5

∂L
∂Out

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

