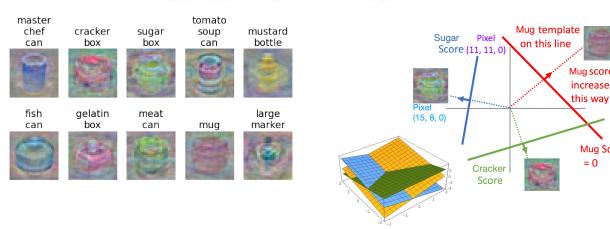


Project 1—Reminder

- Instructions and code available on the website
 - Here: https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project1/
- Uses Python, PyTorch and Google Colab
- Implement KNN, linear SVM, and linear softmax classifiers
- Autograder is available!
- Due Monday, Sept 29th 11:59 PM CT

Recap from Previous Lectures

- Use Linear Models for image classification problems.
- Use Loss Functions to express preferences over different choices of weights.
- Use Regularization to prevent overfitting to training data.
- for t in range(num_steps):
 t(dw = compute_gradient(w)
 t w -= learning_rate * dw



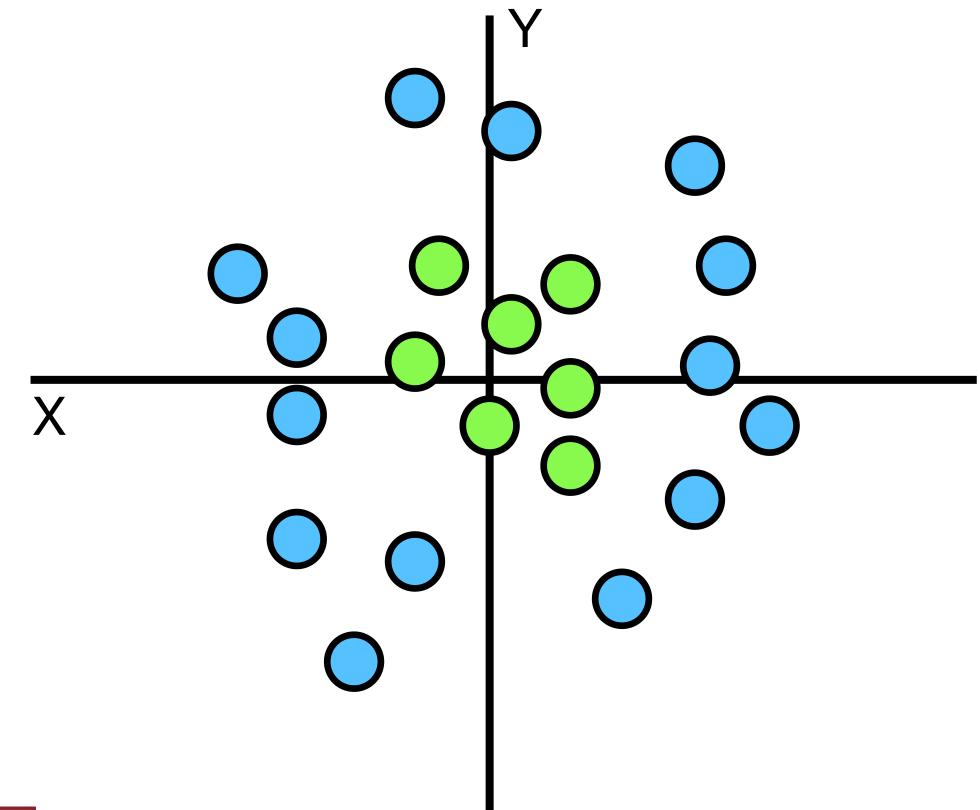
$$L_i = -\log(\frac{\exp^{s_{y_i}}}{\sum_i \exp^{s_j}})$$
 Softmax

$$L_i = \sum_{j \neq y_i} \max(0, s_j = -s_{y_i} + 1)$$
 SVM

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + R(W)$$

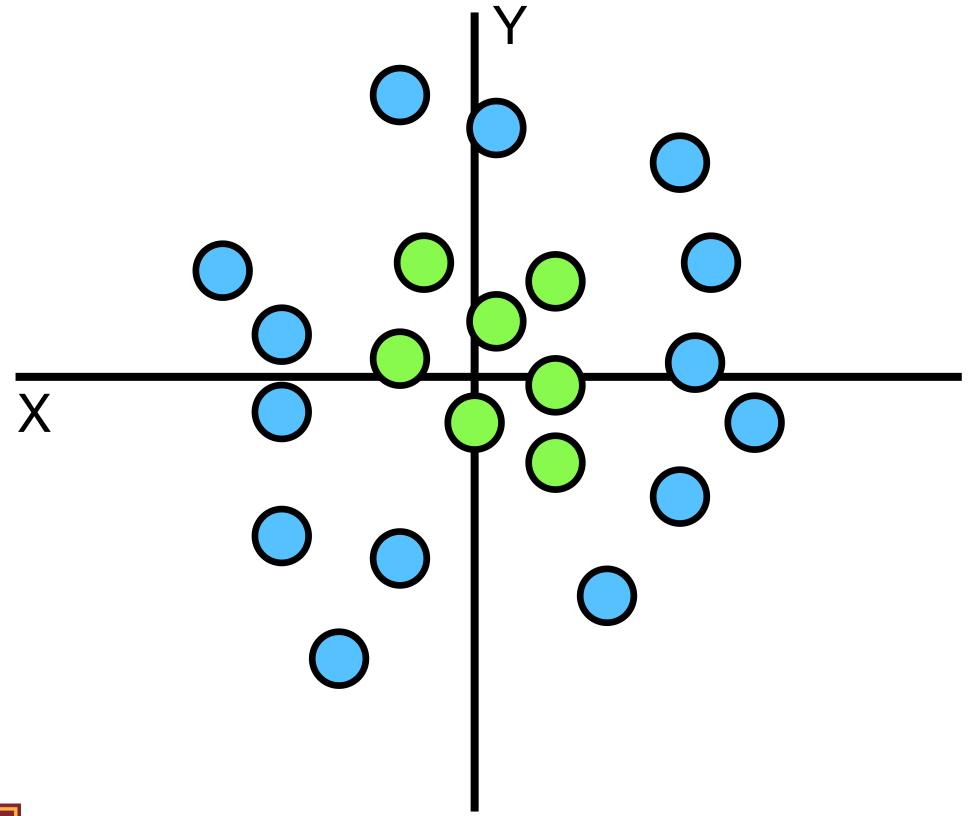
Problem: Linear Classifiers aren't that powerful

Geometric Viewpoint



Problem: Linear Classifiers aren't that powerful

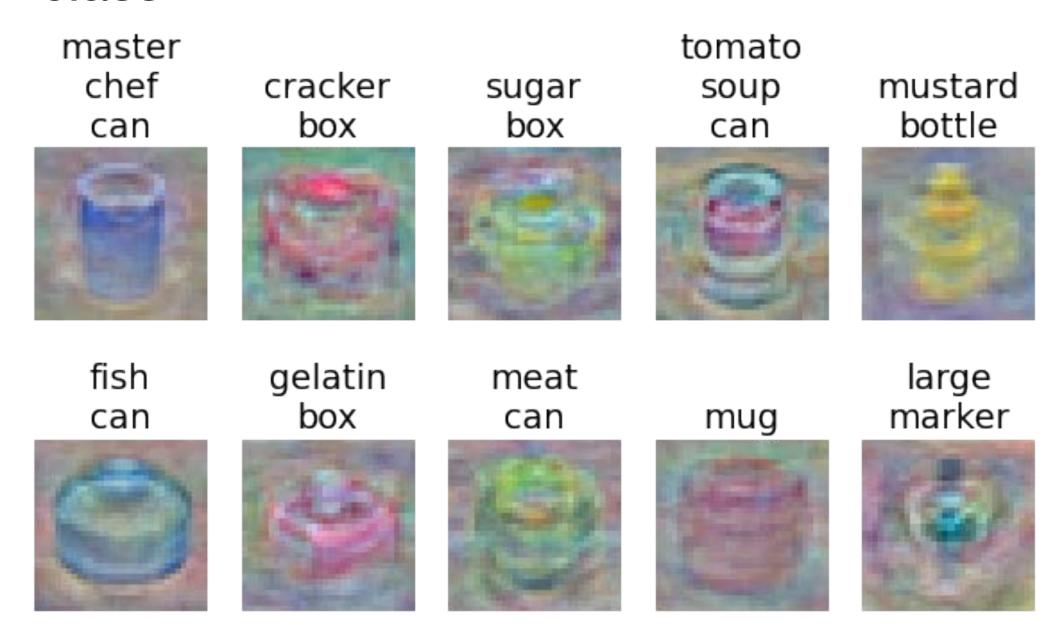
Geometric Viewpoint



Visual Viewpoint

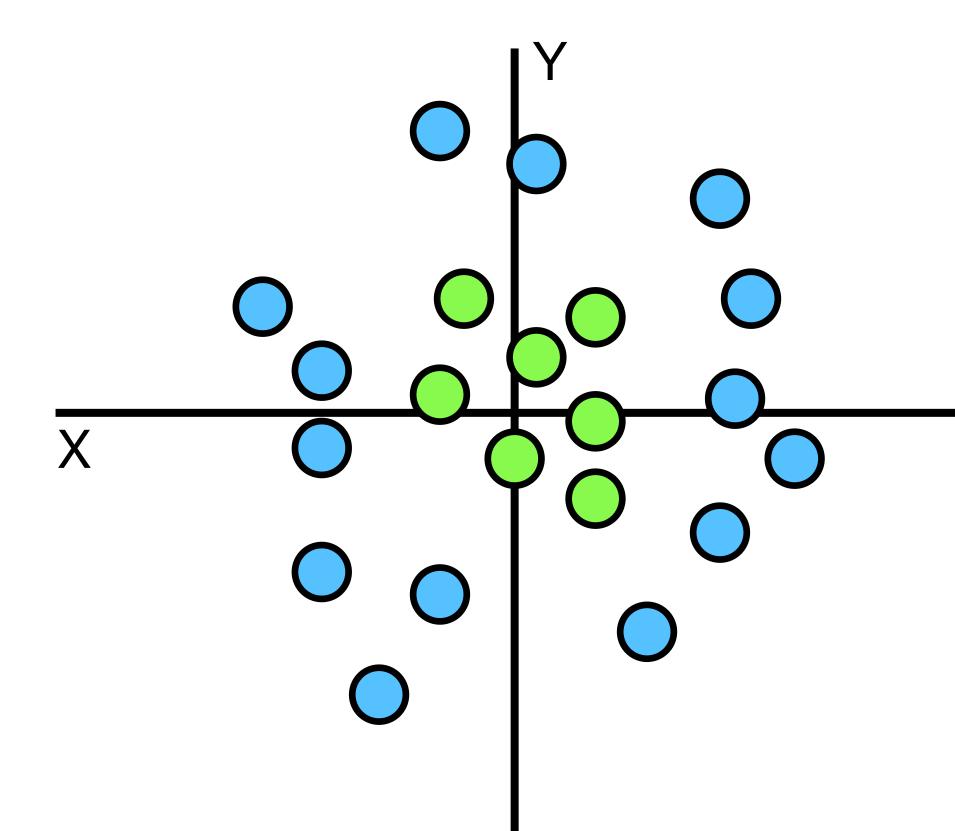
One template per class:

Can't recognize different modes of a class

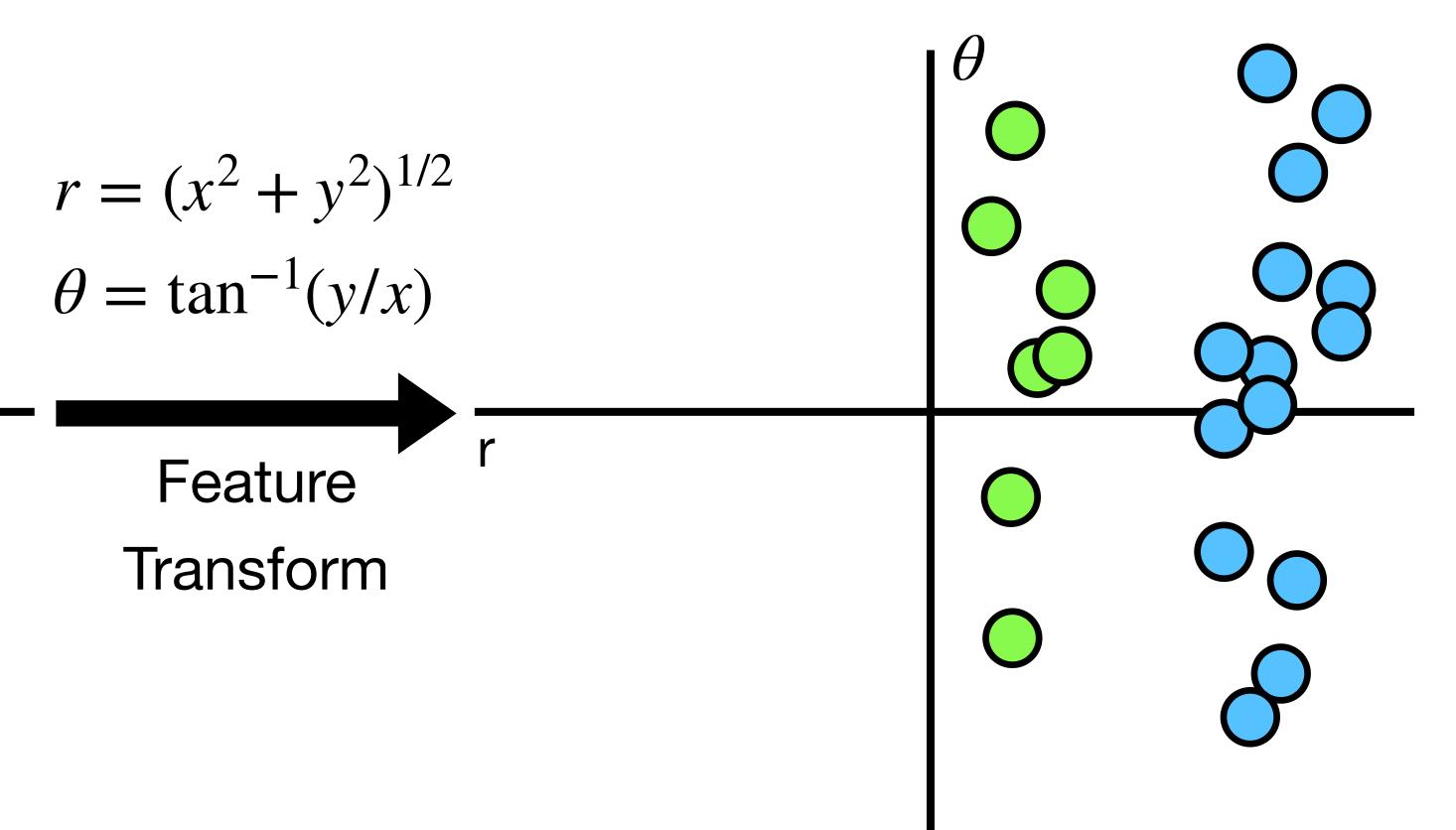


One solution: Feature Transforms

Original space

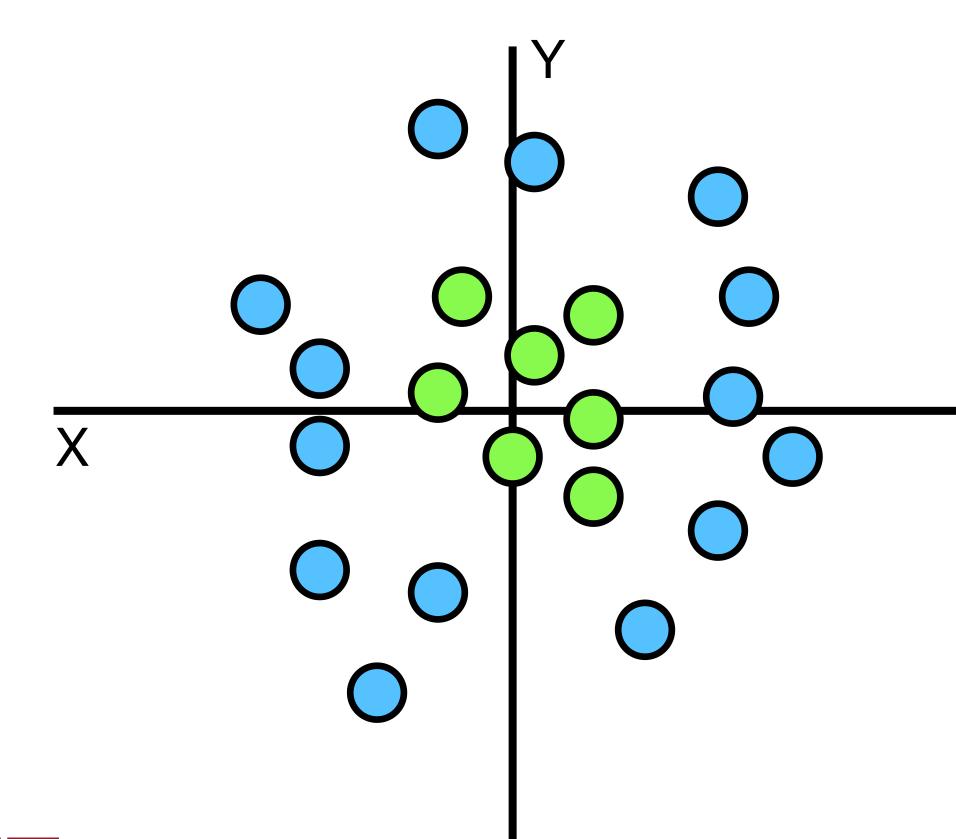


Feature space

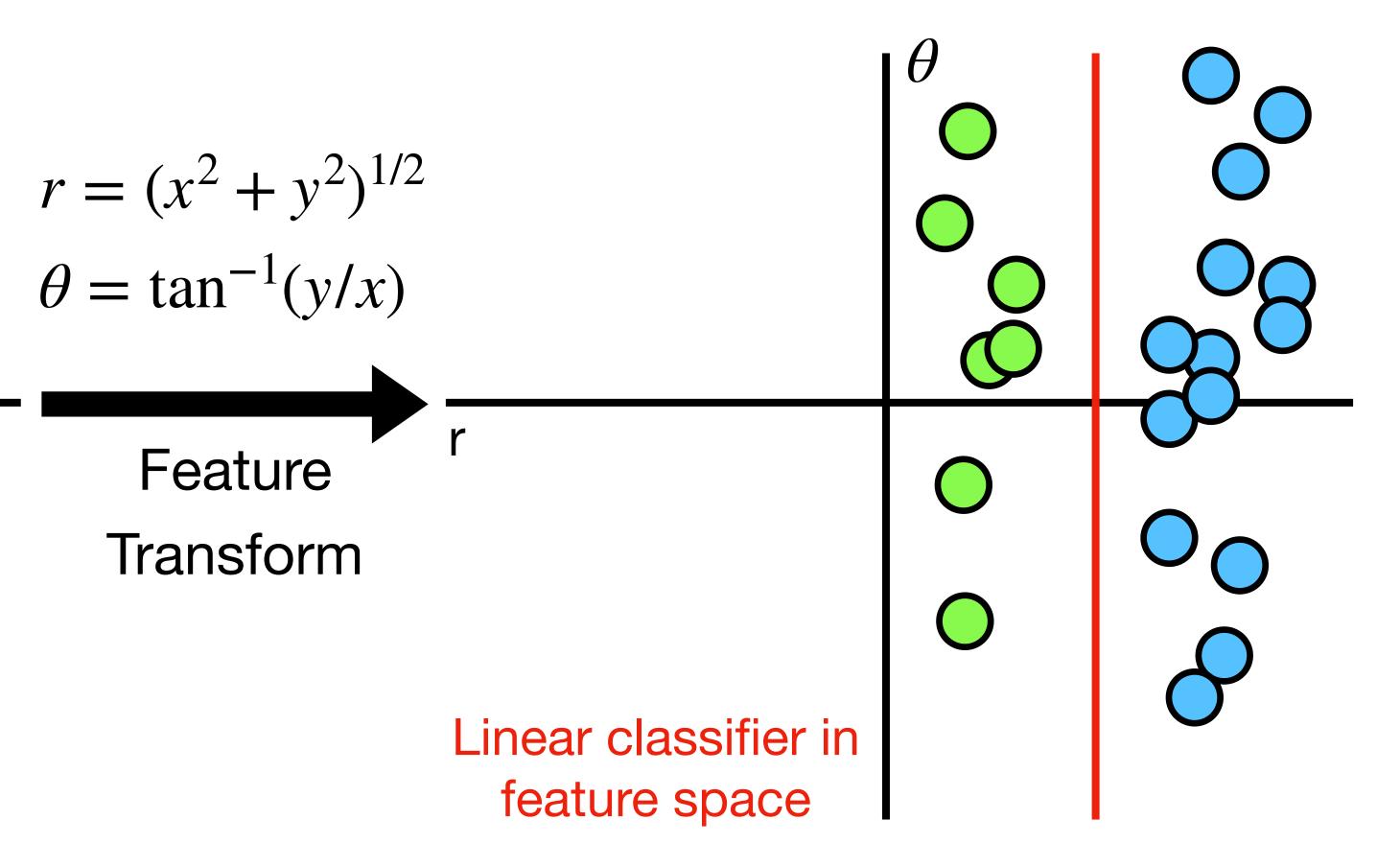


One solution: Feature Transforms

Original space

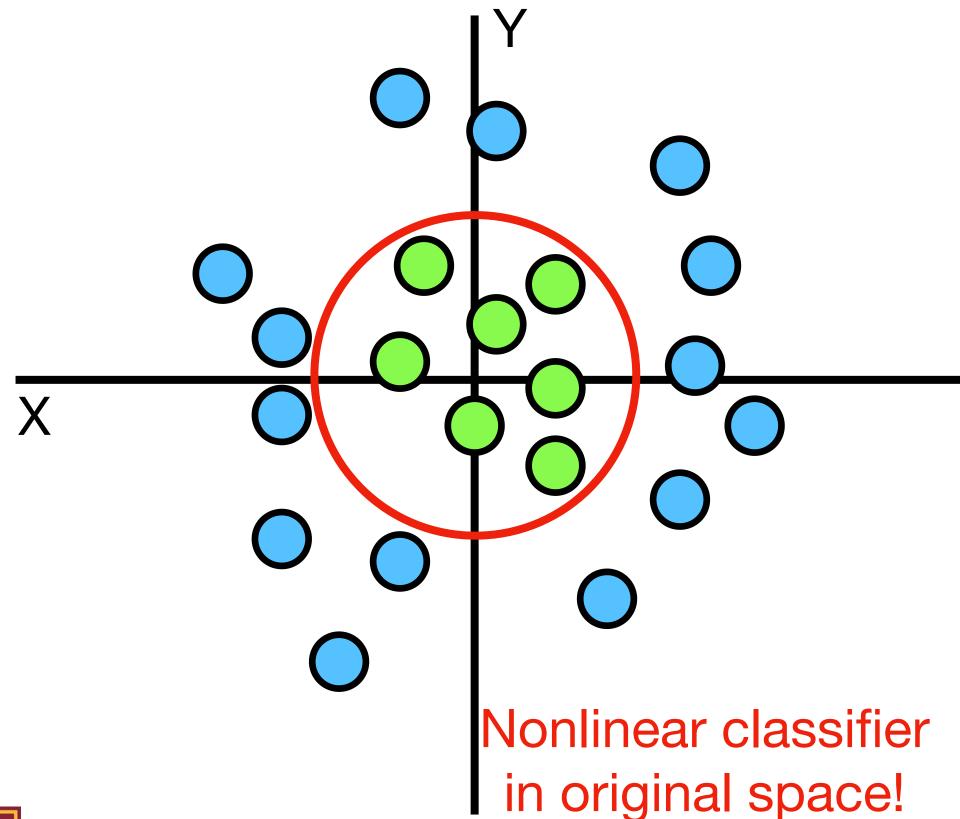


Feature space



One solution: Feature Transforms

Original space



Feature space

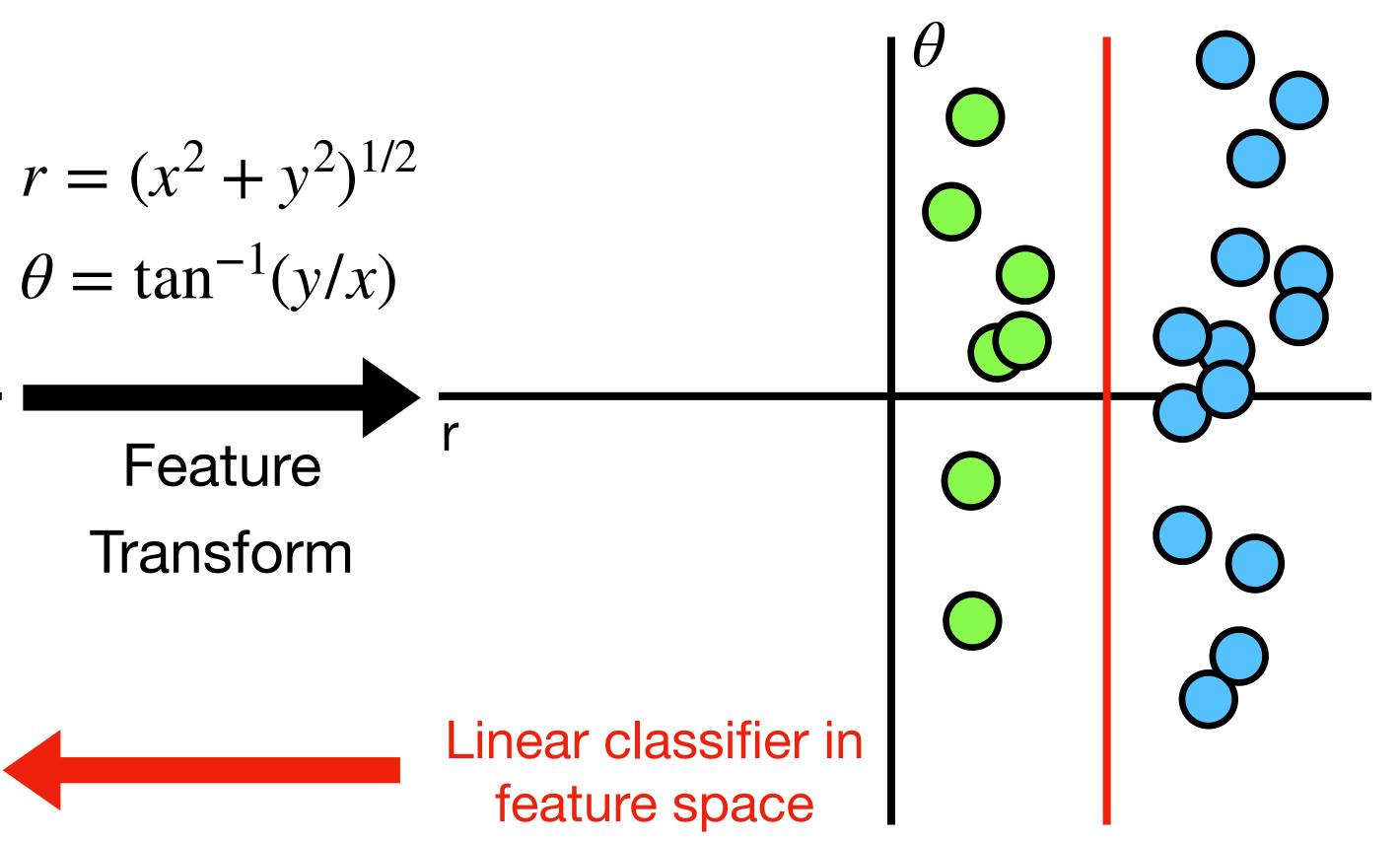


Image Features: Color Histogram

Ignores texture, spatial positions

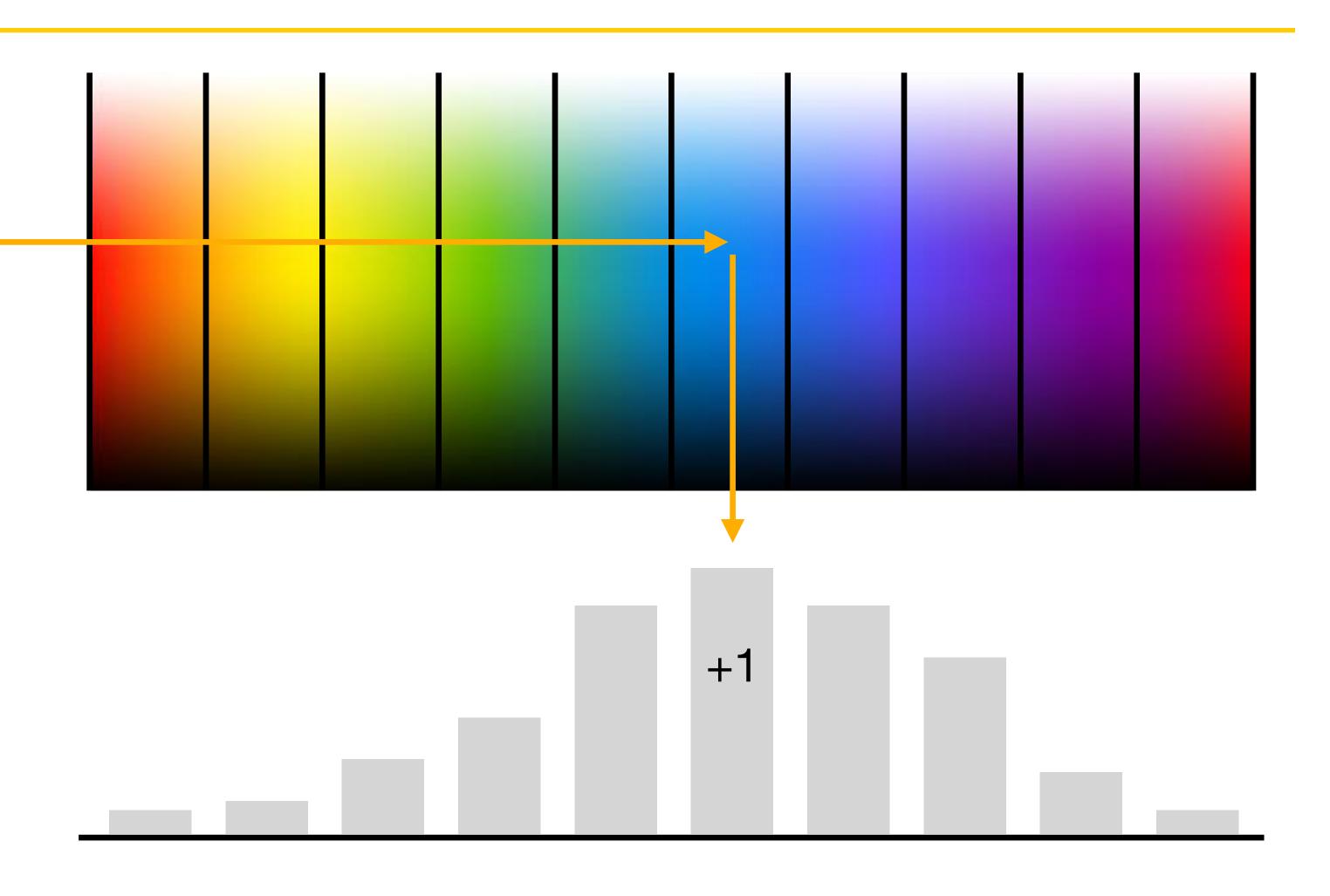
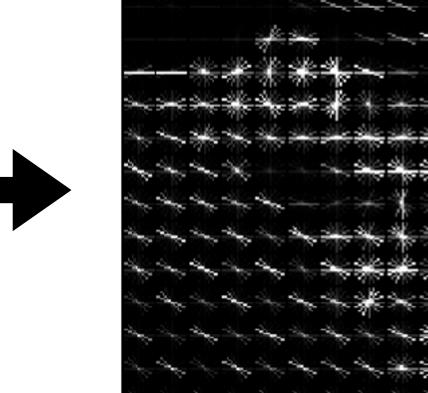


Image Features: Histogram of Oriented Gradients (HoG)

- 1. Compute edge direction/ strength at each pixel
- 2. Divide image into 8x8 regions
- 3. Within each region compute a histogram of edge direction weighted by edge strength

Image Features: Histogram of Oriented Gradients (HoG)



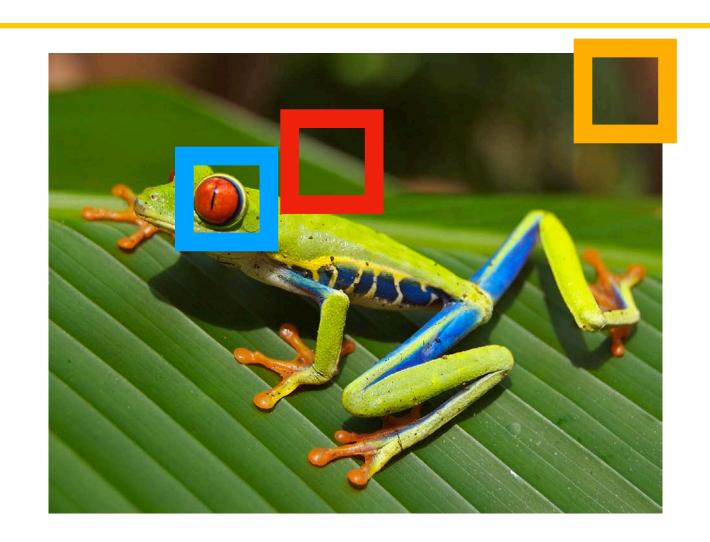
- 1. Compute edge direction/ strength at each pixel
- 2. Divide image into 8x8 regions
- 3. Within each region compute a histogram of edge direction weighted by edge strength

Example: 320x240 image gets divided into 40x30 bins;

9 directions per bin;

feature vector has 30*40*9 = 10,800 numbers

Image Features: Histogram of Oriented Gradients (HoG)



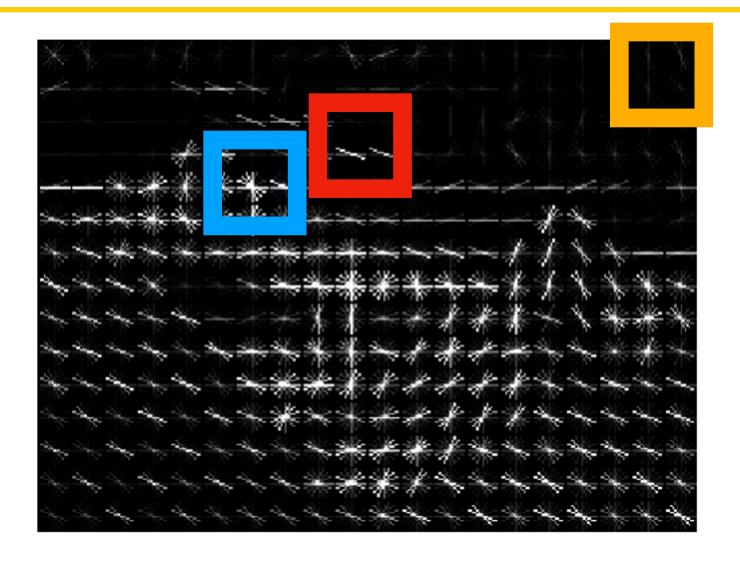
- 1. Compute edge direction/ strength at each pixel
- 2. Divide image into 8x8 regions
- 3. Within each region compute a histogram of edge direction weighted by edge strength

Weak edges

Strong diagonal edges

Edges in all directions

Capture texture and position, robust to small image changes



Example: 320x240 image gets divided into 40x30 bins;

9 directions per bin;

feature vector has 30*40*9 = 10,800 numbers

Image Features: Bag of Words (Data-Driven!)

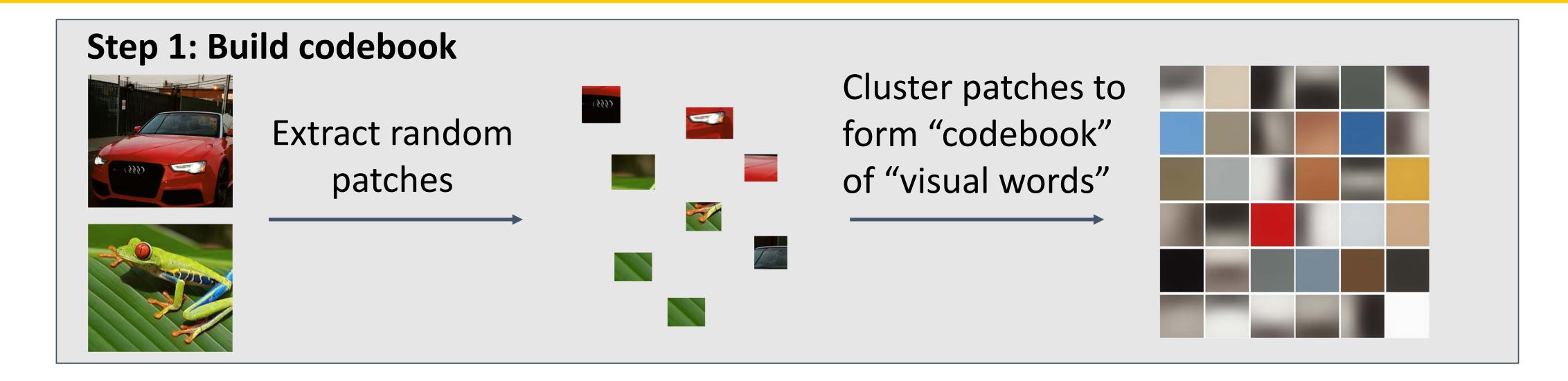


Image Features: Bag of Words (Data-Driven!)

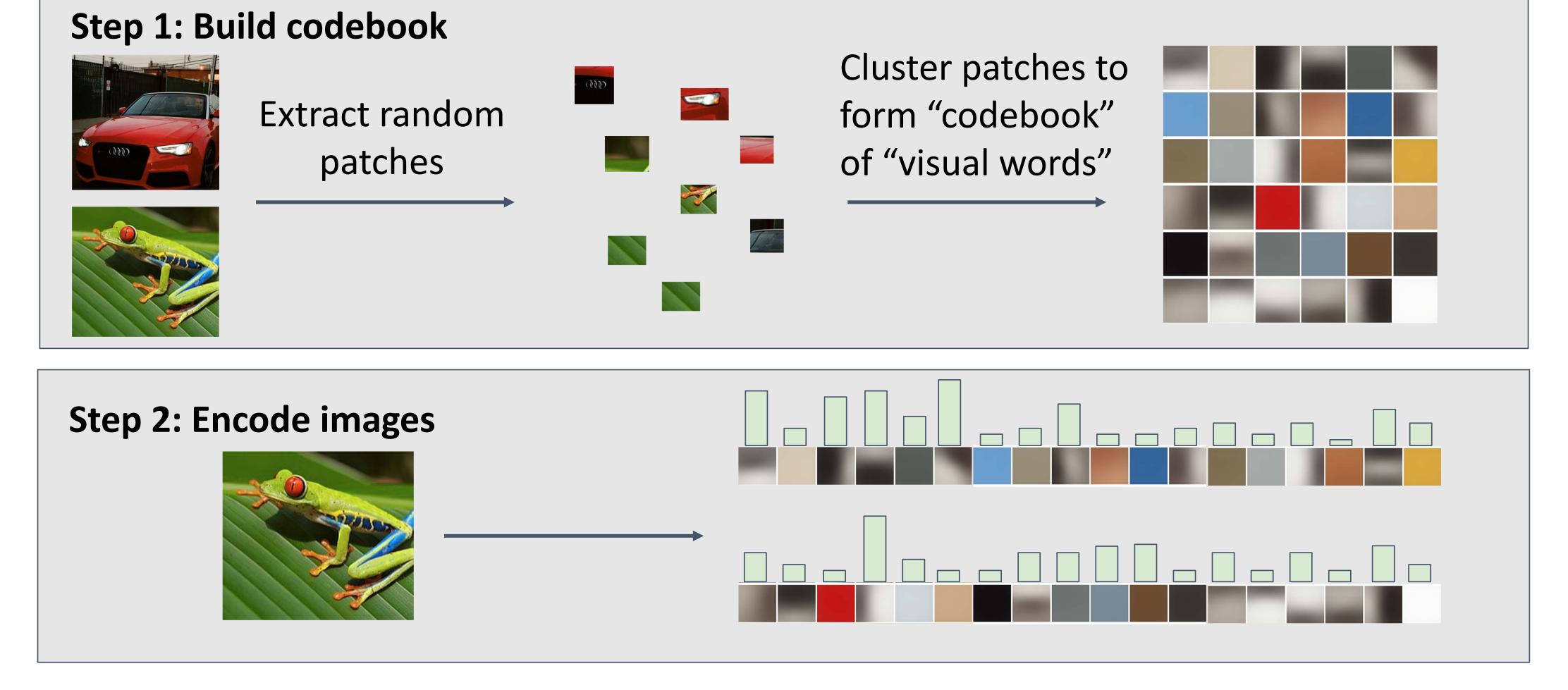
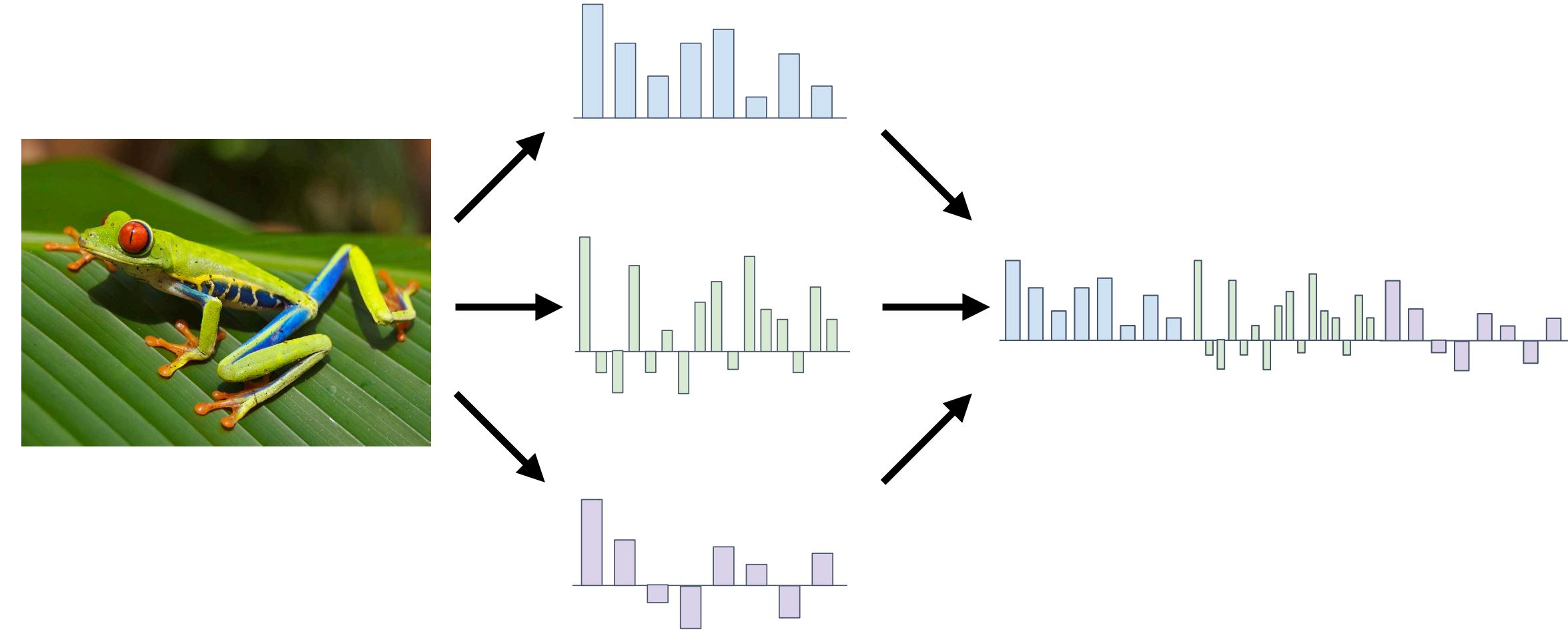


Image Features



Example: Winner of 2011 ImageNet Challenge

Low-level feature extraction \approx 10k patches per image

SIFT: 128-dims
 Color: 96-dim

Reduced to 64-dim with PCA

FV extraction and compression:

- N=1024 Gaussians, R=4 regions \rightarrow 520K dim x 2
- Compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

Image Features

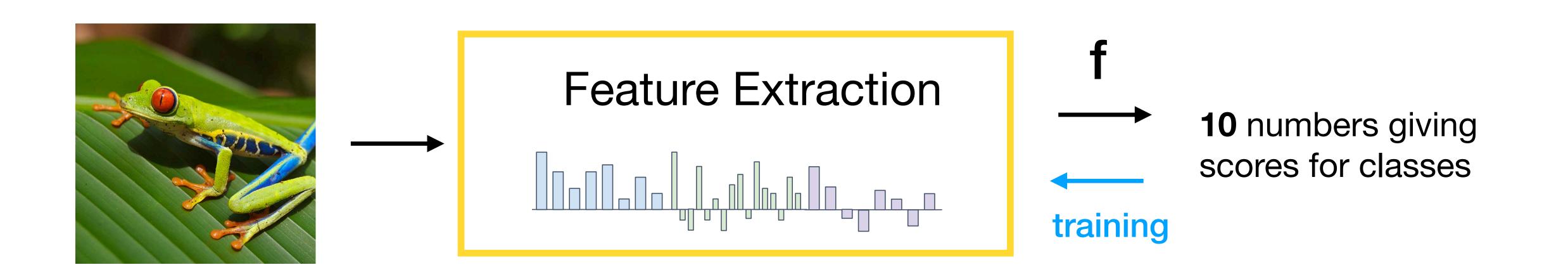


Image Features vs Neural Networks

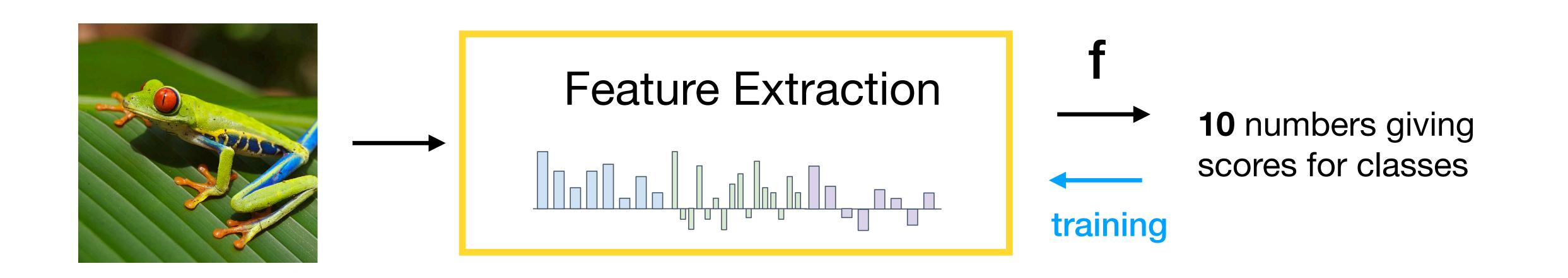
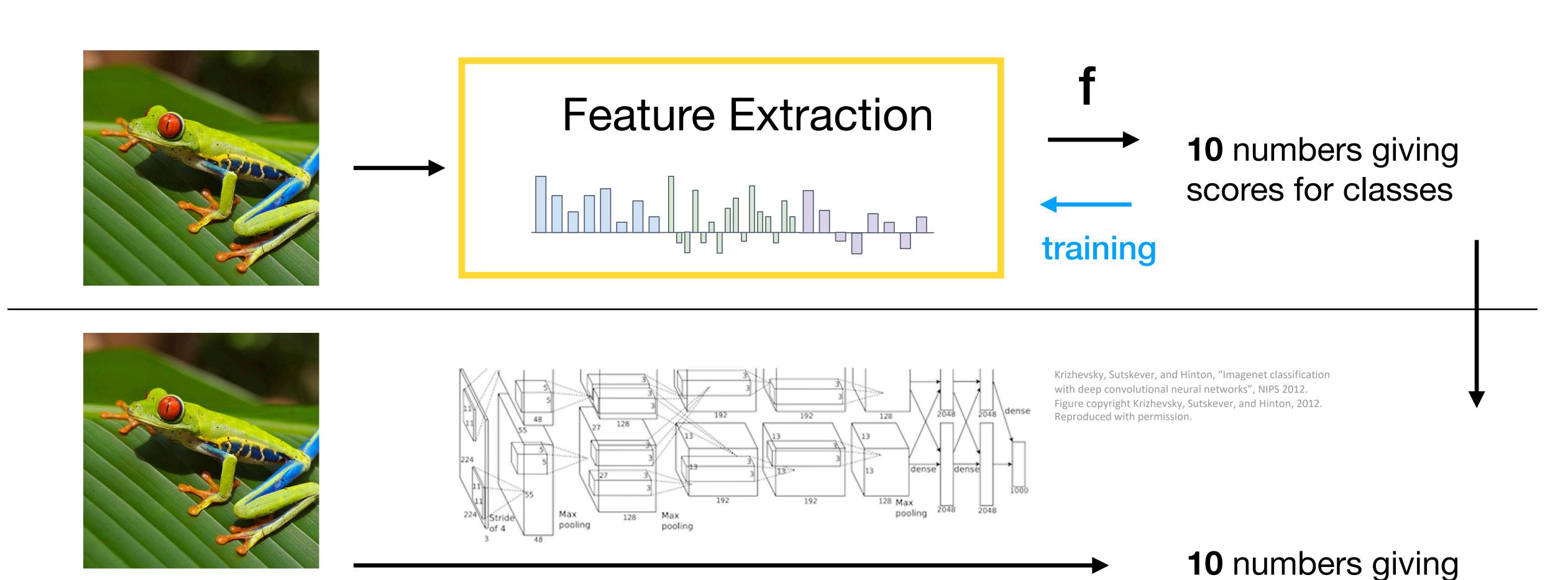


Image Features vs Neural Networks



training

scores for classes

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^C$

Before: Linear Classifier: f(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^C$

Before: Linear Classifier: f(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x) = W_2 \max(0, W_1 x + b_1) + b_2$

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^C$

Before: Linear Classifier: f(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x) = W_2 \max(0, W_1 x + b_1) + b_2$

Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}, b_1 \in \mathbb{R}^H, W_2 \in \mathbb{R}^{C \times H}, b_2 \in \mathbb{R}^C$

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^C$

Before: Linear Classifier: f(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Feature Extraction

Linear Classifier

Now: Two-Layer Neural Network: $f(x) = W_2 \max(0, W_1 x + b_1) + b_2$

Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}, b_1 \in \mathbb{R}^H, W_2 \in \mathbb{R}^{C \times H}, b_2 \in \mathbb{R}^C$

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^C$

Before: Linear Classifier: f(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Feature Extraction

Linear Classifier

Now: Two-Layer Neural Network: $f(x) = W_2 \max(0, W_1 x + b_1) + b_2$

Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}, b_1 \in \mathbb{R}^H, W_2 \in \mathbb{R}^{C \times H}, b_2 \in \mathbb{R}^C$

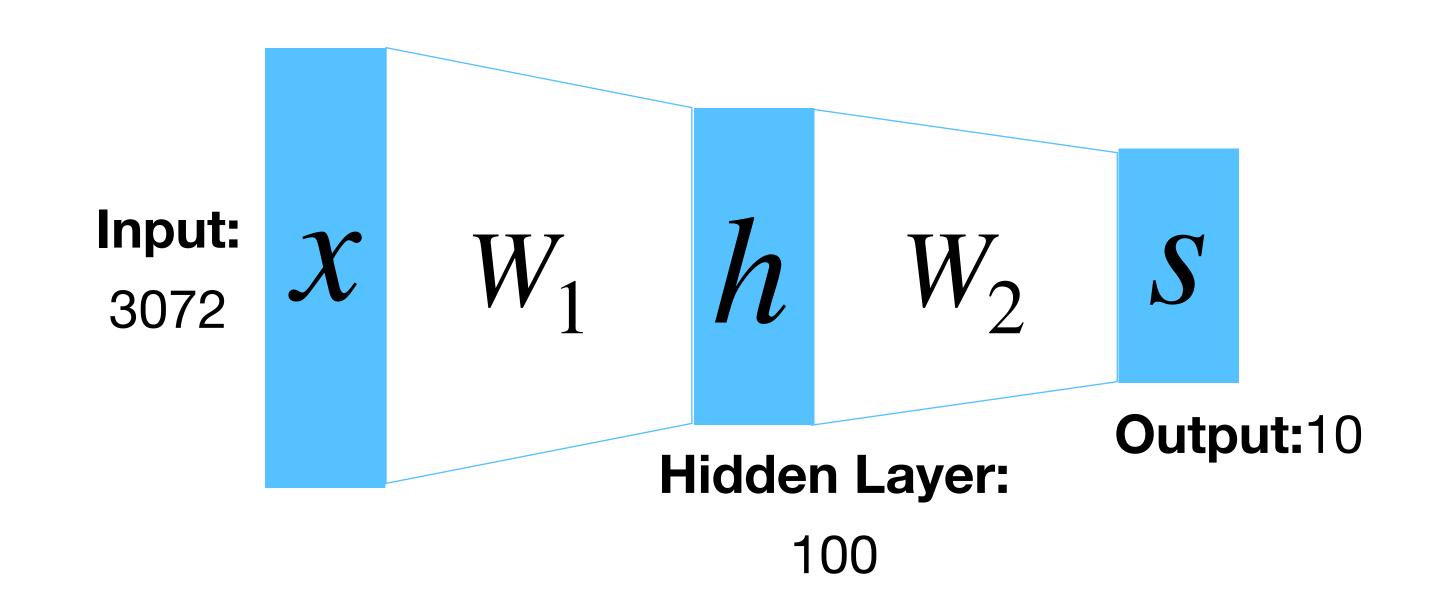
Or Three-Layer Neural Network:

$$f(x) = W_3 \max(0, W_2 \max(0, W_1 x + b_1) + b_2) + b_3$$

Before: Linear Classifier:

$$f(x) = Wx + b$$

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$



$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

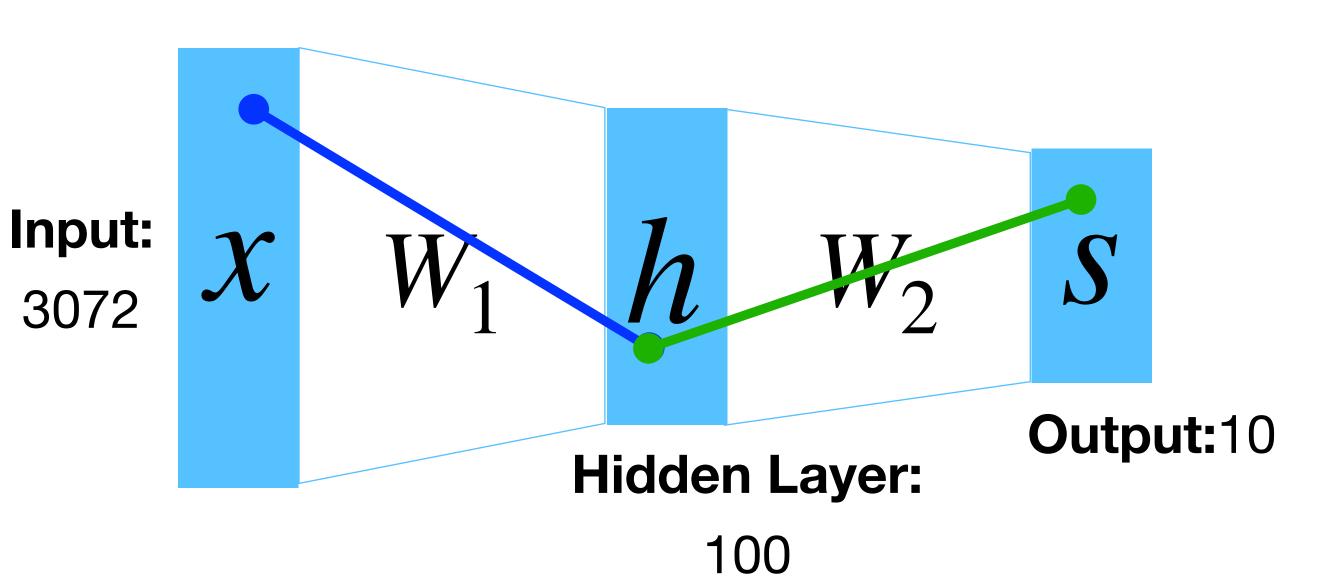
Before: Linear Classifier:

$$f(x) = Wx + b$$

Now: Two-Layer Neural Network:

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

Element (i, j) of W_1 gives the effect on h_i from x_j



Element (i, j) of W_2 gives the effect on s_i from h_j

$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Before: Linear Classifier:

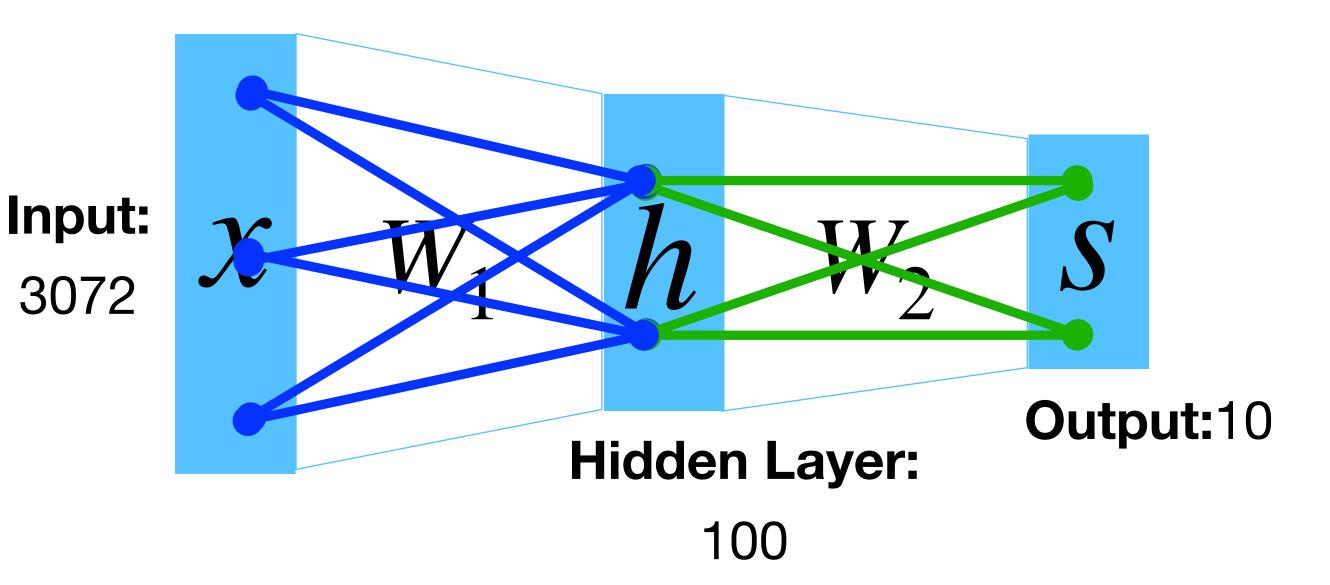
$$f(x) = Wx + b$$

Now: Two-Layer Neural Network:

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

Element (i,j) of W_1 gives the effect on h_i from x_j

All elements of x affect all elements of h



Fully-connected neural network also "Multi-Layer Perceptron" (MLP) Element (i,j) of W_2 gives the effect on s_i from h_j

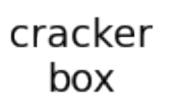
All elements of h affect all elements of s

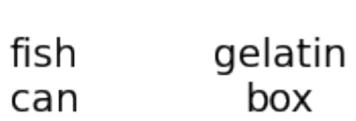
Linear classifier: One template per class

sugar

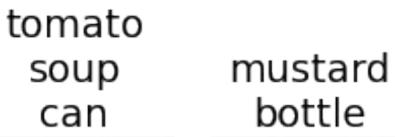
box

master chef can



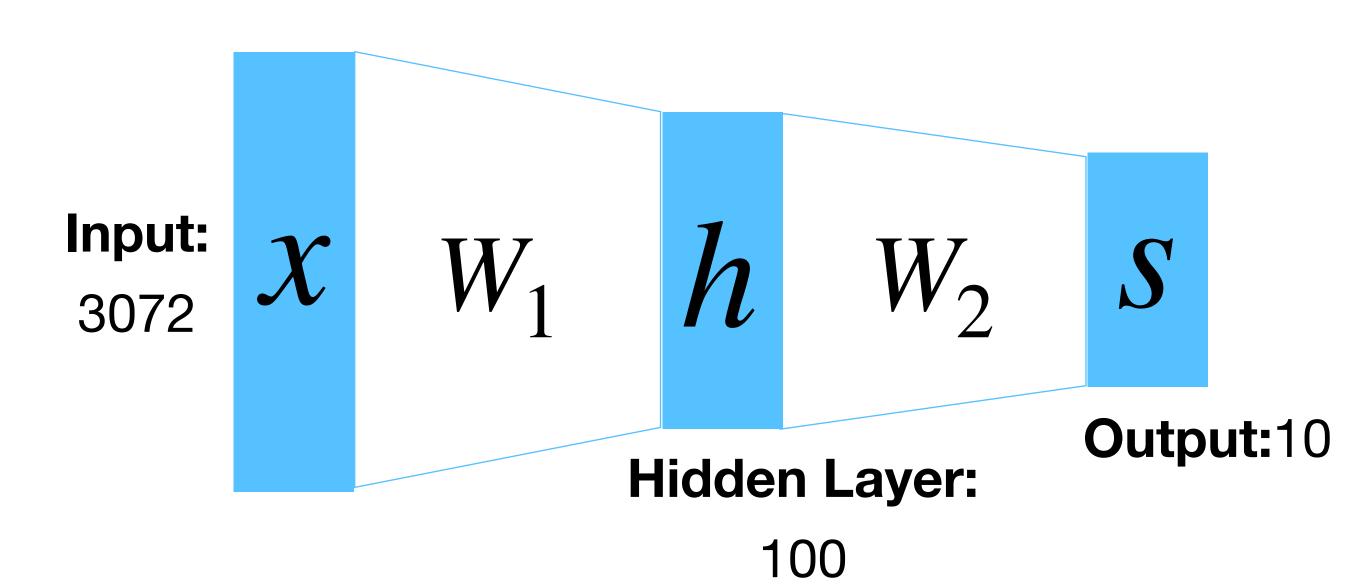


meat



bottle

Before: Linear score function

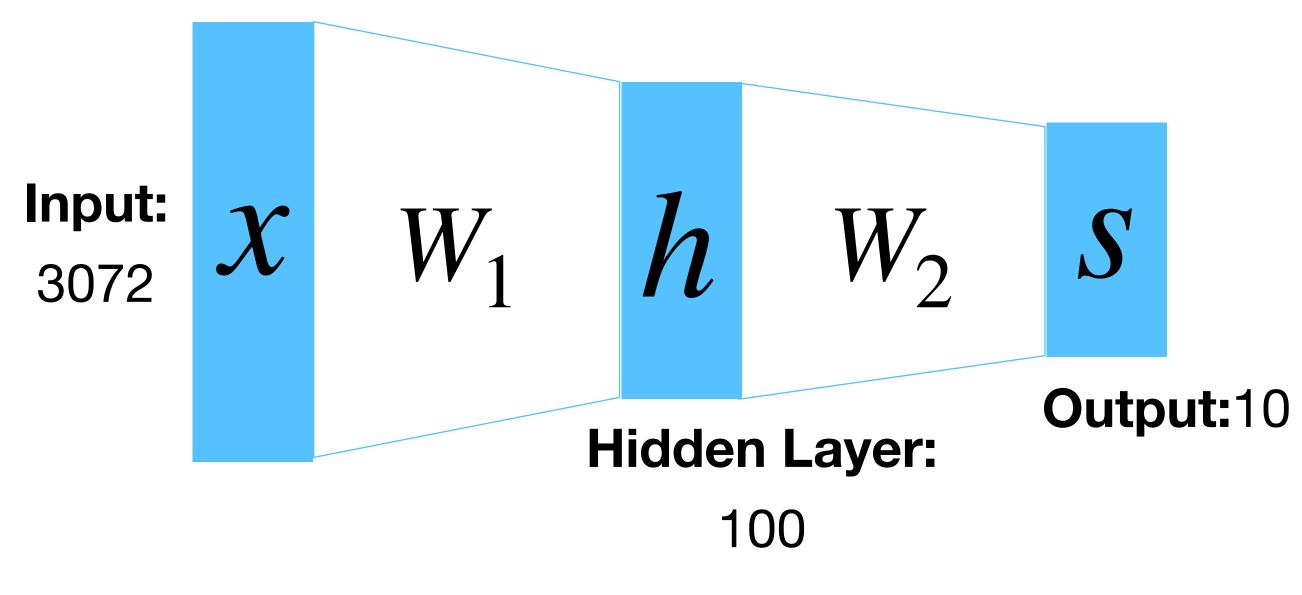


$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Neural net: first layer is bank of templates;

Second layer recombines templates

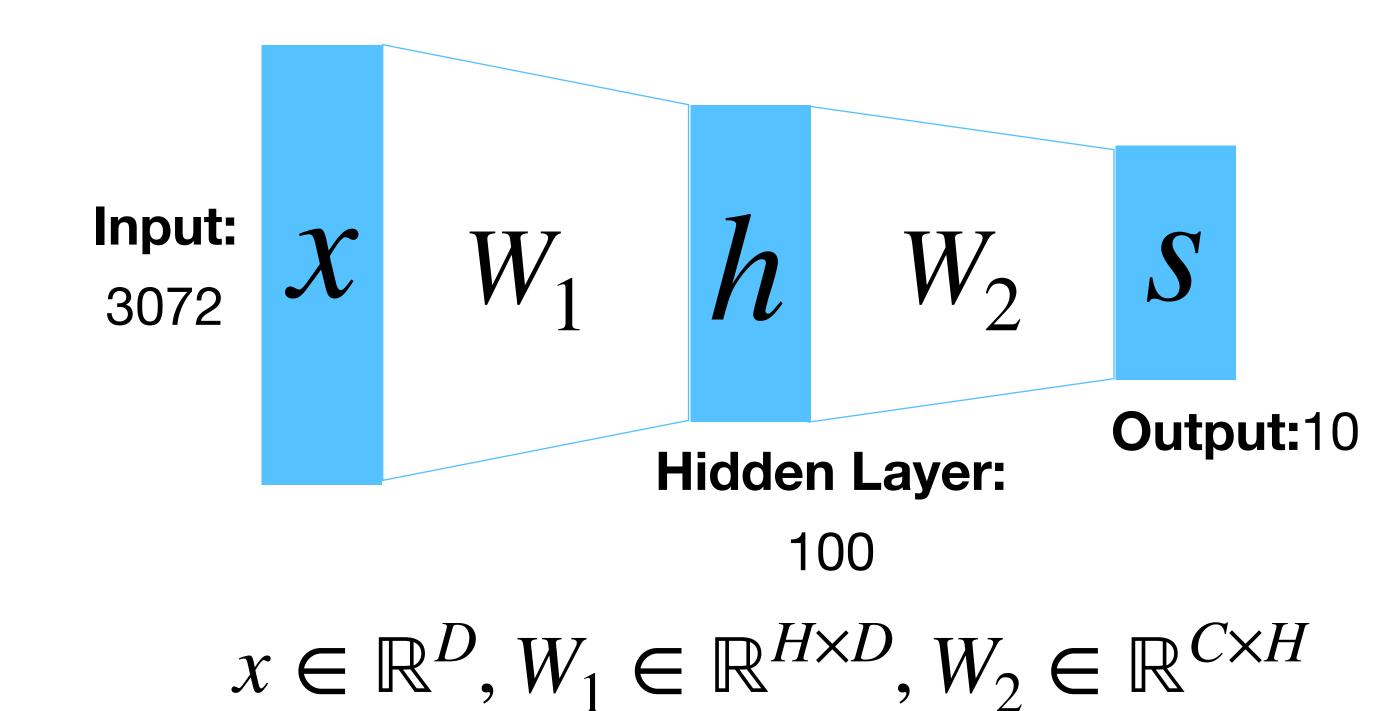
Before: Linear score function



$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

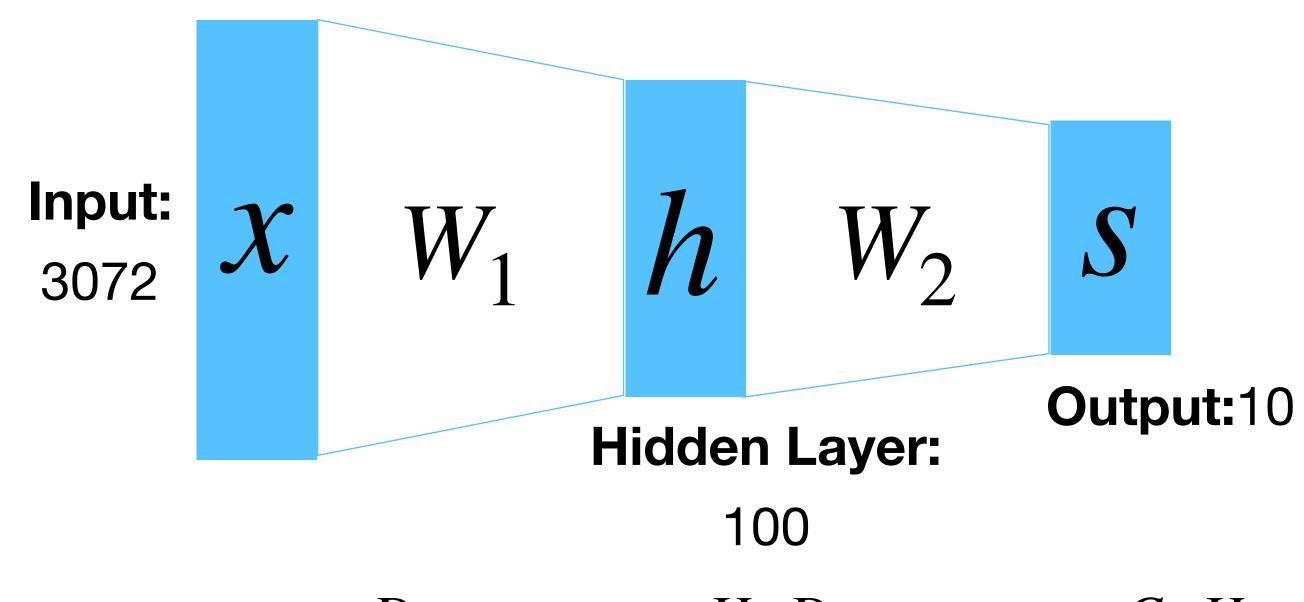
Can use different templates to cover multiple modes of a class!

Before: Linear score function



Can use different templates to cover multiple modes of a class!

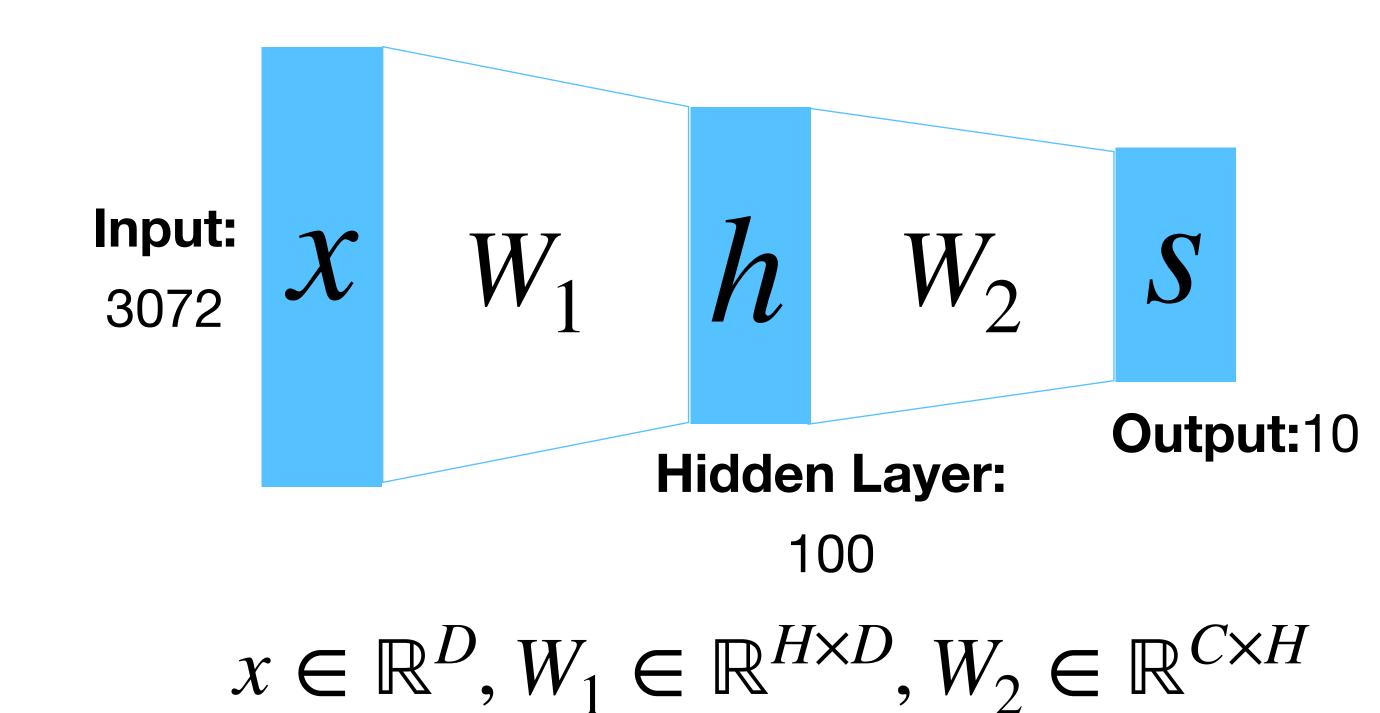
Before: Linear score function



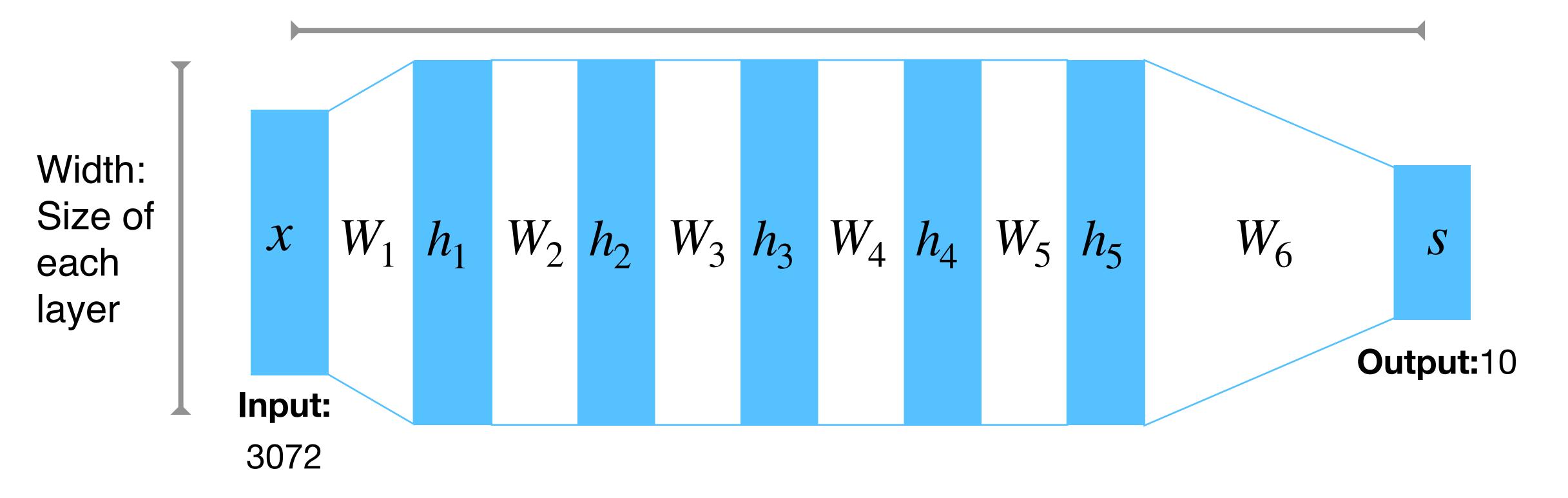
$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

"Distributed representation": Most templates not interpretable!

Before: Linear score function



Deep Neural Networks

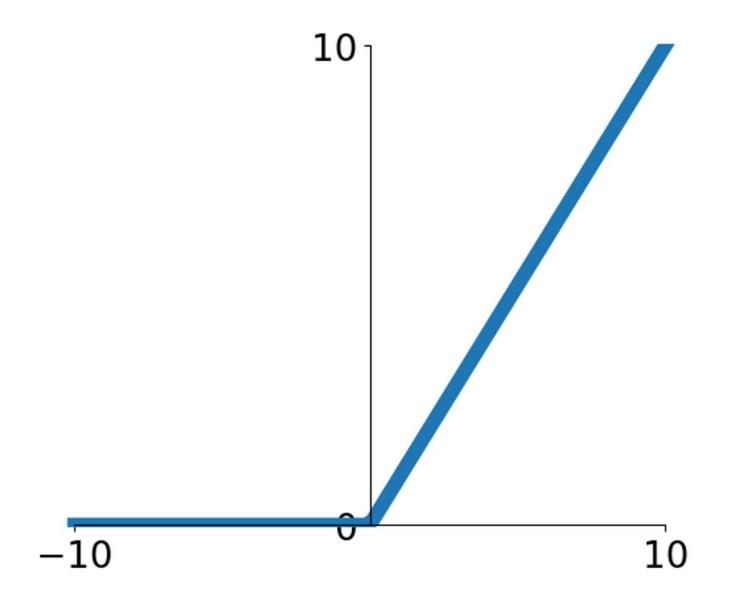


 $s = W_6 \max(0, W_5 \max(0, W_4 \max(0, W_3 \max(0, W_3 \max(0, W_2 \max(0, W_1 x)))))$

Activation Functions

2-Layer Neural Network

The auction $ReLU(z) = \max(0,z)$ is called "Rectified Linear Unit"



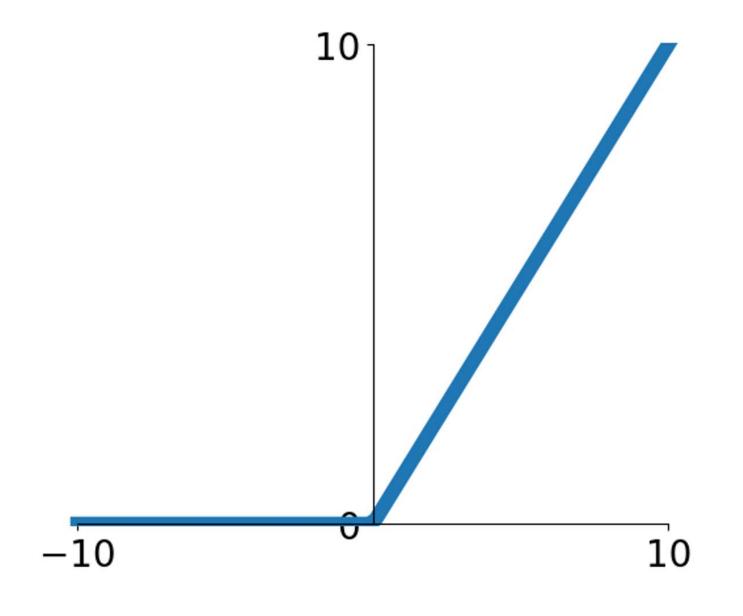
$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Activation Functions

2-Layer Neural Network

The auction $ReLU(z) = \max(0,z)$ is called "Rectified Linear Unit"



$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

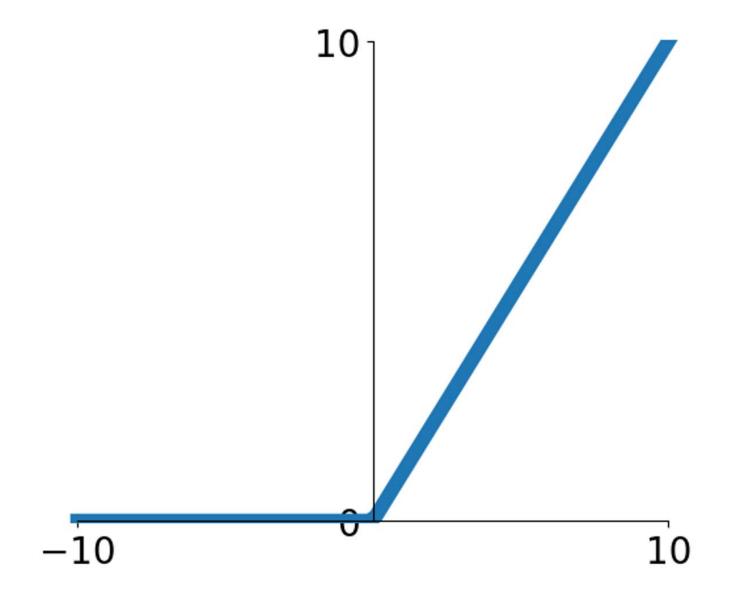
Q: What happens if we build a neural network with no activation function?

$$f(x) = W_2(W_1x + b_1) + b_2$$

Activation Functions

2-Layer Neural Network

The auction $ReLU(z) = \max(0,z)$ is called "Rectified Linear Unit"



$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Q: What happens if we build a neural network with no activation function?

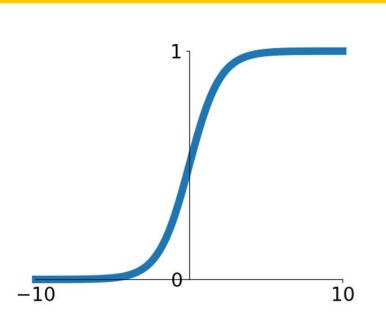
$$f(x) = W_2(W_1x + b_1) + b_2$$
$$= (W_1W_2)x + (W_2b_1 + b_2)$$

A: We end up with a linear classifier

Activation Functions

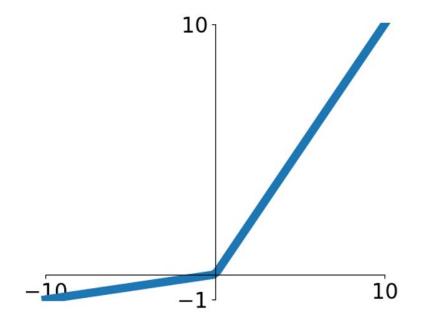
Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



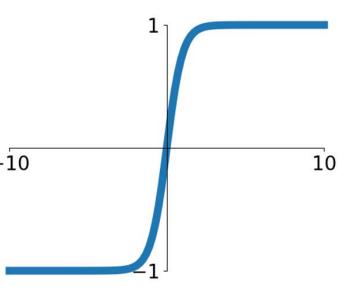
Leaky ReLU

max(0.2x, x)



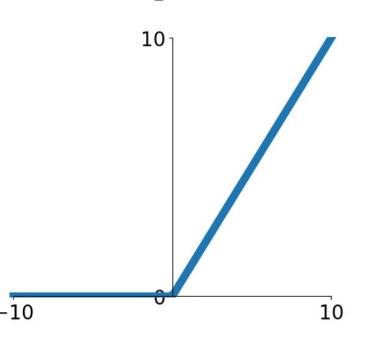
tanh

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$



ReLU

max(0,x)



Softplus

$$\log(1 + \exp(x))$$

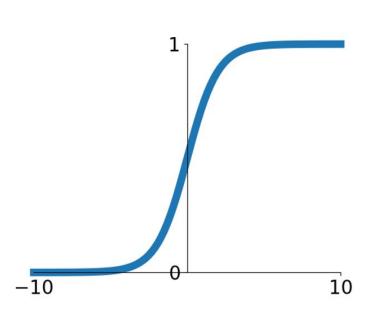
ELU

$$f(x) = \begin{cases} x, & x > 0 \\ \alpha(\exp(x) -), & x \le 0 \end{cases}$$

Activation Functions

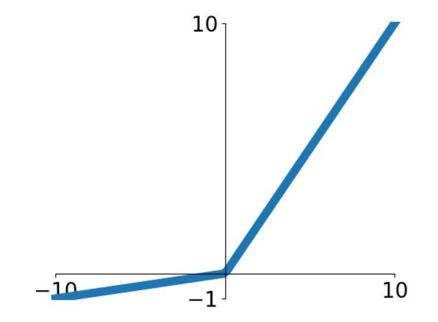
Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



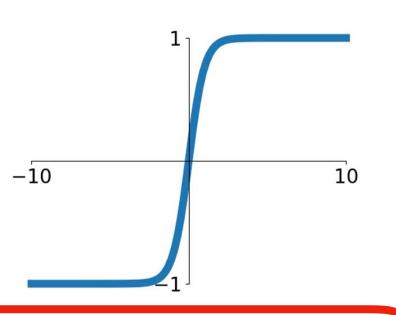
Leaky ReLU

max(0.2x, x)



tanh

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

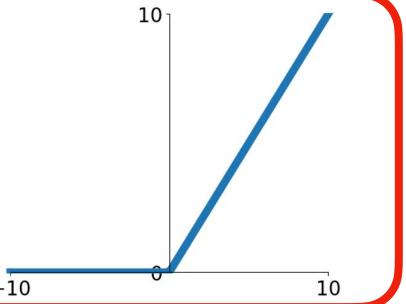


Softplus

$$\log(1 + \exp(x))$$

ReLU

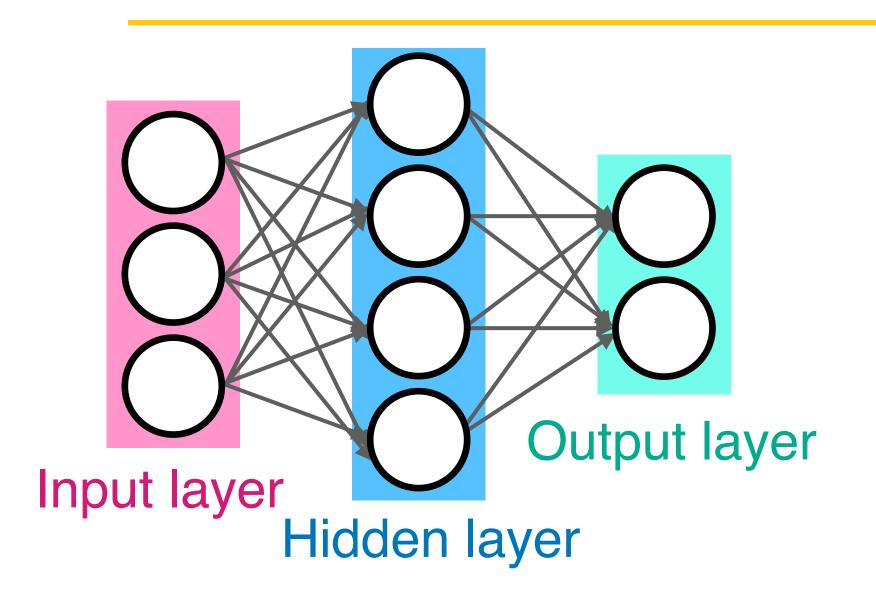
max(0,x)



ELU

$$f(x) = \begin{cases} x, & x > 0 \\ \alpha(\exp(x) -), & x \le 0 \end{cases}$$

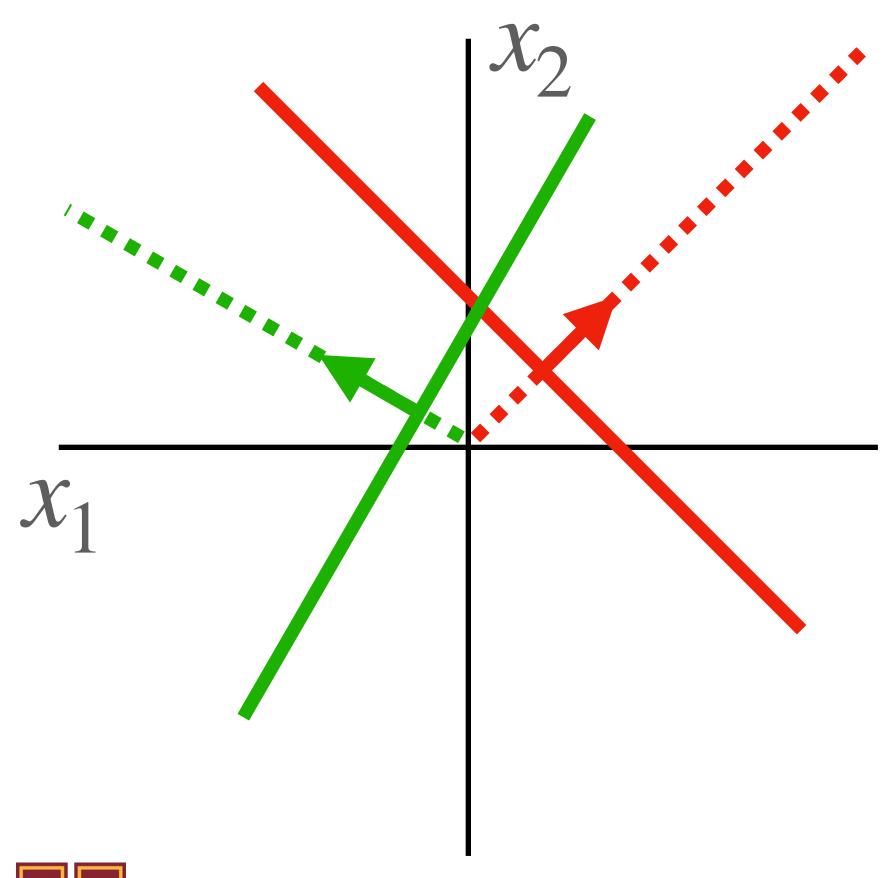
Neural Net in <20 lines!



```
Initialize weights
and data
Compute loss (Sigmoid
activation, L2 loss)
                       10
Compute gradients
```

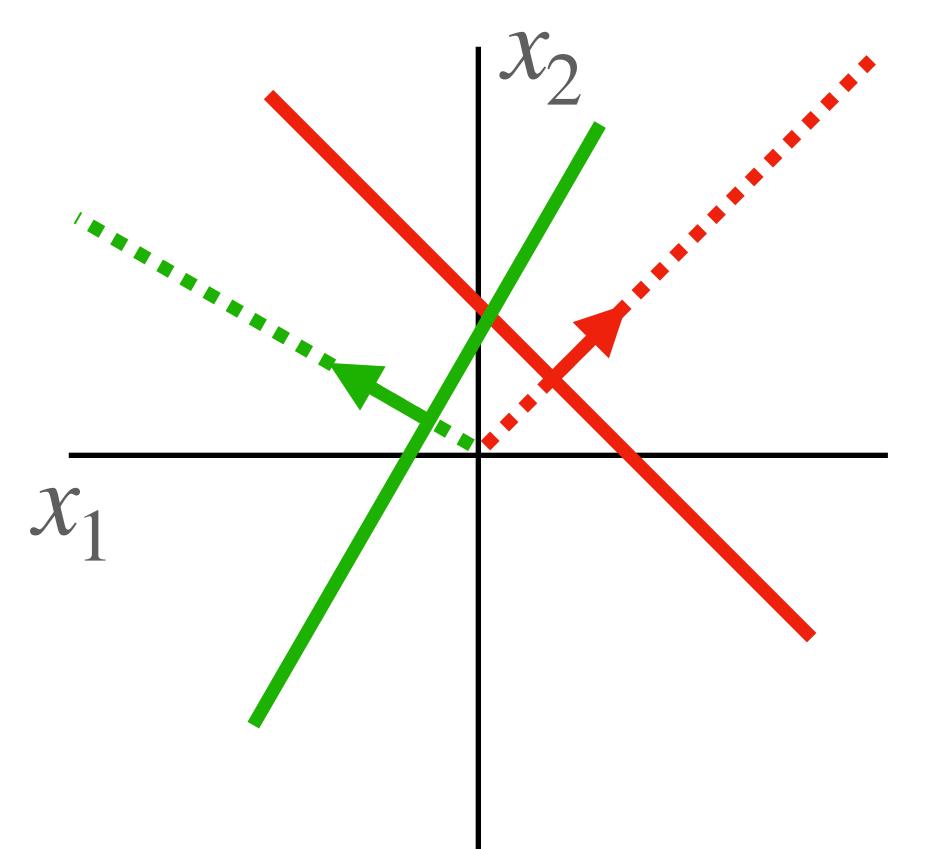
```
SGD step
                    16
```

```
import numpy as np
from numpy random import randn
N, Din, H, Dout = 64, 1000, 100, 10
x, y = randn(N, Din), randn(N, Dout)
w1, w2 = randn(Din, H), randn(H, Dout)
for t in range(10000):
  h = 1.0 / (1.0 + np.exp(-x.dot(w1)))
  y_pred = h.dot(w2)
  loss = np.square(y_pred - y).sum()
  dy_pred = 2.0 * (y_pred - y)
  dw2 = h.T.dot(dy_pred)
  dh = dy_pred_dot(w2.T)
  dw1 = x.T.dot(dh * h * (1 - h))
 w1 -= 1e-4 * dw1
 w2 -= 1e-4 * dw2
```

Consider a linear transform: h = Wx + bwhere x, b, h are each 2-dimensional

Consider a linear transform: h = Wx + bwhere x, b, h are each 2-dimensional

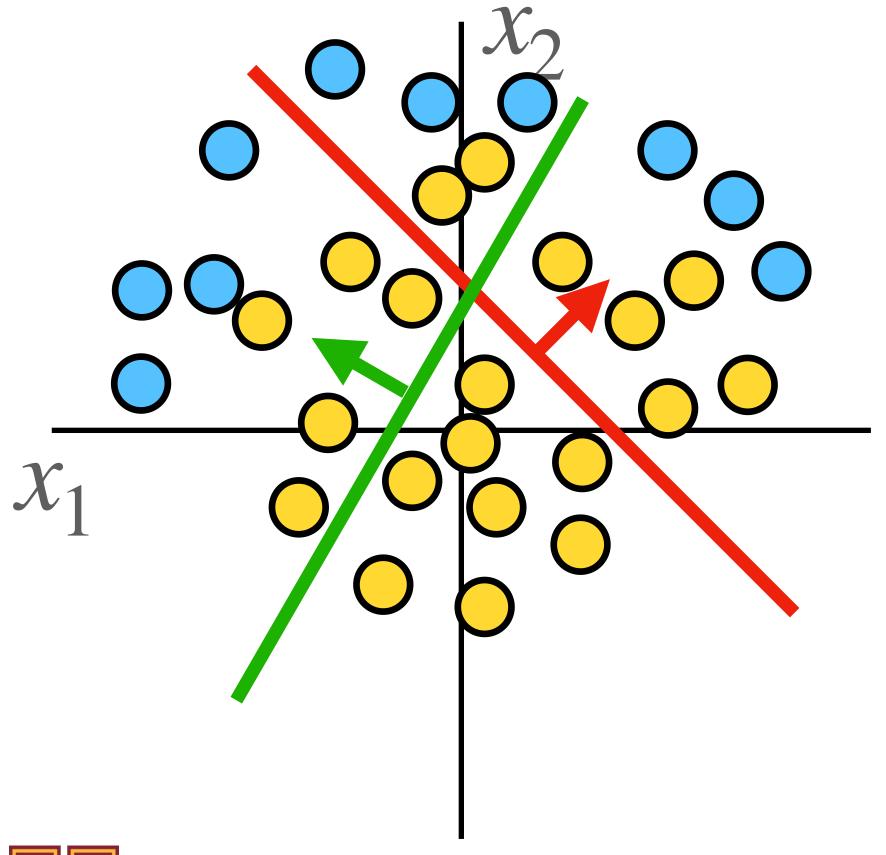


Feature transform:

$$h = Wx + b$$

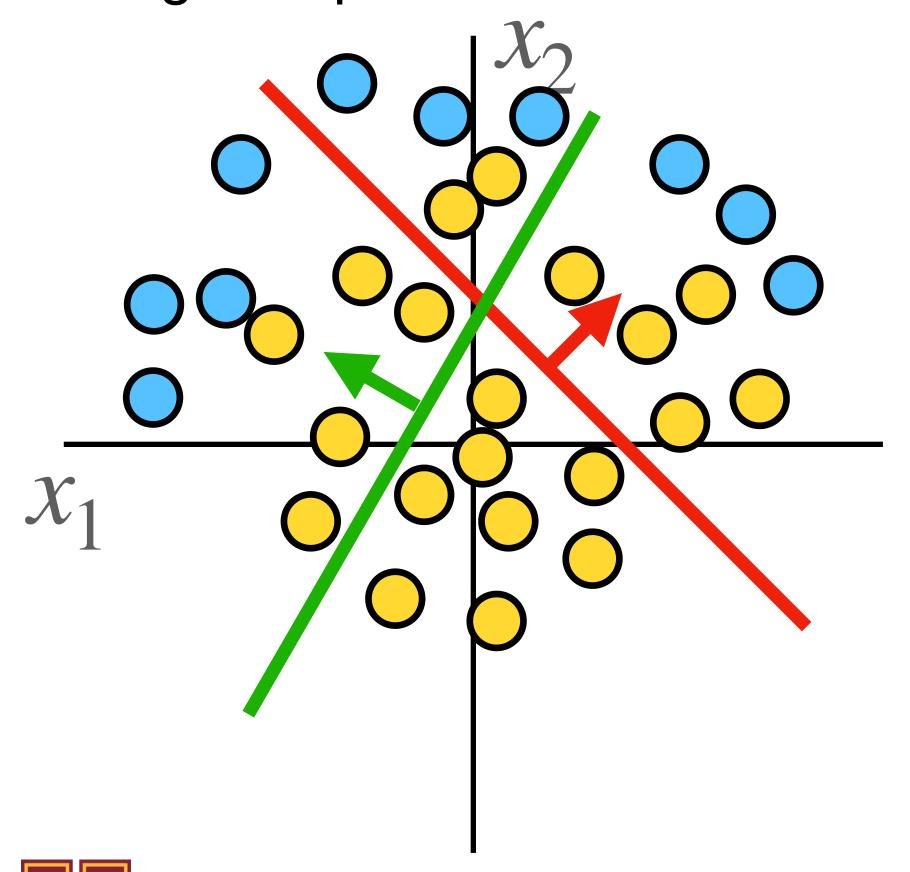
Consider a linear transform: h = Wx + bwhere x, b, h are each 2-dimensional Feature transform: h = Wx + b

Points not linearly separable in original space



Consider a linear transform: h = Wx + bwhere x, b, h are each 2-dimensional

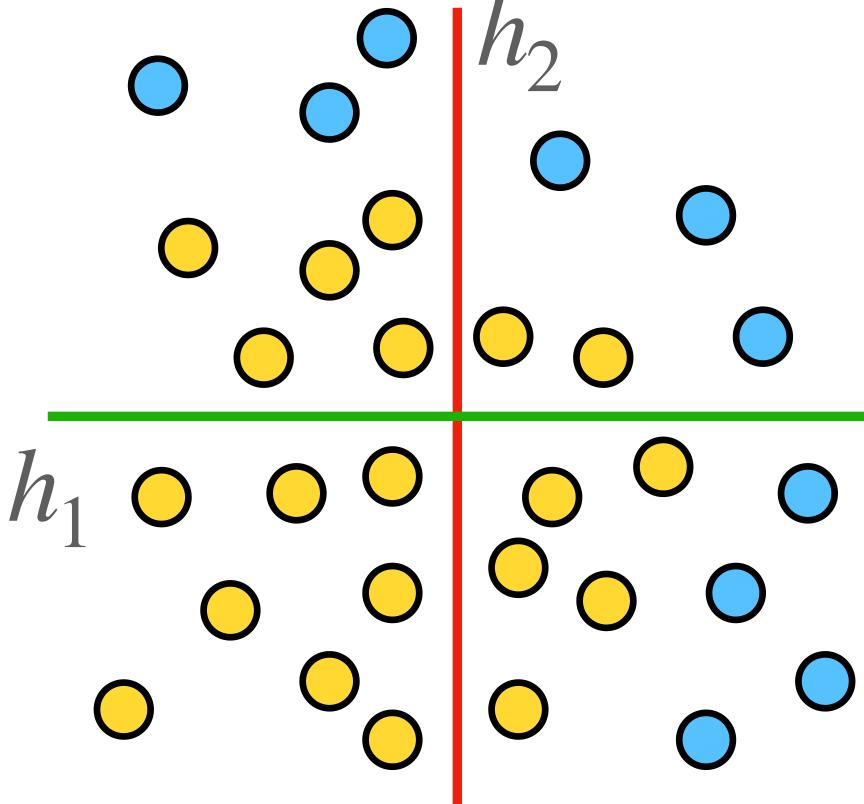
Points not linearly separable in original space



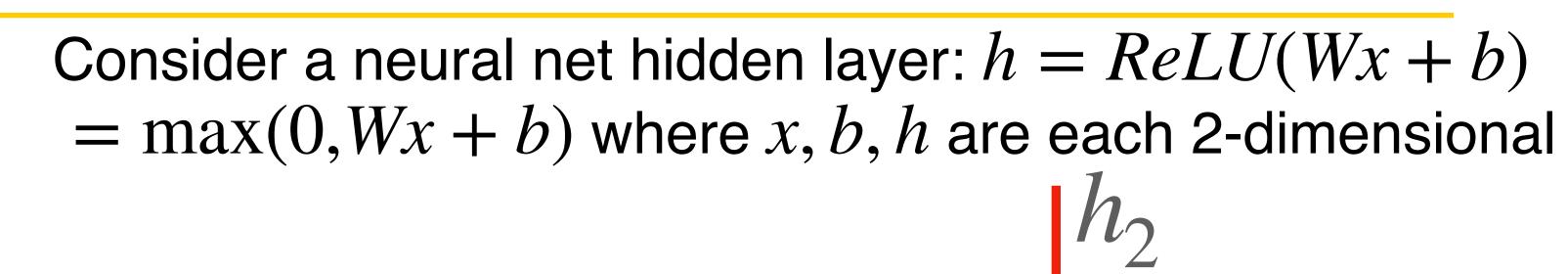
Consider a linear transform: h = Wx + bwhere x, b, h are each 2-dimensional

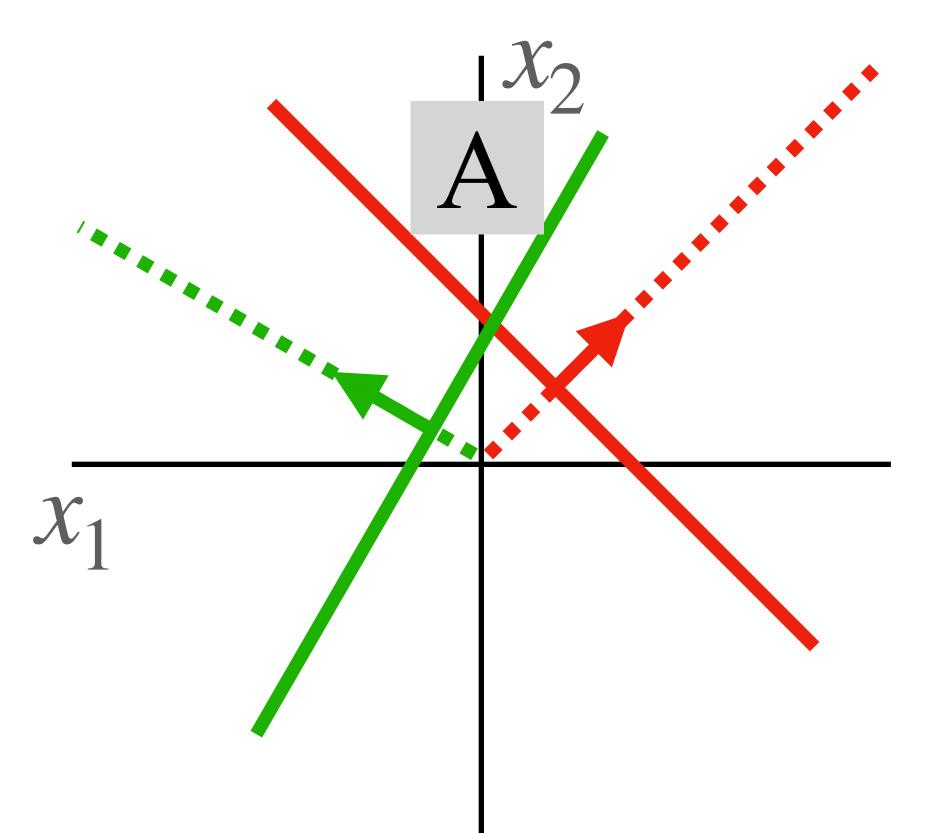
Feature transform:

$$h = Wx + b$$



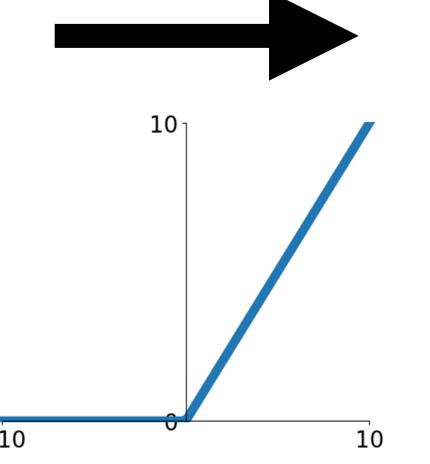
Points still not linearly separable in feature space



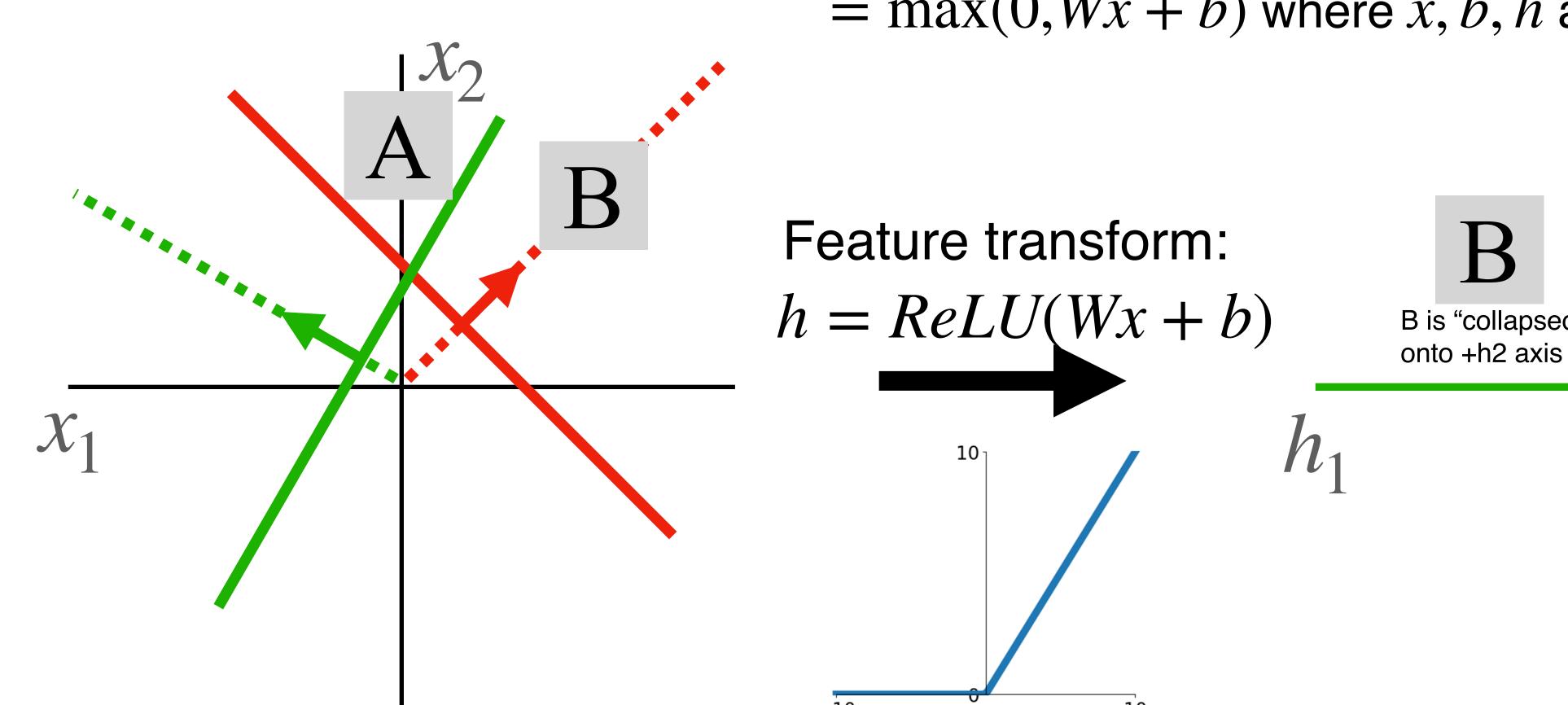


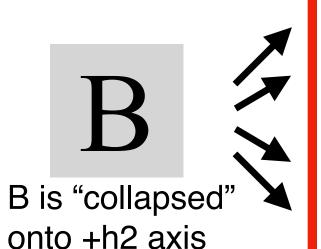
Feature transform:

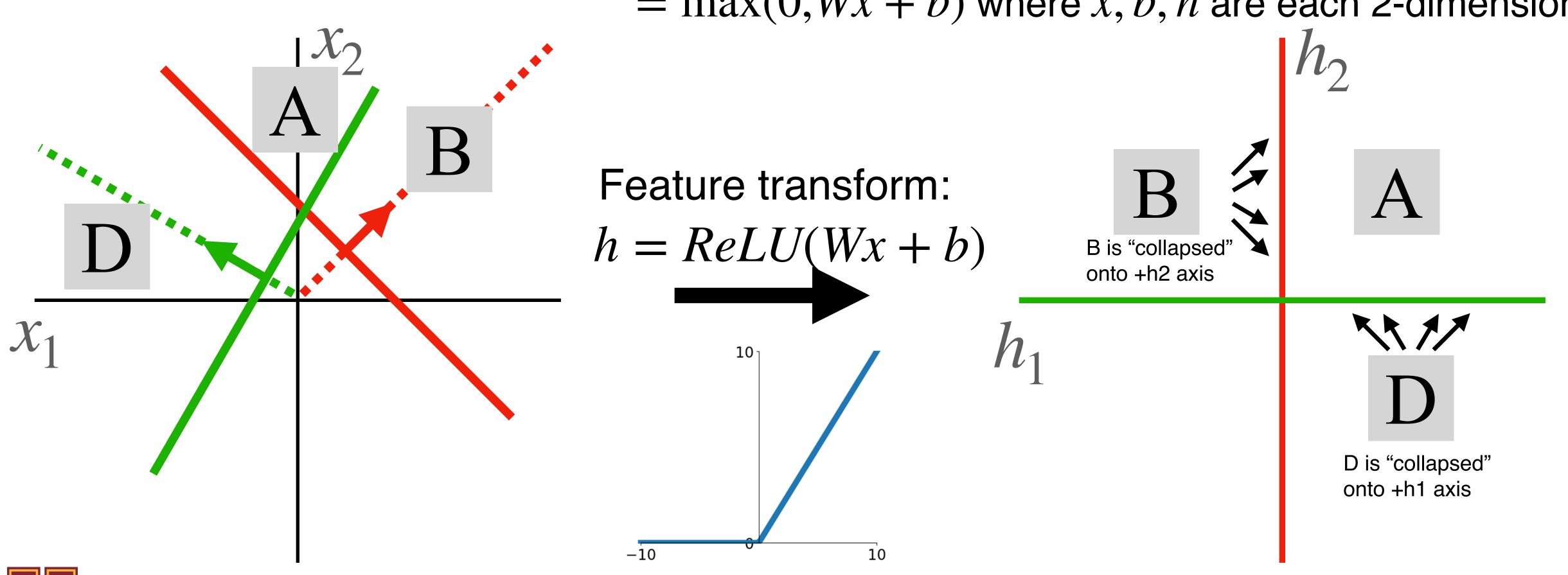
$$h = ReLU(Wx + b)$$

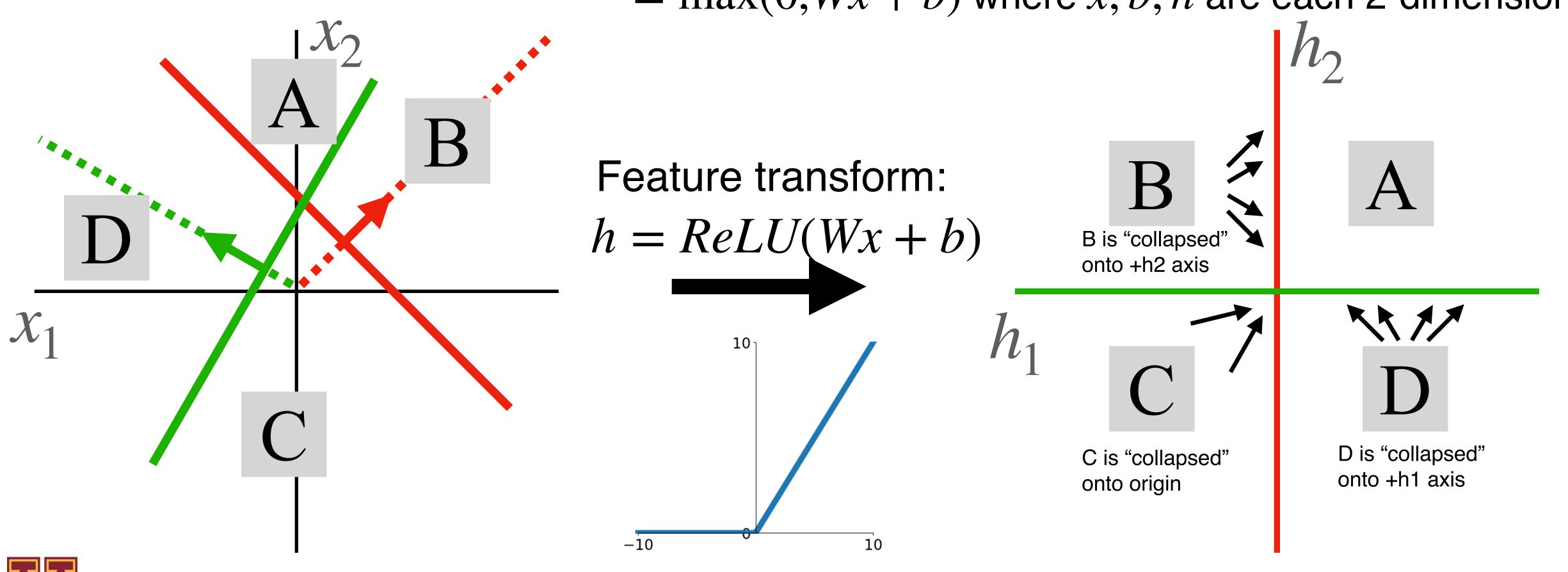


A

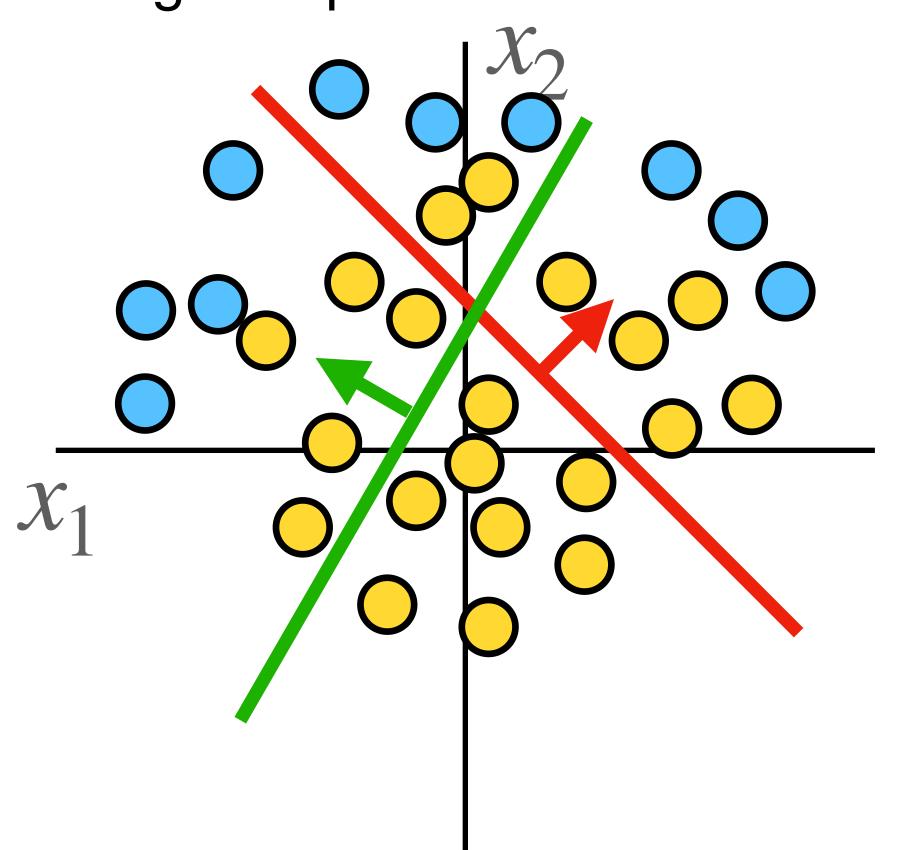


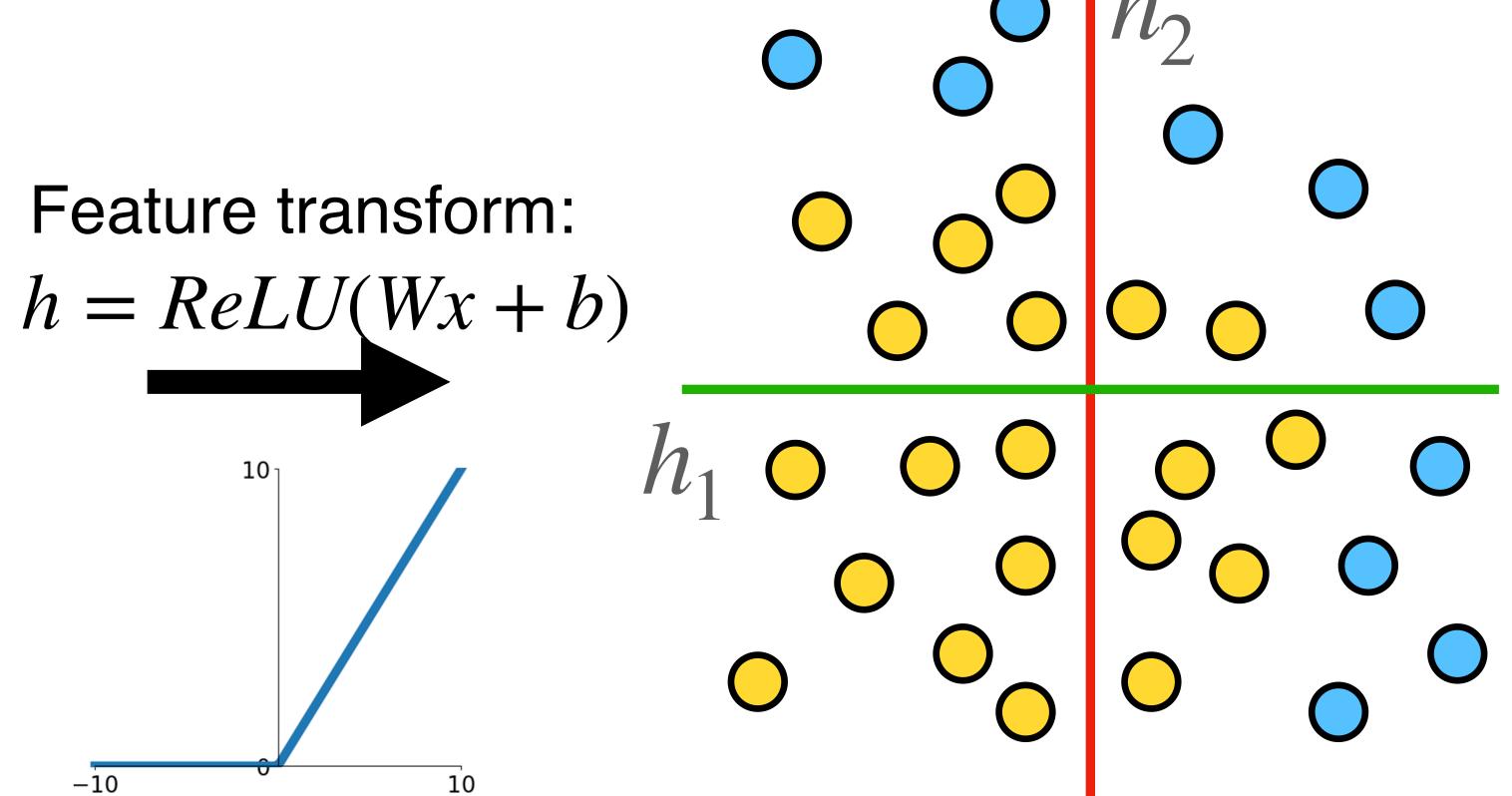






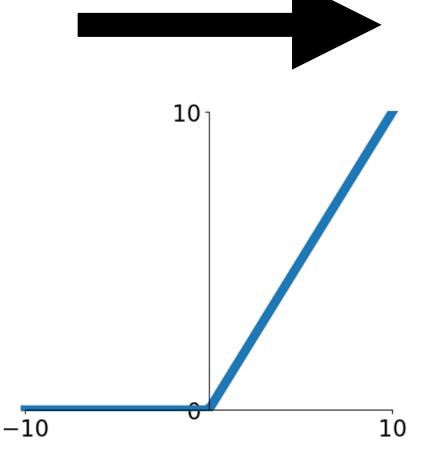
Points not linearly separable in original space

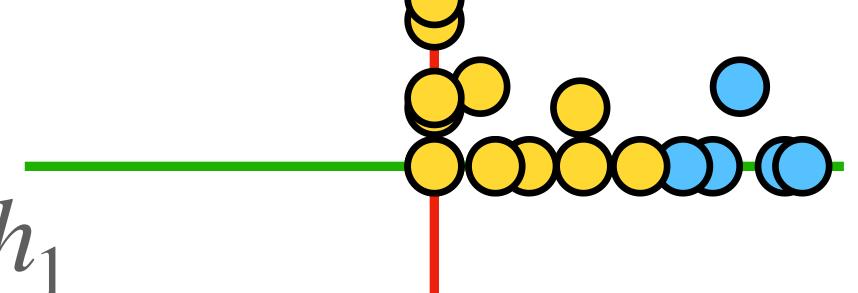




Points not linearly separable in original space

$$h = ReLU(Wx + b)$$

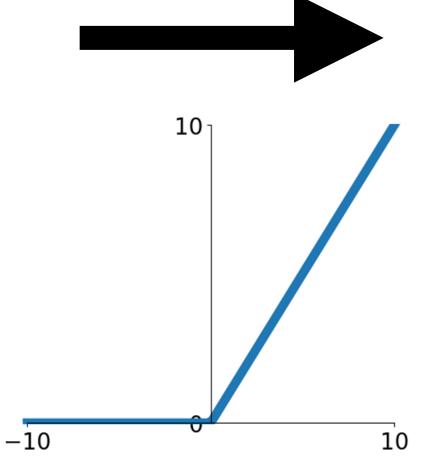




Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx + b)= max(0, Wx + b) where x, b, h are each 2-dimensional

h = ReLU(Wx + b)

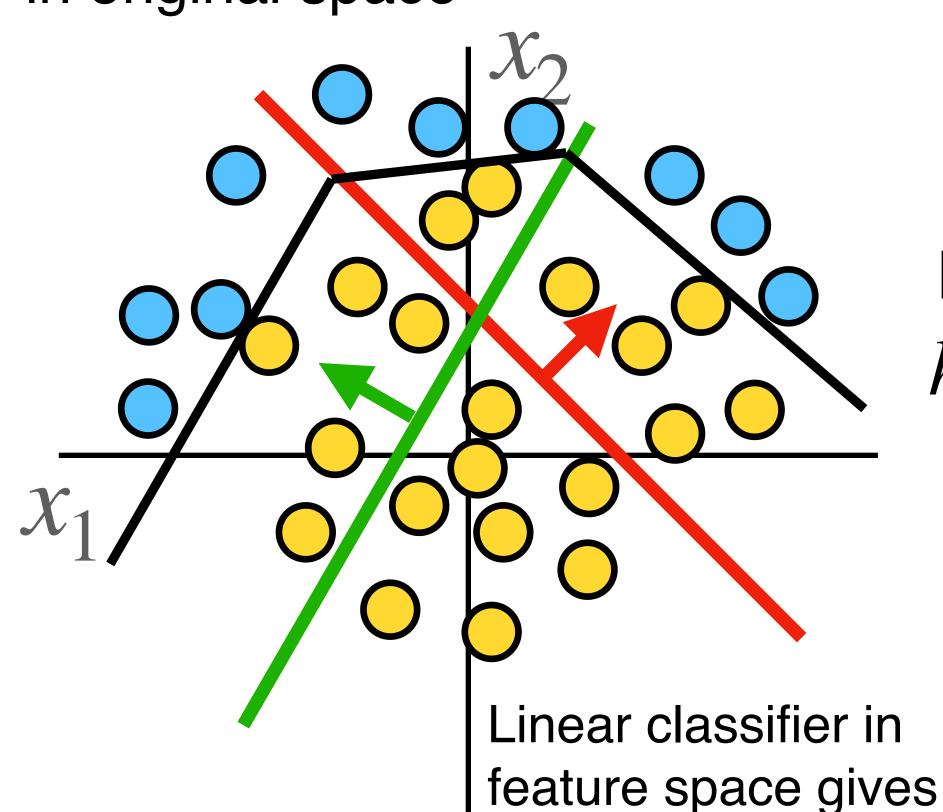


 n_1

Points are linearly separable in feature space!

Points not linearly separable in original space

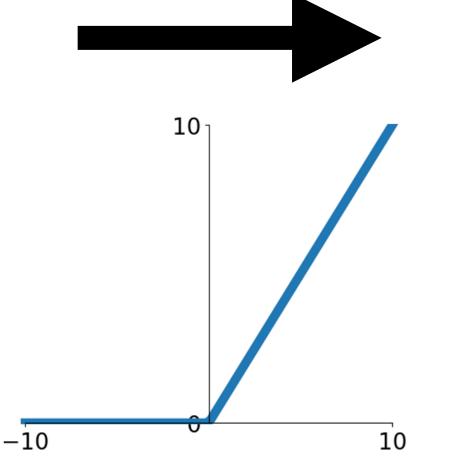
Consider a neural net hidden layer: h = ReLU(Wx + b)= max(0, Wx + b) where x, b, h are each 2-dimensional



nonlinear classifier

Feature transform:

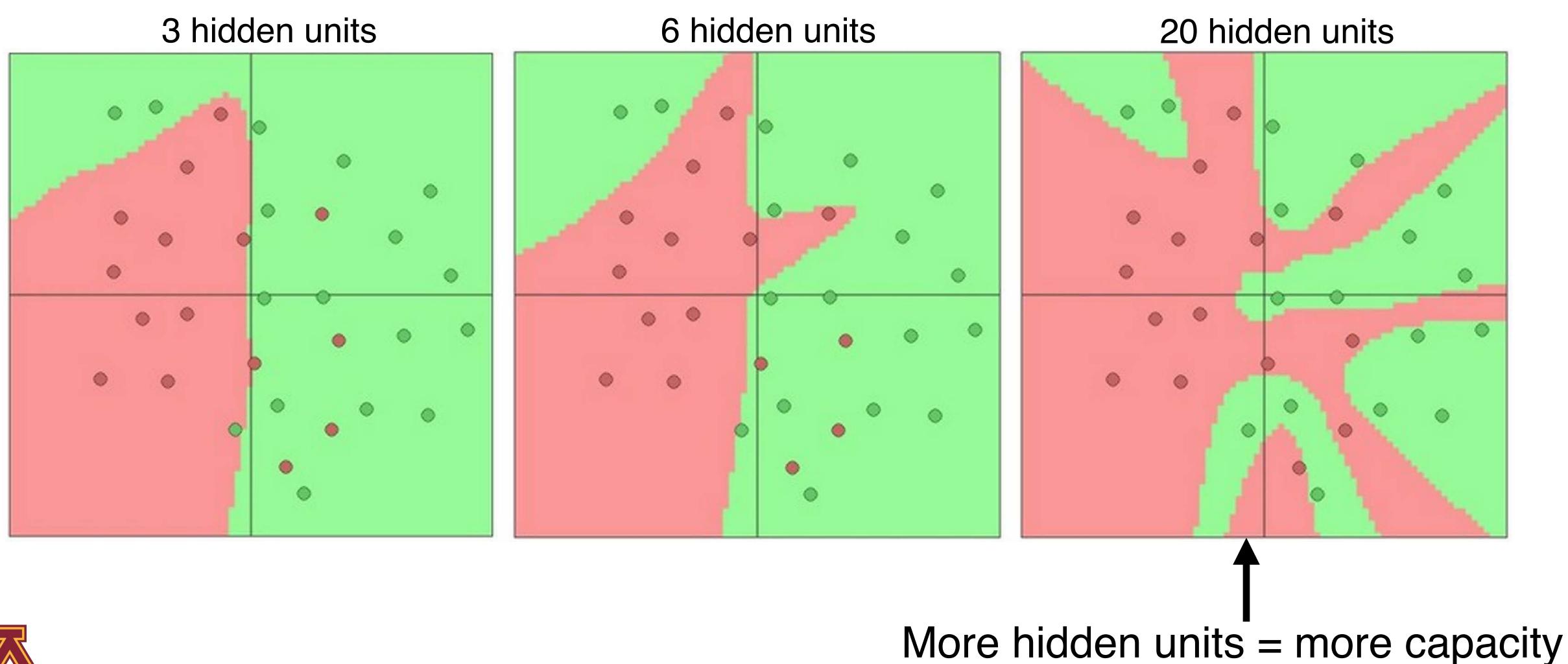
h = ReLU(Wx + b)



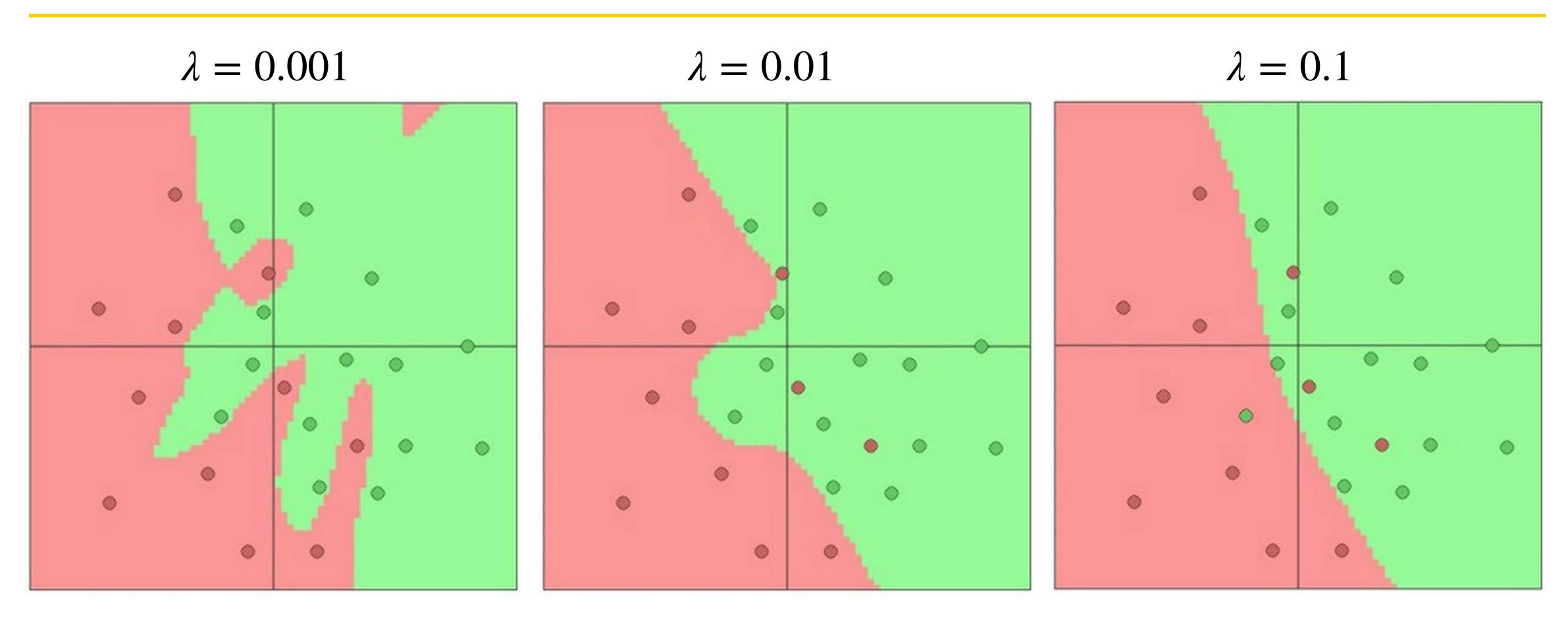
 n_1

Points are linearly separable in feature space!

Setting the number of layers and their sizes



Don't regularize with size; instead use stronger L2

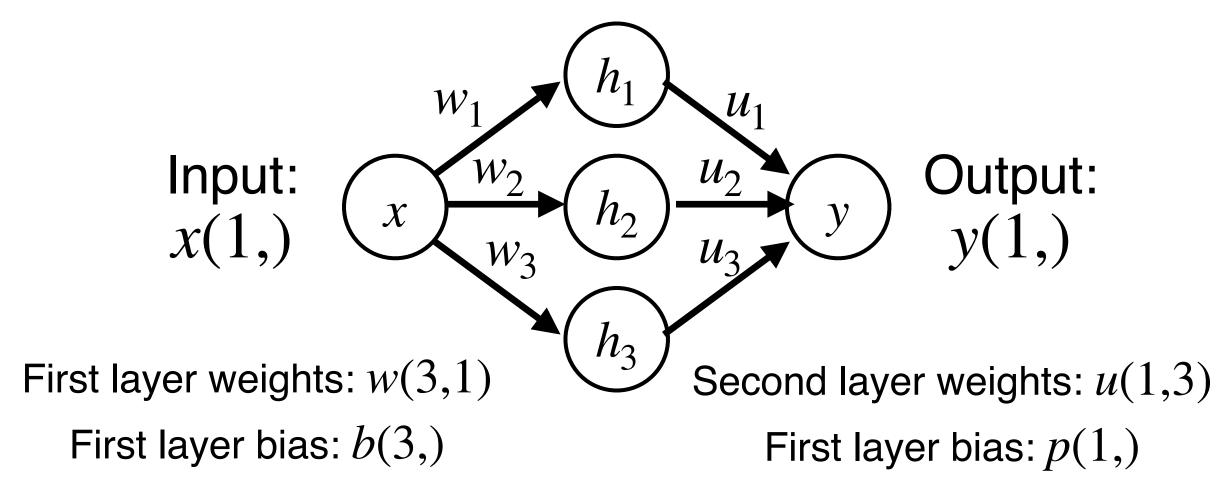


Web demo with ConvNetJS: https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

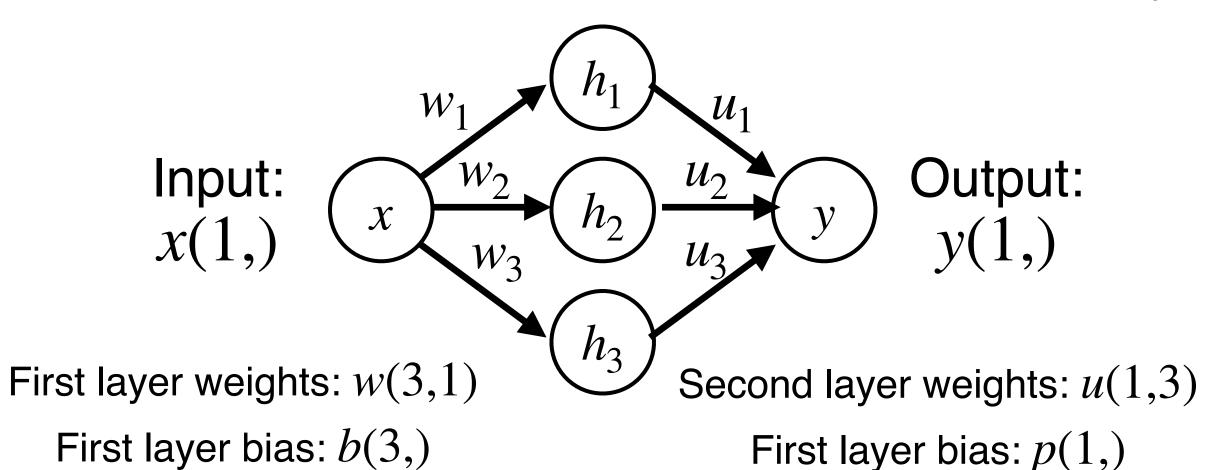
A neural network with one hidden layer can approximate any function $f: \mathbb{R}^N \to \mathbb{R}^M$ with arbitrary precision*

*Many technical conditions: Only holds on compact subsets of \mathbb{R}^N ; function must be continuous; need to define "arbitrary precision"; etc.

Example: Approximating a function $f:\mathbb{R}\to\mathbb{R}$ with a two-layer ReLU network



Example: Approximating a function $f:\mathbb{R}\to\mathbb{R}$ with a two-layer ReLU network



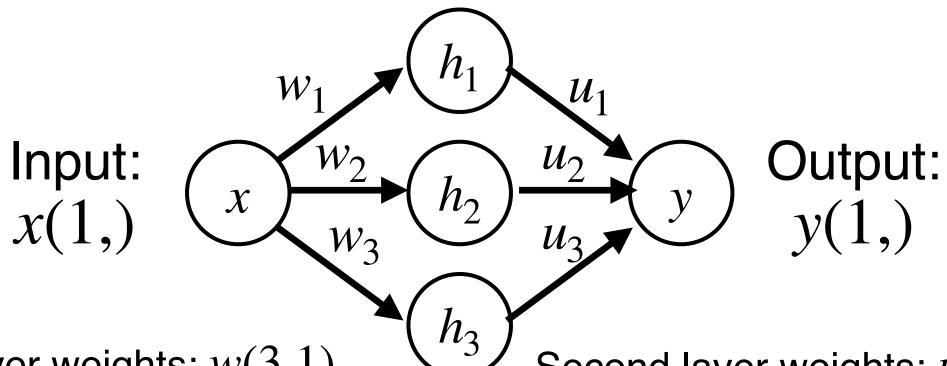
$$h_1 = \max(0, w_1 x + b_1)$$

$$h_2 = \max(0, w_2 x + b_2)$$

$$h_1 = \max(0, w_3 x + b_3)$$

$$y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$$

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network



First layer weights: w(3,1)

First layer bias: b(3,)

Second layer weights: u(1,3)

$$h_1 = \max(0, w_1 x + b_1)$$

$$h_2 = \max(0, w_2 x + b_2)$$

$$h_1 = \max(0, w_3 x + b_3)$$

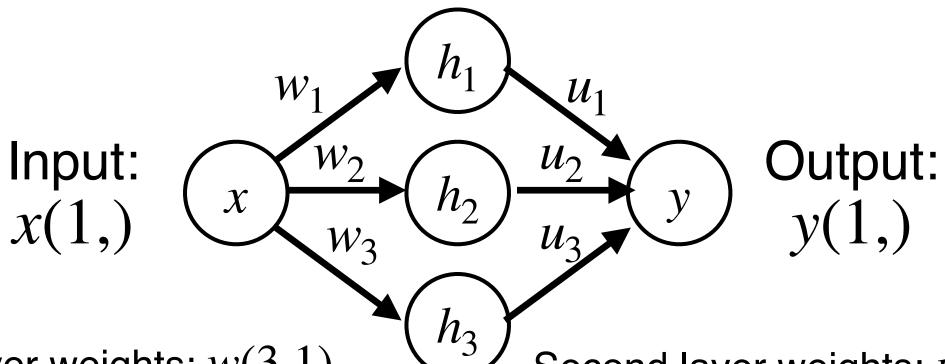
$$y = u_1h_1 + u_2h_2 + u_3h_3 + p$$

$$y = u_1 \max(0, w_1 x + b_1)$$

$$+u_2 \max(0, w_2 x + b_2)$$

$$+u_3 \max(0, w_3 x + b_3)$$

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network



First layer weights: w(3,1)

First layer bias: b(3,)

$$h_1 = \max(0, w_1 x + b_1)$$

$$h_2 = \max(0, w_2 x + b_2)$$

$$h_1 = \max(0, w_3 x + b_3)$$

$$y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$$

Second layer weights: u(1,3)

First layer bias: p(1,)

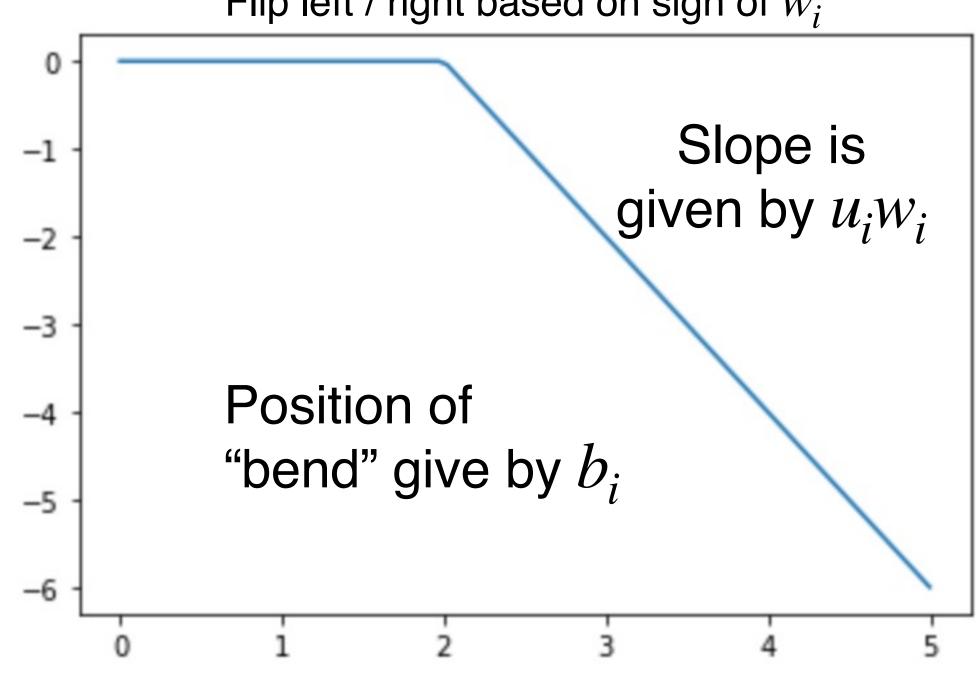
$$y = u_1 \max(0, w_1 x + b_1)$$

$$+u_2 \max(0, w_2 x + b_2)$$

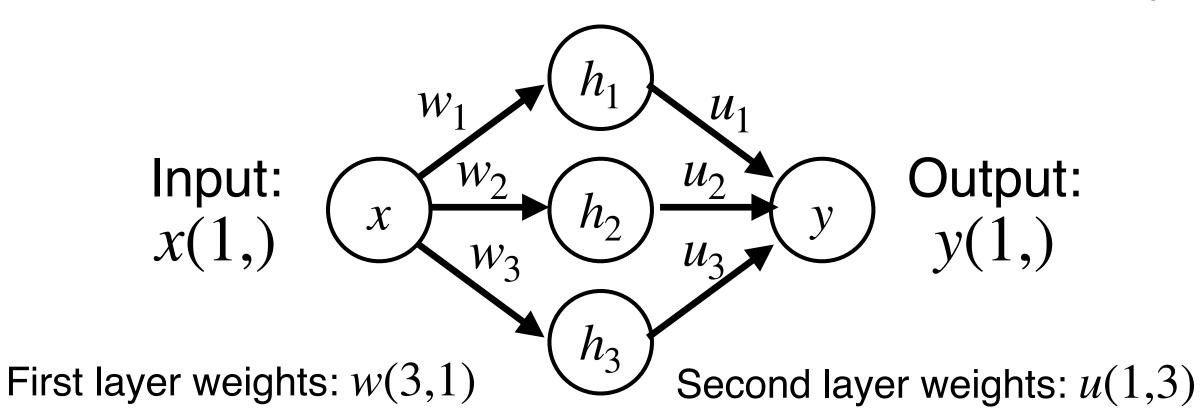
$$+u_3 \max(0, w_3 x + b_3)$$

Output is a sum of shifted, scaled ReLUs:

Flip left / right based on sign of W_i



Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network



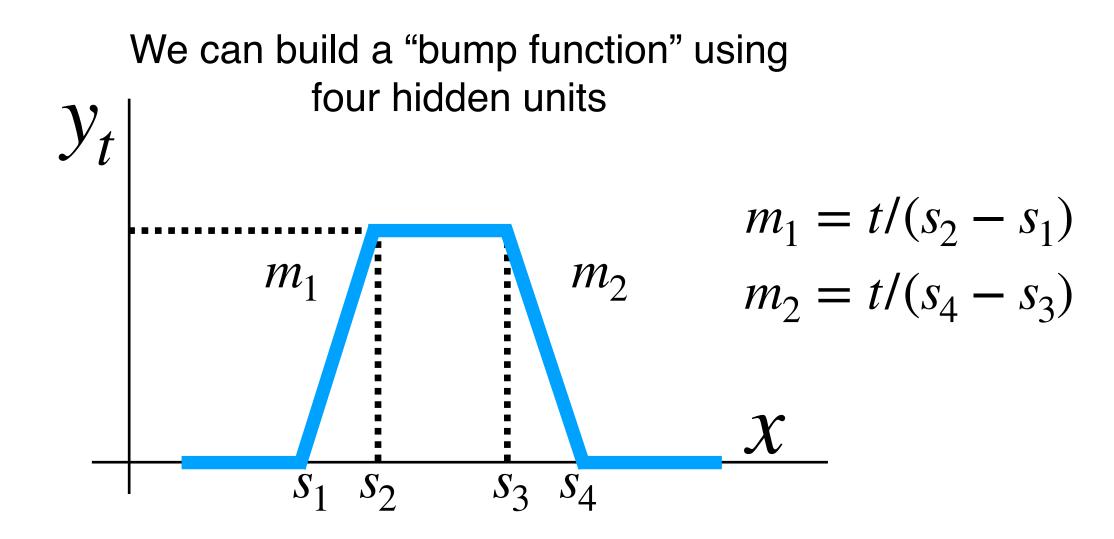
First layer bias: p(1,)

$$h_1 = \max(0, w_1 x + b_1) \qquad y = u_1 \max(0, w_1 x + b_1)$$

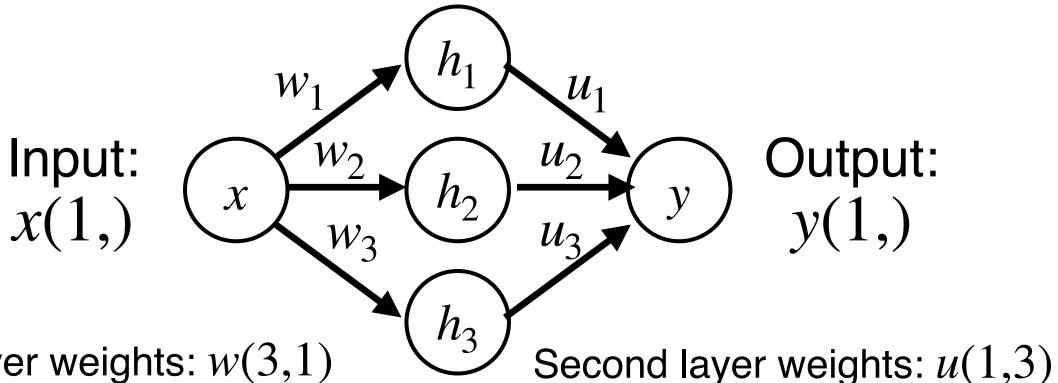
$$h_2 = \max(0, w_2 x + b_2) \qquad +u_2 \max(0, w_2 x + b_2)$$

$$h_1 = \max(0, w_3 x + b_3) \qquad +u_3 \max(0, w_3 x + b_3)$$

$$y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p \qquad +p$$



Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network



First layer weights: w(3,1)

First layer bias: b(3,)

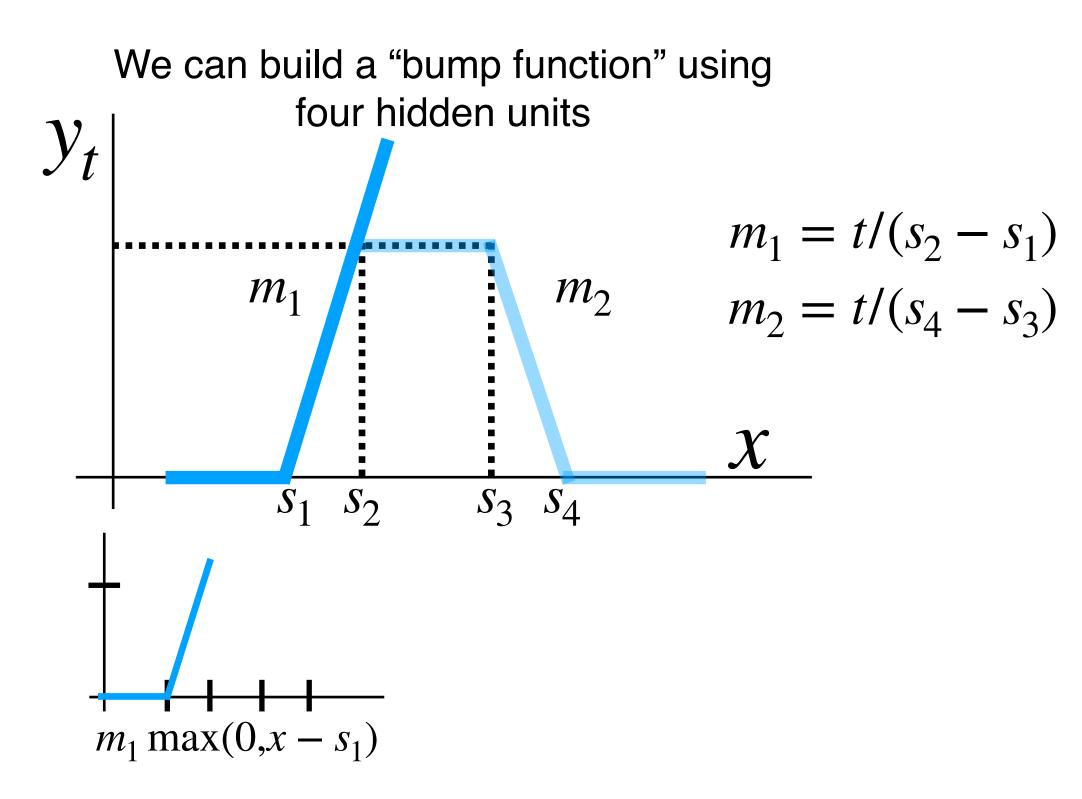
$$h_1 = \max(0, w_1 x + b_1)$$

$$h_2 = \max(0, w_2 x + b_2)$$

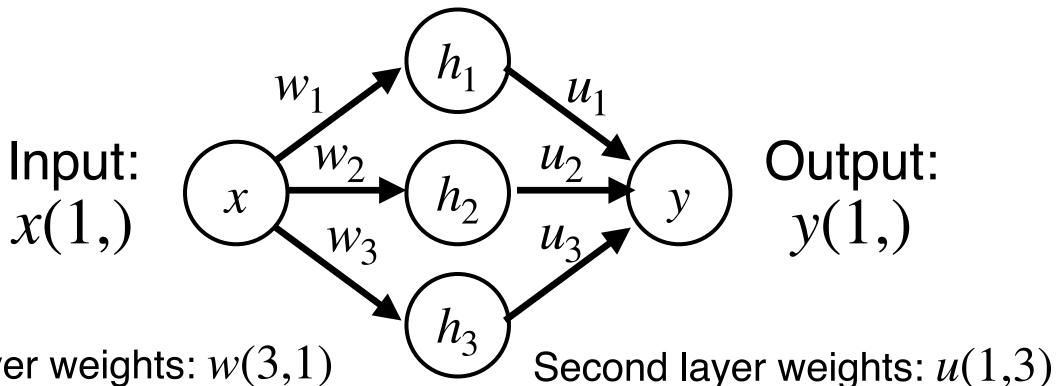
$$h_1 = \max(0, w_3 x + b_3)$$

$$y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$$

 $y = u_1 \max(0, w_1 x + b_1)$ $+u_2 \max(0, w_2 x + b_2)$ $+u_3 \max(0, w_3 x + b_3)$ +*p*



Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network



First layer weights: w(3,1)

First layer bias: b(3,)

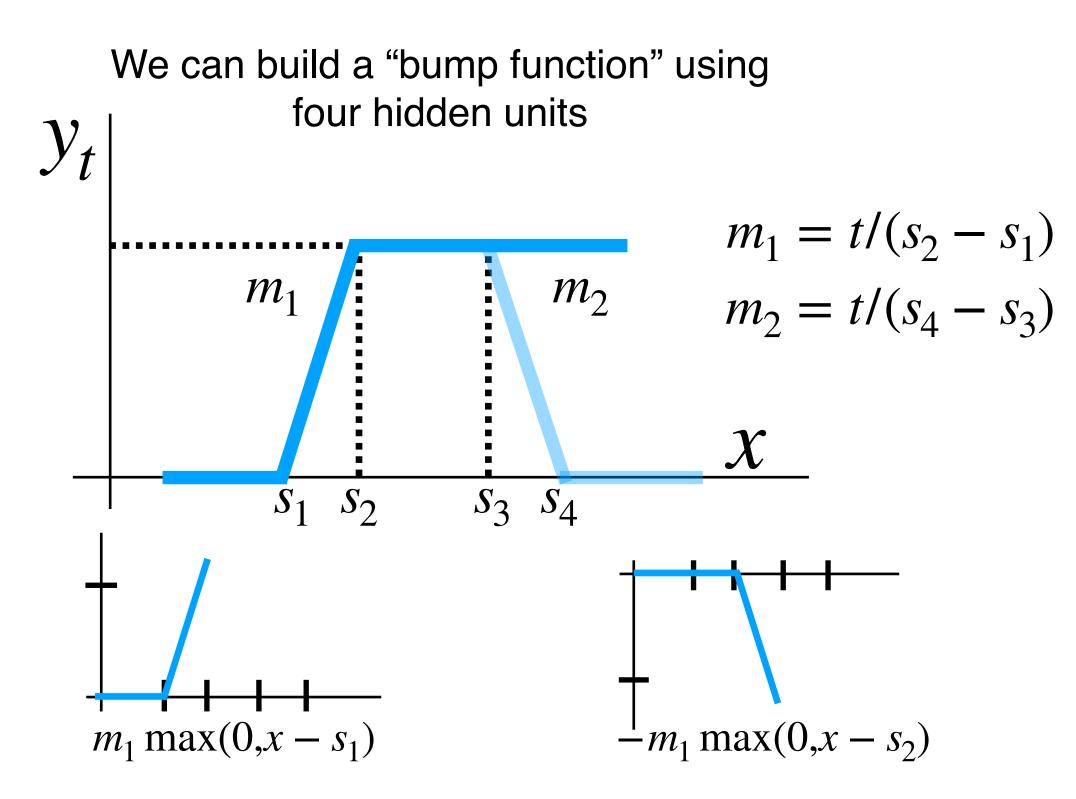
$$h_1 = \max(0, w_1 x + b_1)$$

$$h_2 = \max(0, w_2 x + b_2)$$

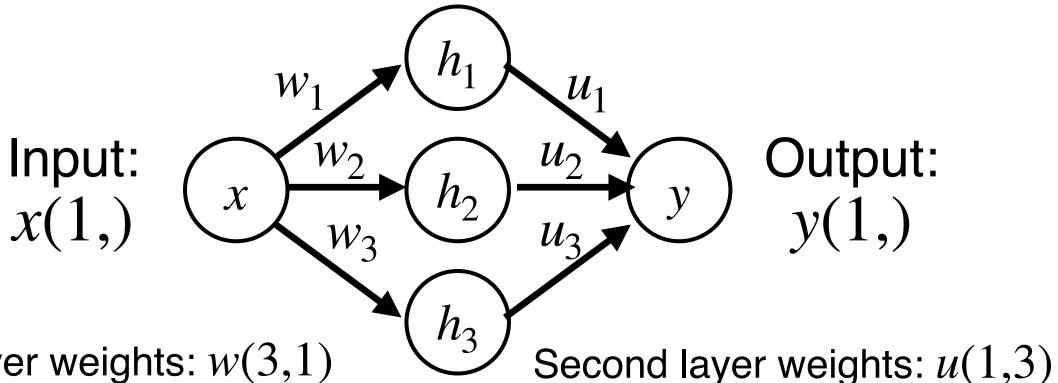
$$h_1 = \max(0, w_3 x + b_3)$$

$$y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$$

 $y = u_1 \max(0, w_1 x + b_1)$ $+u_2 \max(0, w_2 x + b_2)$ $+u_3 \max(0, w_3 x + b_3)$ **+***p*



Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network



First layer weights: w(3,1)

First layer bias: b(3,)

$$h_1 = \max(0, w_1 x + b_1)$$

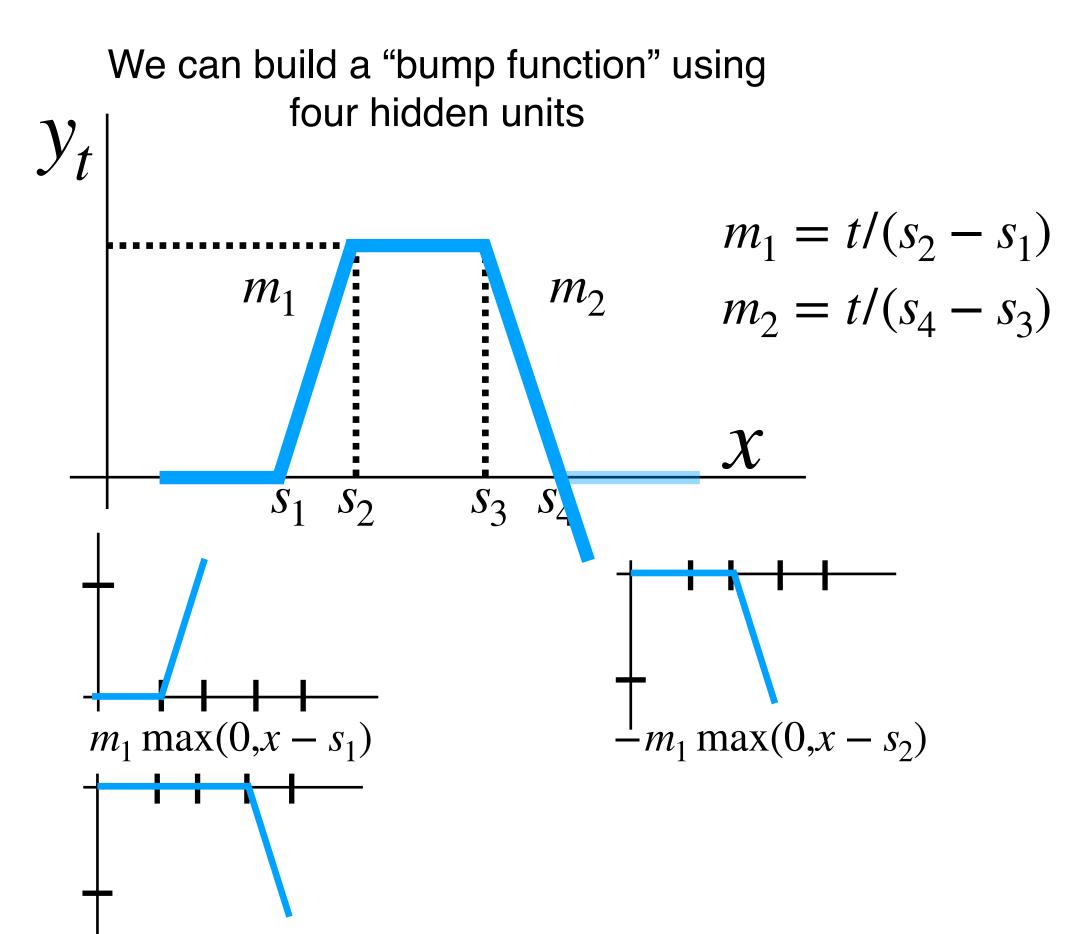
$$h_2 = \max(0, w_2 x + b_2)$$

$$h_1 = \max(0, w_3 x + b_3)$$

$$y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$$

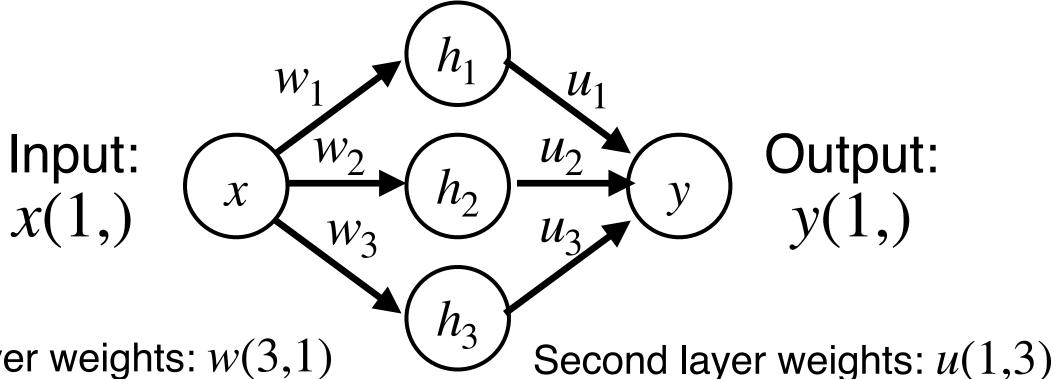
 $y = u_1 \max(0, w_1 x + b_1)$ $+u_2 \max(0, w_2 x + b_2)$ $+u_3 \max(0, w_3 x + b_3)$ **+***p*

First layer bias: p(1,)



 $-m_2 \max(0, x - s_3)$

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network



First layer weights: w(3,1)

First layer bias: b(3,)

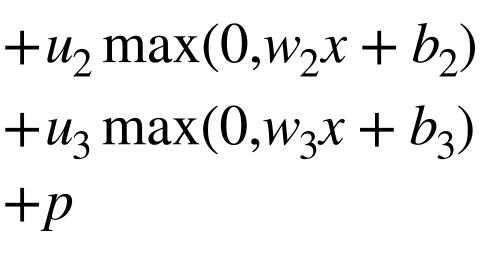
$$h_1 = \max(0, w_1 x + b_1)$$

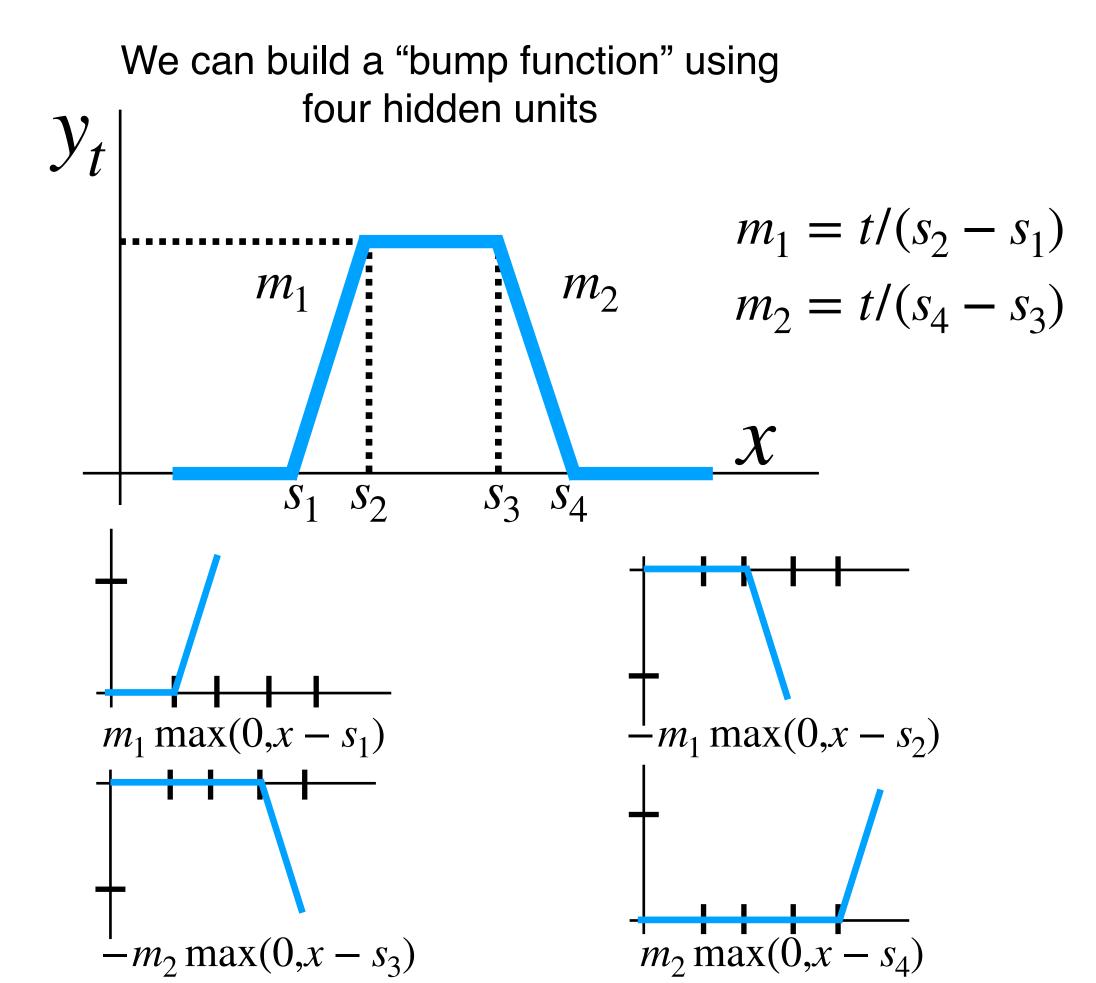
$$h_2 = \max(0, w_2 x + b_2)$$

$$h_1 = \max(0, w_3 x + b_3)$$

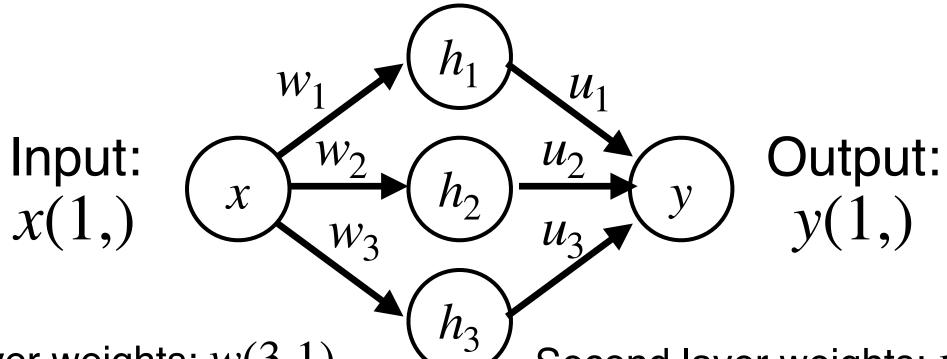
$$y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$$

 $y = u_1 \max(0, w_1 x + b_1)$ $+u_2 \max(0, w_2 x + b_2)$ $+u_3 \max(0, w_3 x + b_3)$





Example: Approximating a function $f:\mathbb{R}\to\mathbb{R}$ with a two-layer ReLU network



First layer weights: w(3,1)

First layer bias: b(3,)

$$h_1 = \max(0, w_1 x + b_1)$$

$$h_2 = \max(0, w_2x + b_2)$$

 $h_1 = \max(0, w_3x + b_3)$

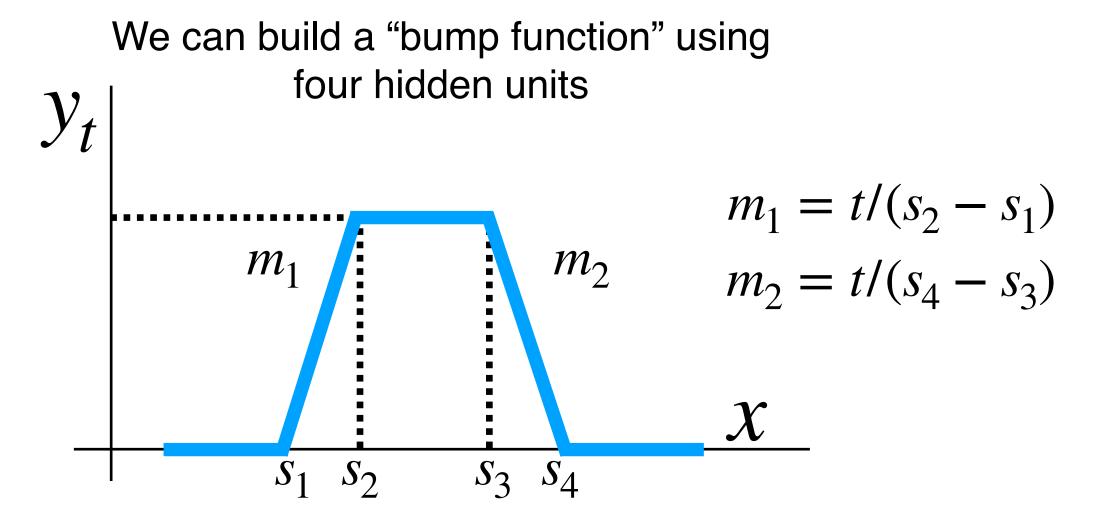
$$y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$$

Second layer weights: u(1,3)

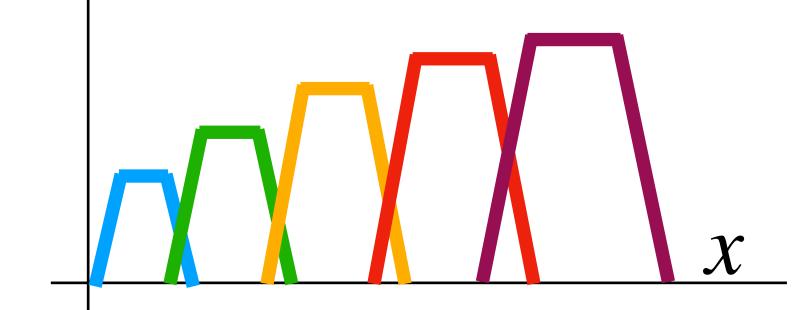
$$y = u_1 \max(0, w_1 x + b_1)$$

$$+u_2 \max(0, w_2 x + b_2)$$

$$+u_3 \max(0, w_3 x + b_3)$$

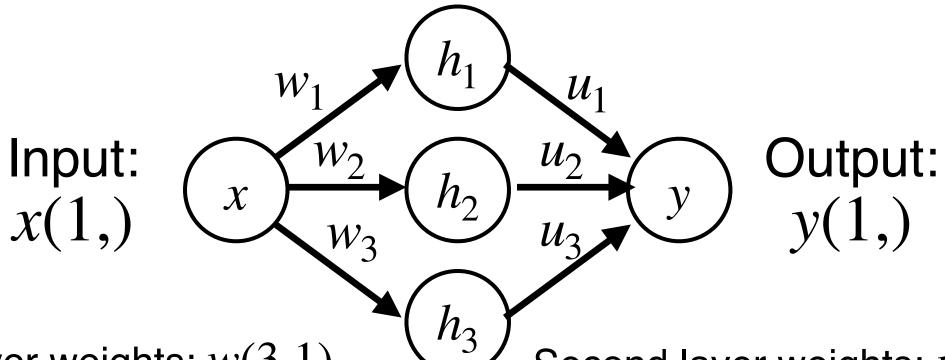


With 4K hidden units we can build a sum of K bumps



Approximate functions with bumps!

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network



First layer weights: w(3,1)

First layer bias:
$$b(3,)$$

$$h_1 = \max(0, w_1 x + b_1)$$

$$h_2 = \max(0, w_2 x + b_2)$$

$$h_1 = \max(0, w_3 x + b_3)$$

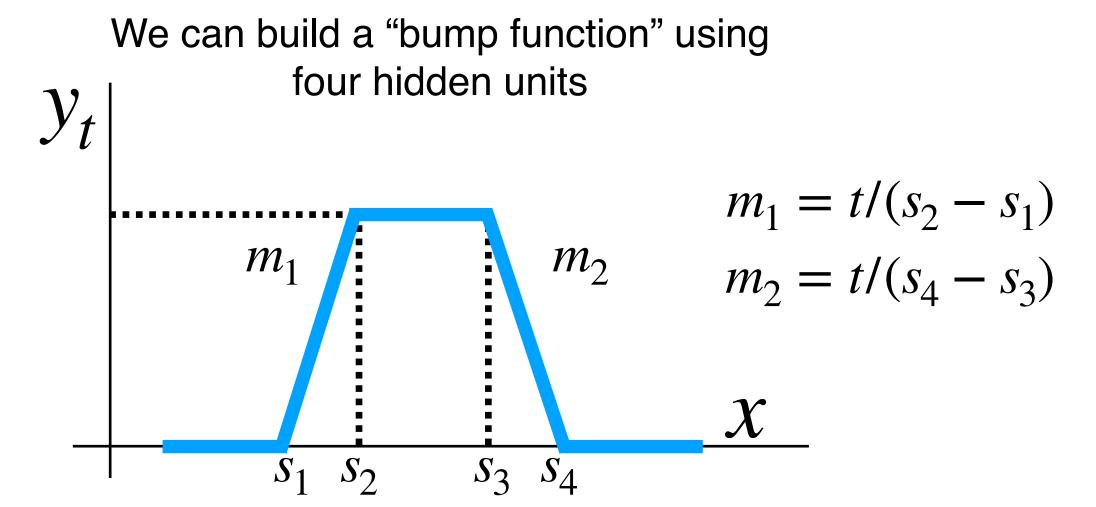
$$y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$$

Second layer weights: u(1,3)

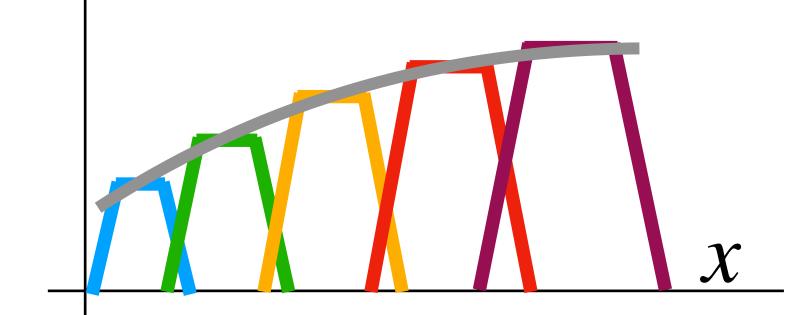
$$y = u_1 \max(0, w_1 x + b_1)$$

$$+u_2 \max(0, w_2 x + b_2)$$

$$+u_3 \max(0, w_3 x + b_3)$$

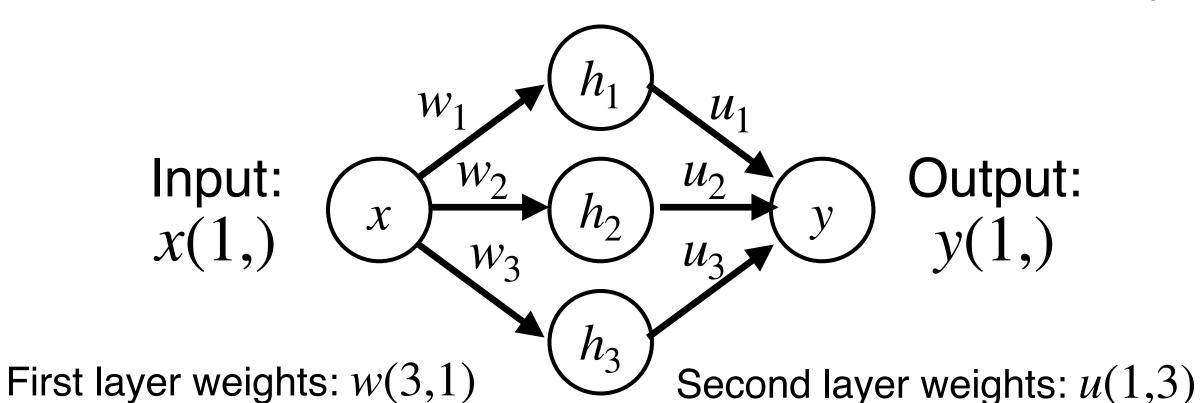


With 4K hidden units we can build a sum of K bumps



Approximate functions with bumps!

Example: Approximating a function $f:\mathbb{R}\to\mathbb{R}$ with a two-layer ReLU network



First layer bias: b(3,)

$$h_1 = \max(0, w_1 x + b_1)$$

$$h_2 = \max(0, w_2 x + b_2)$$

$$h_1 = \max(0, w_3 x + b_3)$$

$$y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$$

$$y = u_1 \max(0, w_1 x + b_1)$$

$$+ u_2 \max(0, w_2 x + b_2)$$

$$+ u_3 \max(0, w_3 x + b_3)$$

$$+ p$$

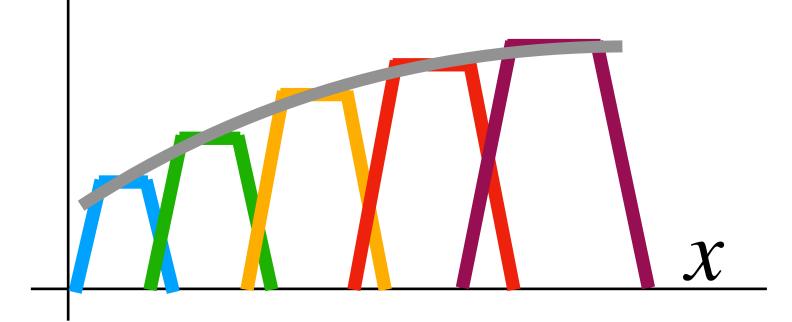
First layer bias: p(1,)

What about ...

- Gaps between bumps?
- Other nonlinearities?
- Higher-dimensional functions?

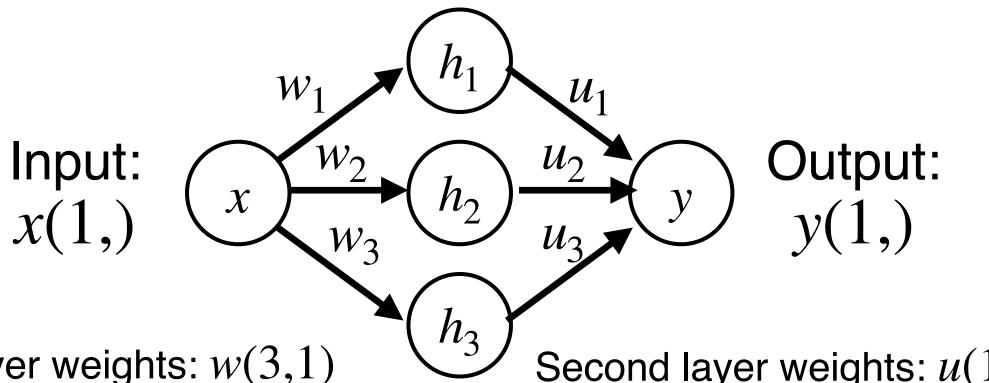
See Nielsen, Chapter 4

With 4K hidden units we can build a sum of K bumps



Approximate functions with bumps!

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network



First layer weights: w(3,1)

First layer bias: b(3,)

$$h_1 = \max(0, w_1 x + b_1)$$

$$h_2 = \max(0, w_2 x + b_2)$$

$$h_1 = \max(0, w_3 x + b_3)$$

$$y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$$

Second layer weights: u(1,3)

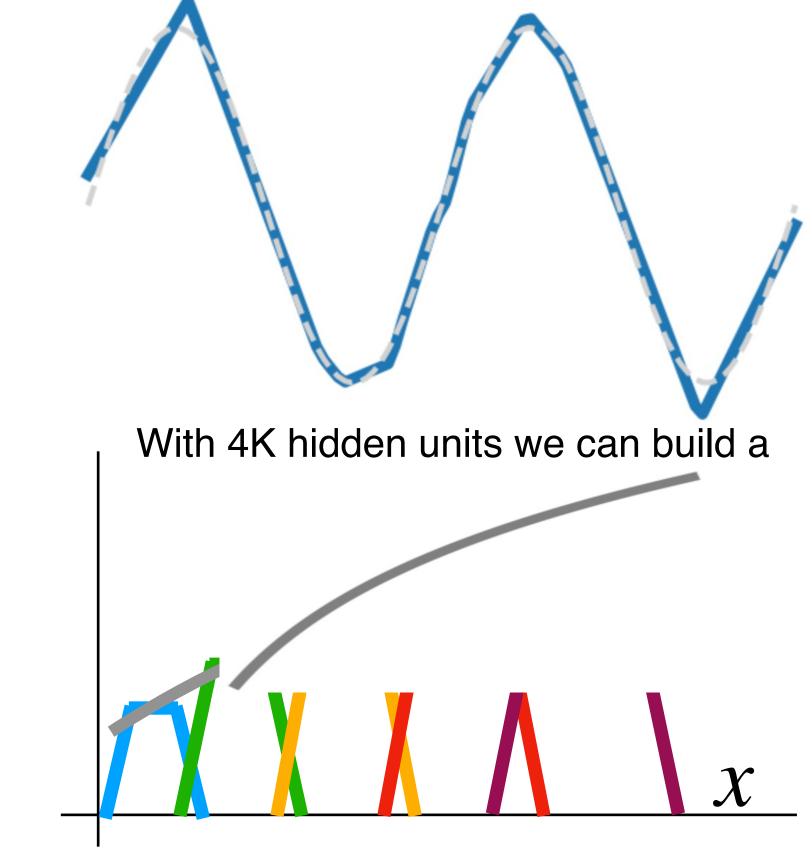
First layer bias: p(1,)

$$y = u_1 \max(0, w_1 x + b_1)$$

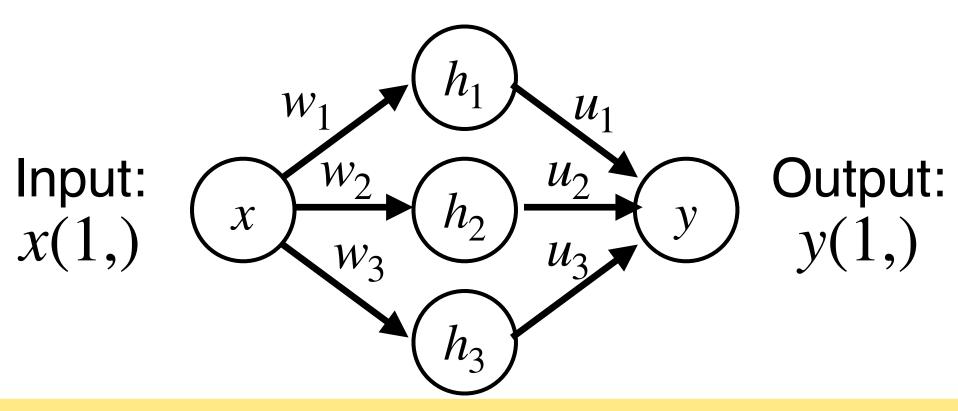
$$+u_2 \max(0, w_2 x + b_2)$$

$$+u_3 \max(0, w_3 x + b_3)$$

Reality check: Networks don't really learn bumps!



Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network



Reality check: Networks don't really learn bumps!

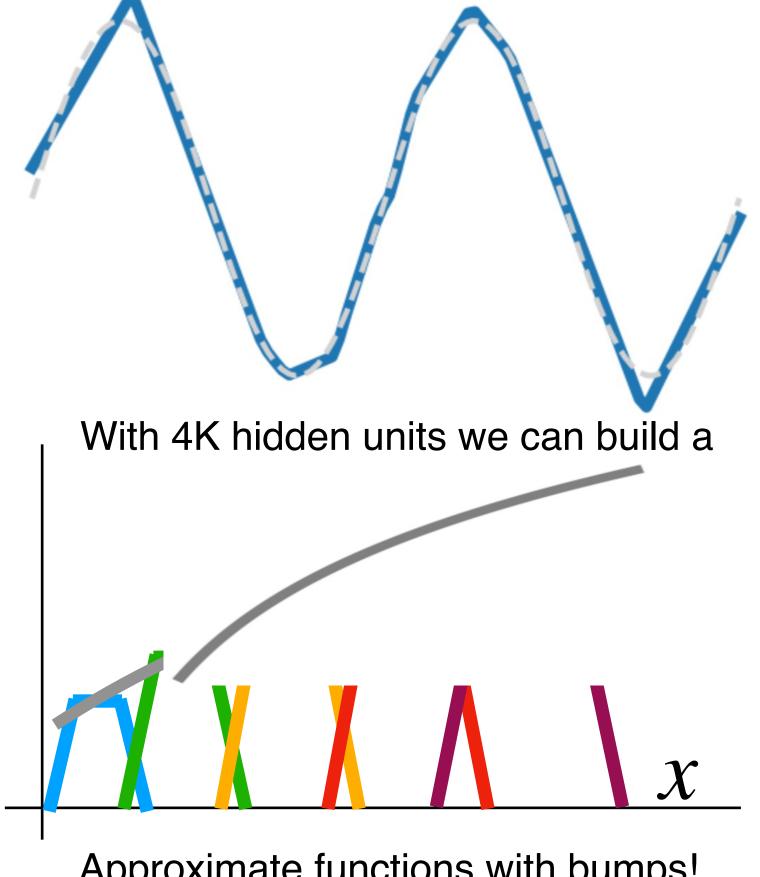
Universal approximation tells us:

- Neural nets can represent any function

Universal approximation DOES NOT tell us:

- Whether we can actually learn any function with SGD
- How much data we need to learn a function

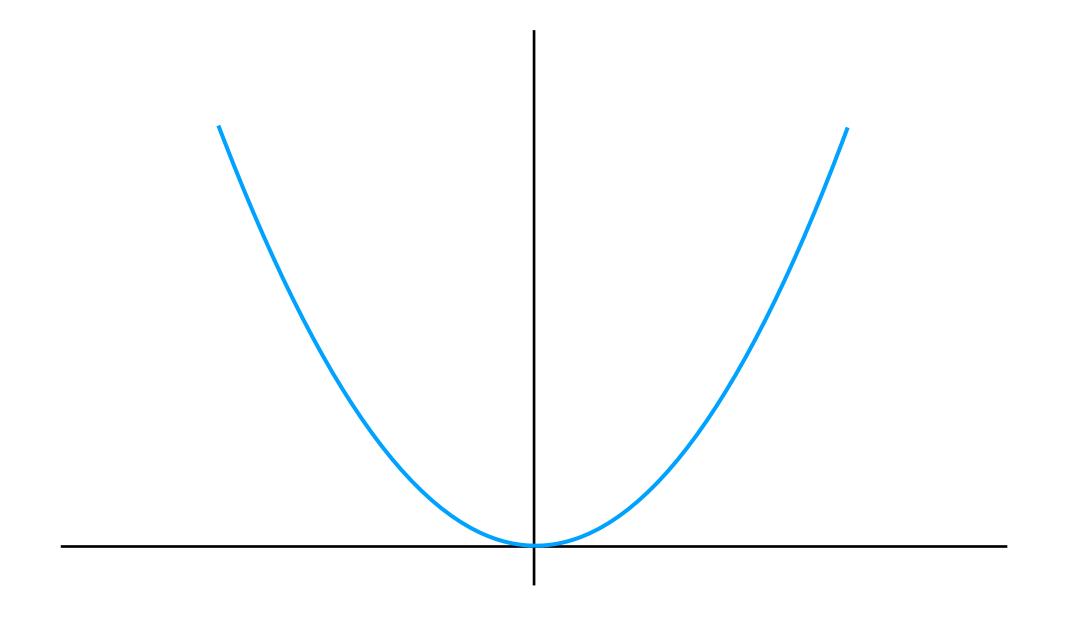
Remember: kNN is also a universal approximator!



Convex Functions

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X$, $t \in [0,1]$, $f(tx_1 + (1-t)x_2 \le tf(x_1) + (1-t)f(x_2)$

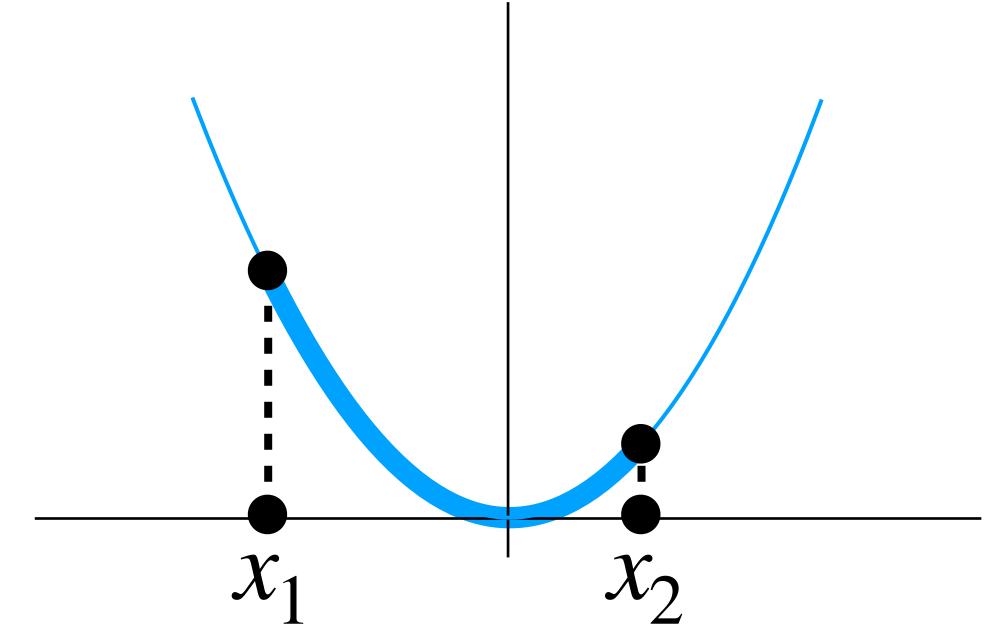
Example: $f(x) = x^2$ is convex:



Convex Functions

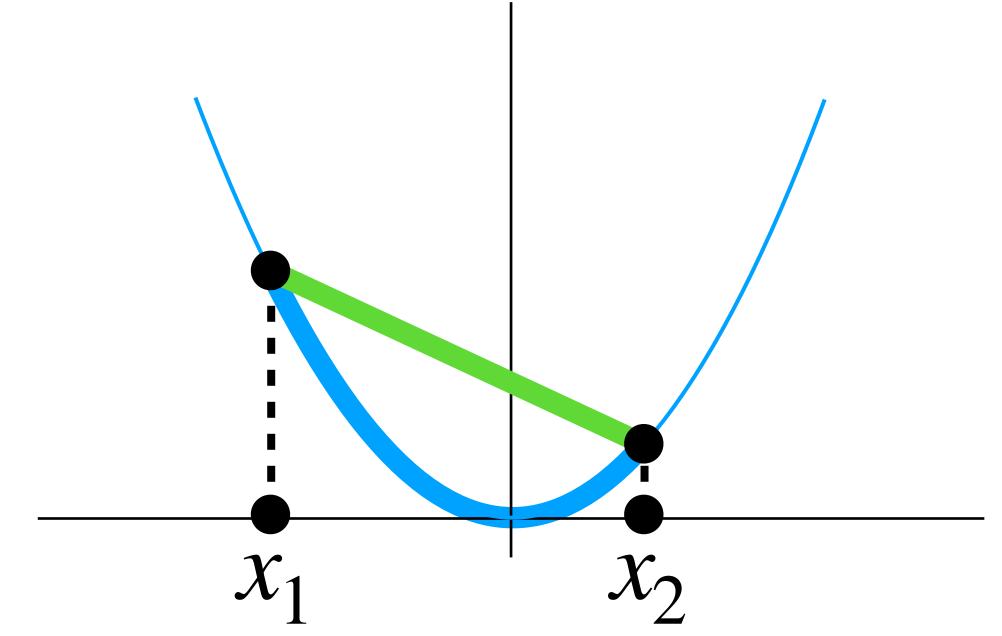
A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0,1]$, $f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)$

Example: $f(x) = x^2$ is convex:



A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X$, $t \in [0,1]$, $f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)$

Example:
$$f(x) = x^2$$
 is convex:

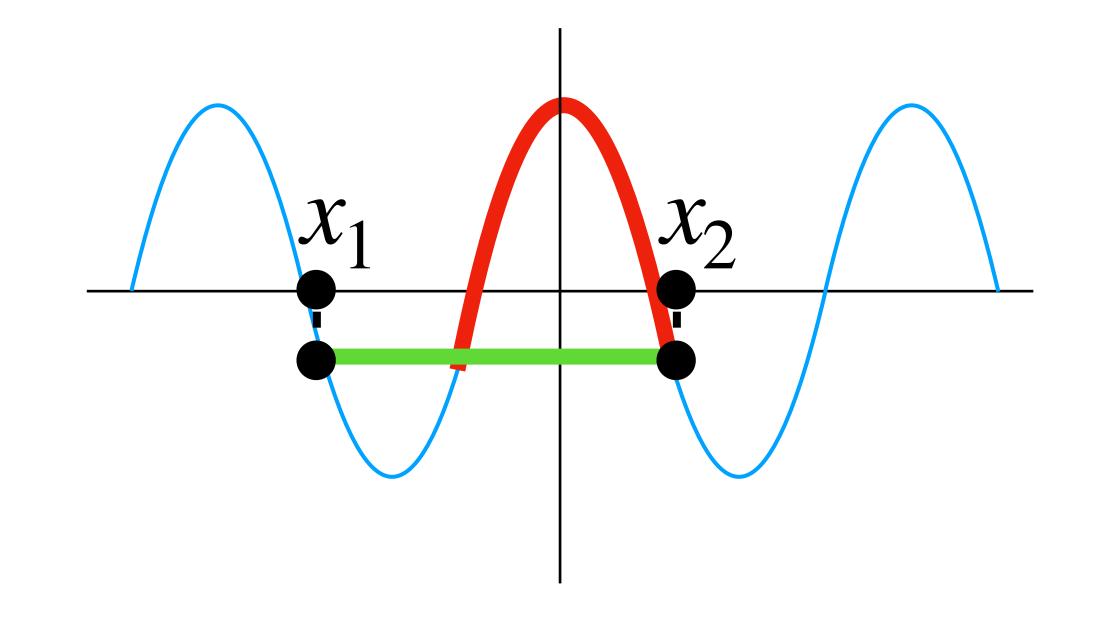


A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0,1]$,

$$f(tx_1 + (1 - t)x_2 \le tf(x_1) + (1 - t)f(x_2)$$

Example: $f(x) = \cos(x)$ is not

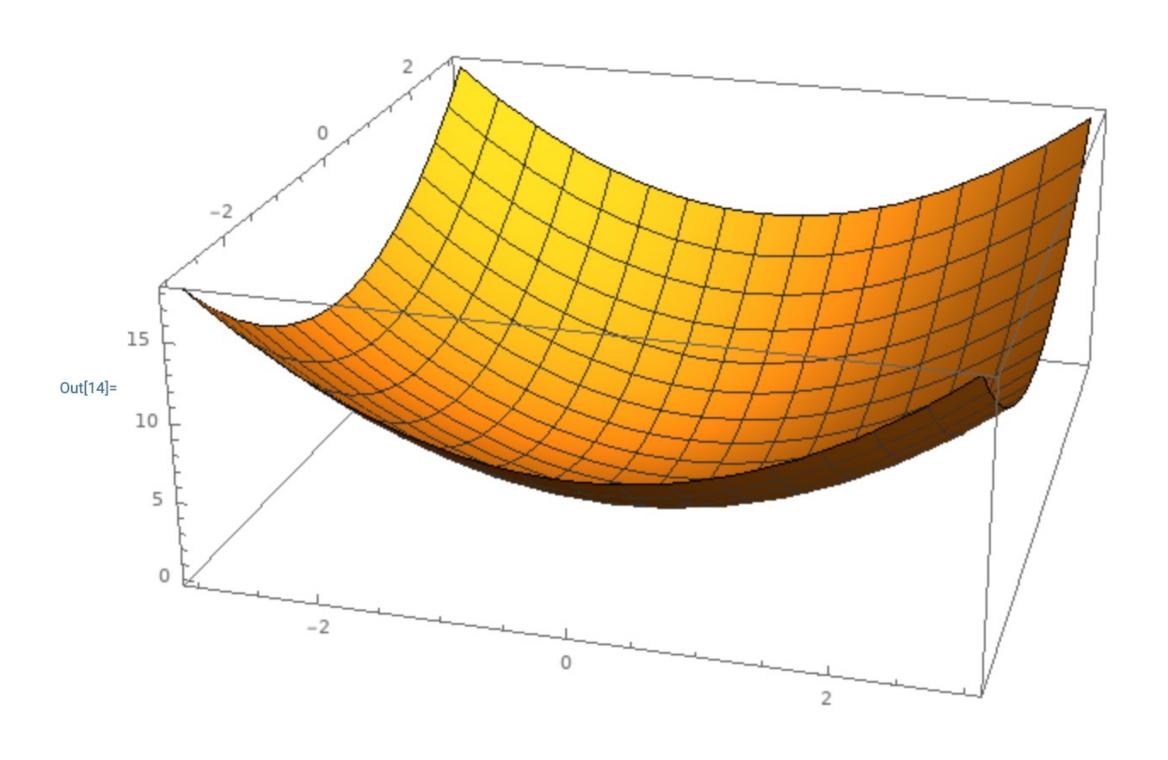
convex:



A function
$$f: X \subseteq \mathbb{R}^N \to \mathbb{R}$$
 is **convex** if for all $x_1, x_2 \in X, x_2 \in [0, 1]$ $f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2)$ $f(tx_1) + (1 - t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*



A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0,1]$, $f(tx_1 + (1-t)x_2 \le tf(x_1) + (1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Linear classifiers optimize a convex function!

$$s = f(x; W) = Wx$$

$$L_i = -\log(\frac{e^{s_{y_i}}}{\sum + je^{s_j}}) \quad \text{Softmax}$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \text{ SVM}$$

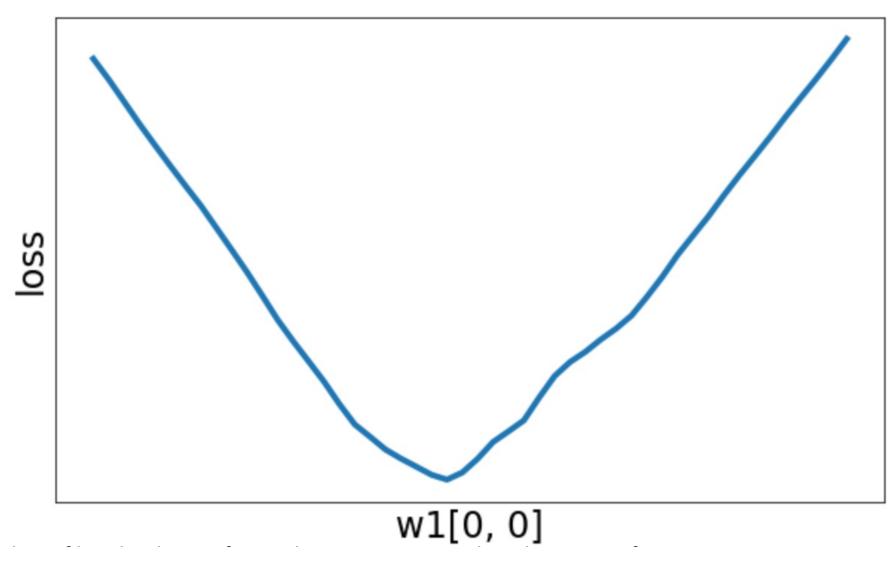
$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + R(W) \quad \text{where } R(W) \text{ is L2 or } \\ \text{L1 regularization}$$

A function $f_X \not\subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x, y, y \in \mathbb{R}$, $f(tx_1 + t) \cdot x_2 \cdot t = t \cdot t \cdot x_1 \cdot x_2 \cdot t \cdot x_2 \cdot t \cdot x_2 \cdot t \cdot x_1 \cdot x_2 \cdot t \cdot x_2 \cdot t \cdot x_1 \cdot x_2 \cdot t \cdot x_2 \cdot t \cdot x_1 \cdot x_2 \cdot t \cdot x_2 \cdot t \cdot x_1 \cdot x_2 \cdot t \cdot x_2 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Neural net losses sometimes look convex-ish:



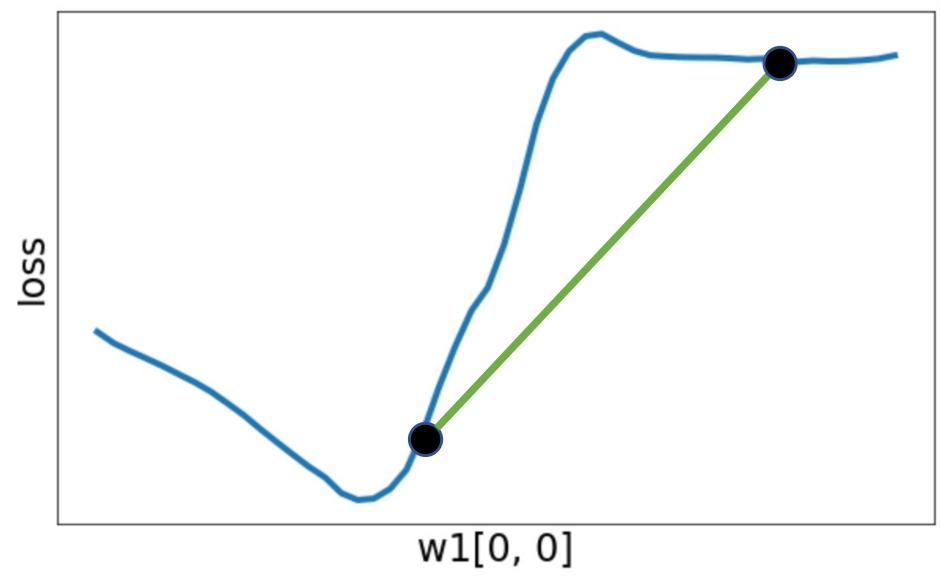
1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units per hidden layer, 10 categories, with softmax loss

A furficition $f \subseteq \mathbb{R} \cong \mathbb{R}^N \mathbb{R} \to \mathbb{R}$ is **convex** if for all $x_1 x_2 x_2 \not\in \mathbb{R}, X \not\in \mathbb{H}, [1], 1], <math display="block"> f(tx_1 + (1^{t(tx_1t)} t^{t}) x_2^{t}) \stackrel{\mathcal{L}}{=} t^{t} x_1^{t} x_1^{t} + (1^{t(tx_1t)} t^{t(tx_1t)} x_2^{t}) \stackrel{\mathcal{L}}{=} t^{t} x_1^{t} x_1^{t} + (1^{t(tx_1t)} t^{t(tx_1t)} x_2^{t}) \stackrel{\mathcal{L}}{=} t^{t(tx_1t)} f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

But often clearly nonconvex:



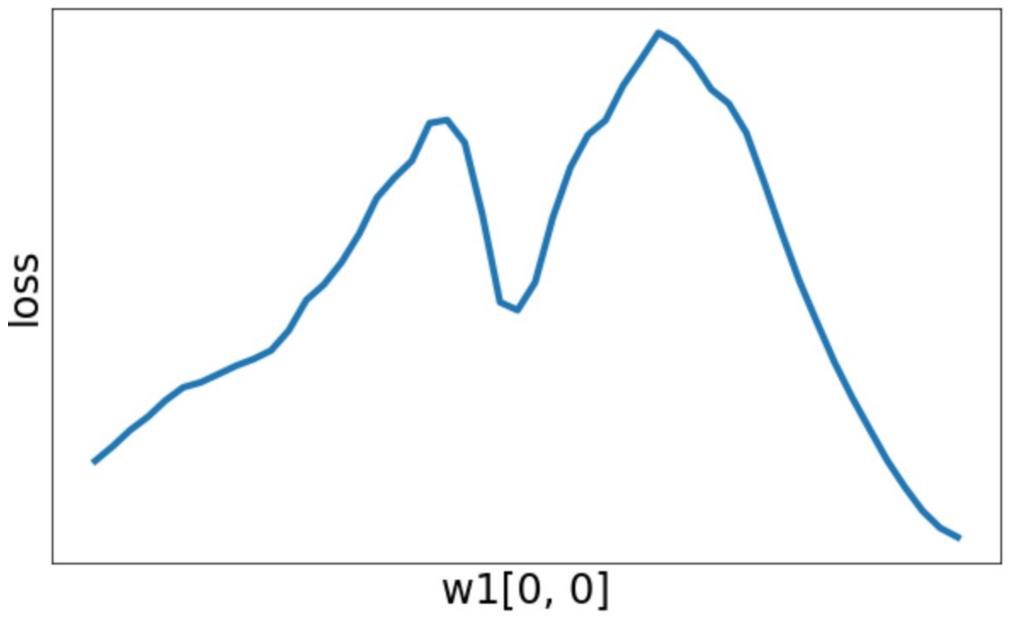
1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units per hidden layer, 10 categories, with softmax loss

A function
$$f: X \subseteq \mathbb{R}^N \to \mathbb{R}$$
 is **convex** if for all $x_1, x_2 \in X$, $t \in [0,1]$, $f(tx_1 + (1f(tx_1t)x_2) - \underbrace{\epsilon})t_2f \underbrace{\epsilon}x_1f(x_1) + (1f(tx_1t)x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

With local minima:

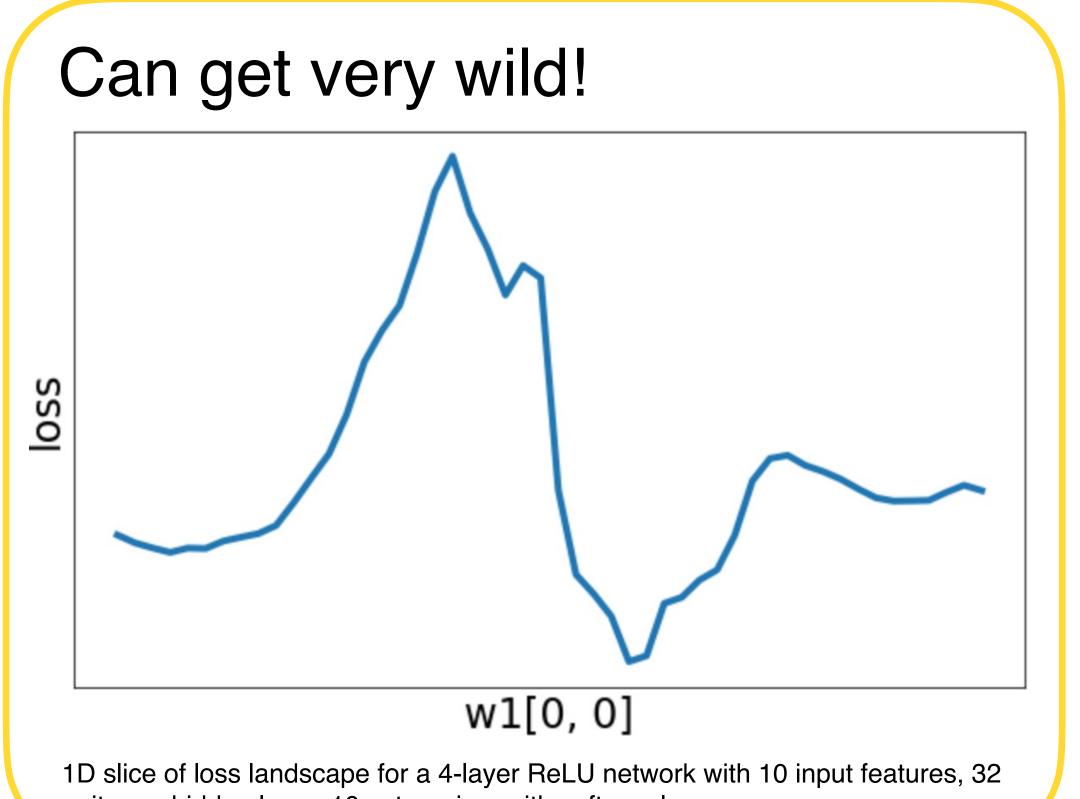


1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units per hidden layer, 10 categories, with softmax loss

A function
$$f: X \subseteq \mathbb{R}^N \to \mathbb{R}$$
 is **convex** if for all $x_1, x_2 \in X$, $t \in [0,1]$, $f(tx_1 + (1_{f(tx_1^t)}x_2) \leq_t) x_1 \leq_t x_1 + (1_1 = t) x_2 \leq_t x_2 \leq_t x_3$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*



units per hidden layer, 10 categories, with softmax loss

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0,1]$, $f(tx_1 + (1-t)x_2 \le tf(x_1) + (1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

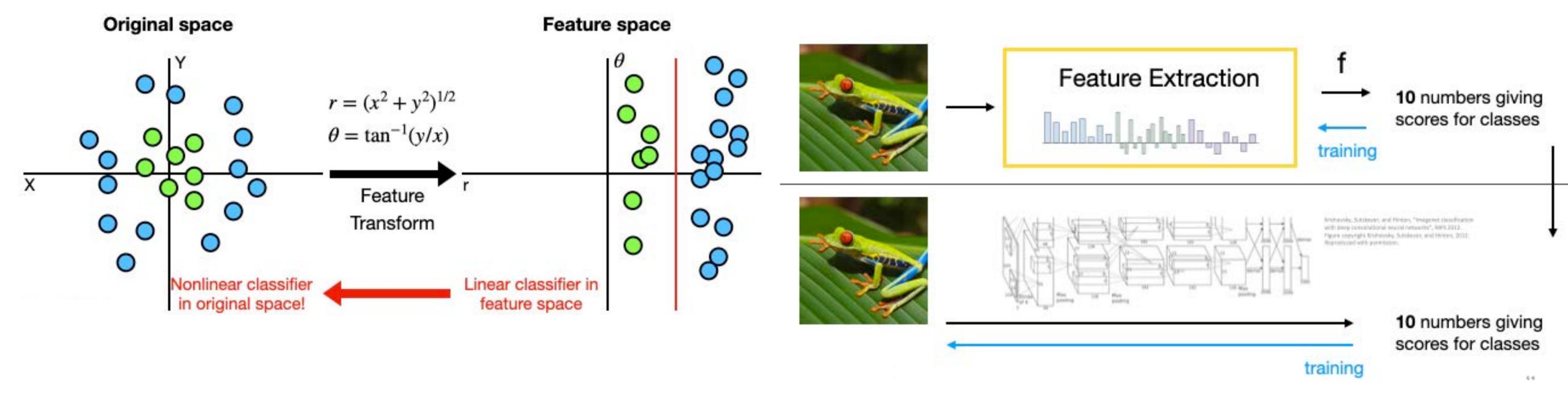
Most neural networks need nonconvex optimization

- Few or no guarantees about convergence
- Empirically it seems to work anyway
- Active area of research

Summary

Feature transform + Linear classifier allows nonlinear decision boundaries

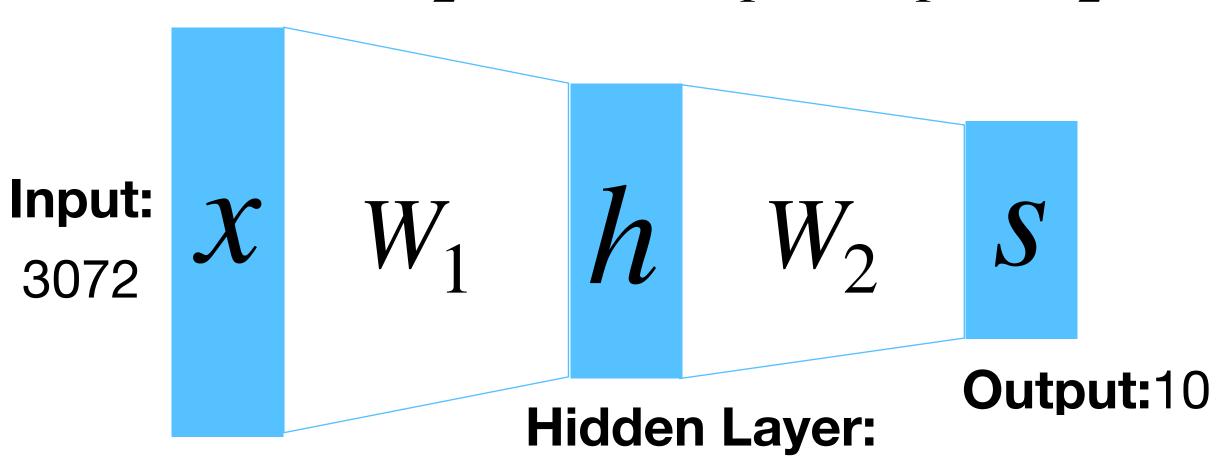
Neural Networks as learnable feature transforms



Summary

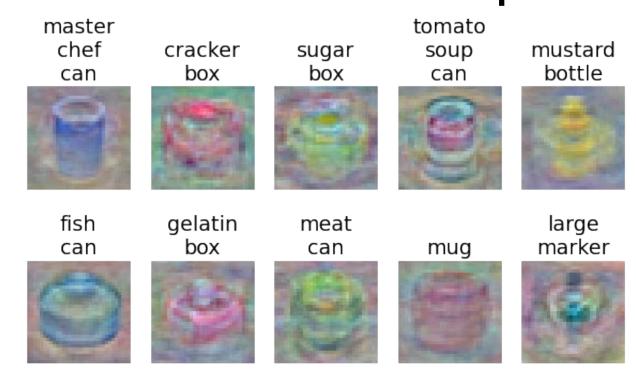
From linear classifiers to fully-connected networks

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$



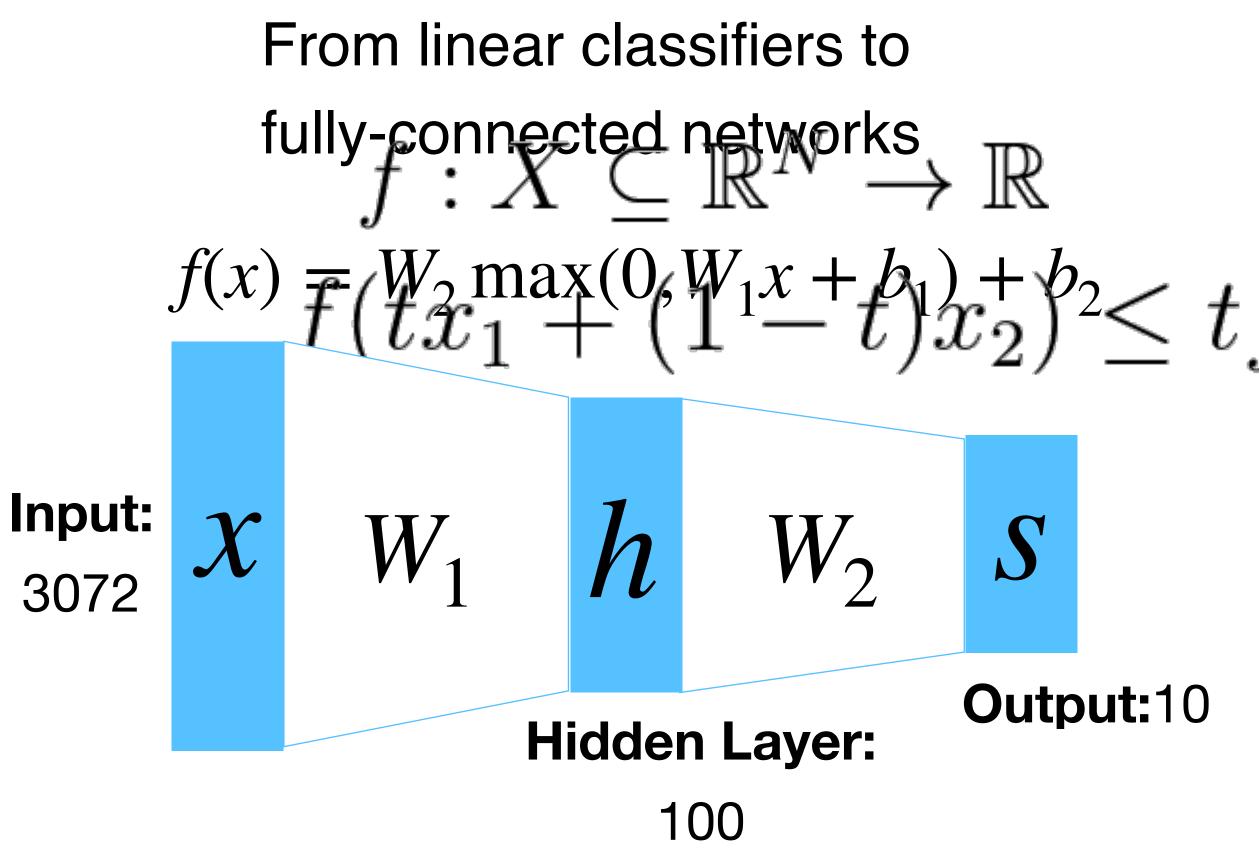
100

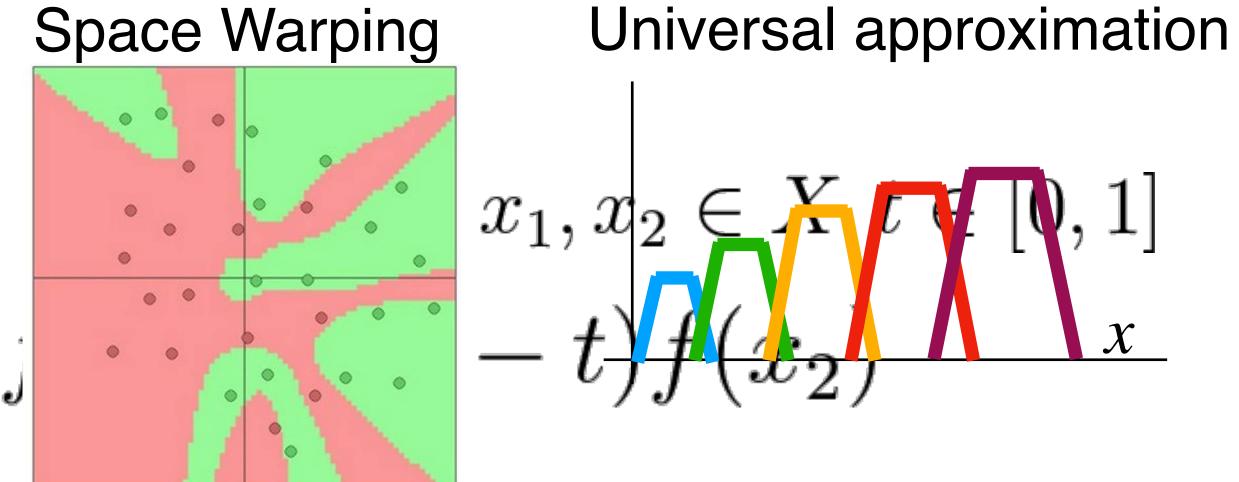
Linear classifier: One template per class

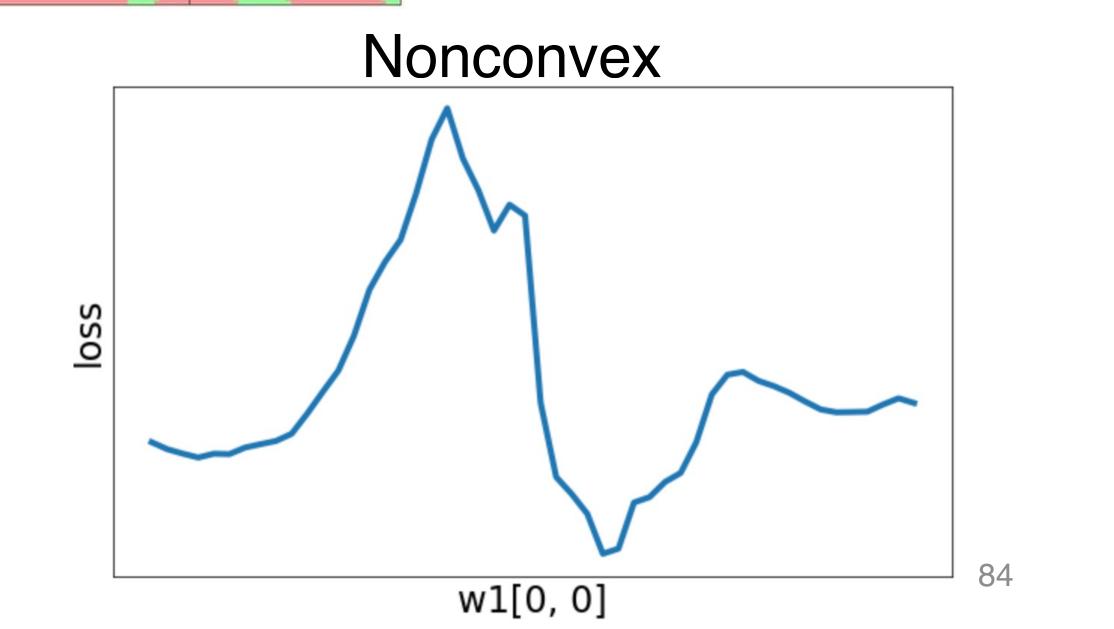


Neural networks: Many reusable templates

Summary







Problem: How to compute gradients?

$$s = W_2 \max(0, W_1 x + b_1) + b_2$$

$$L_i = \sum_{i=1}^{\infty} \max(0, s_i - s_{y_i} + 1)$$

$$R(W) = \sum_{k=1}^{\infty} W_k^2$$

 $j \neq y_i$

Per-element data loss

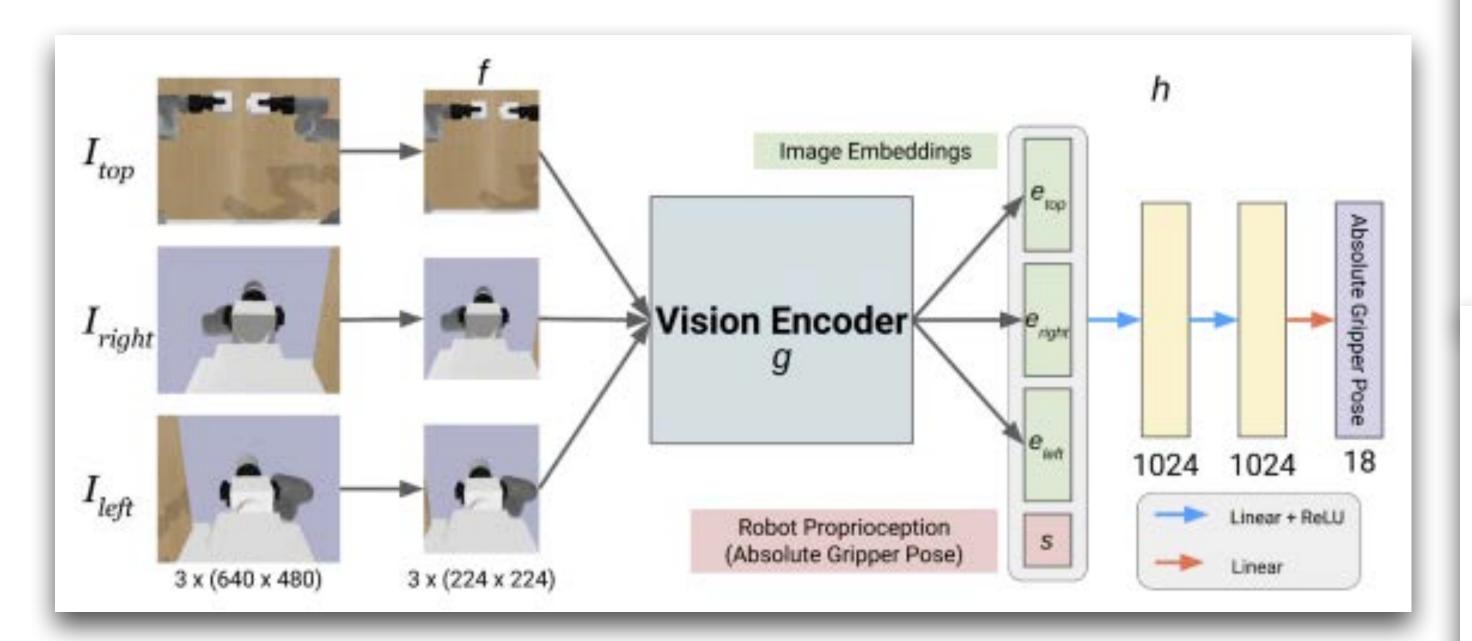
L2 regularization

$$L(W_1, W_2, b_1, b_2) = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2) \text{ Total loss}$$

If we can compute
$$\frac{\delta L}{\delta W_1}$$
, $\frac{\delta L}{\delta W_2}$, $\frac{\delta L}{\delta b_1}$, $\frac{\delta L}{\delta b_2}$ then we can optimize with SGD

Next time: Backpropagation

Problem Statements



C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task Requiring Spatio-Geometrical Reasoning," 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 2024, pp. 831-837, doi: 10.1109/ ICRA57147.2024.10610774.

III. IMITATION LEARNING FRAMEWORK

The goal of imitation learning is to train a policy π : $\mathcal{O} \to \mathcal{A}$ that maps all observations to an action that will progress the robot towards executing the task. Our dataset $\mathcal{D} = \{(O_i, a_i)\}_{i=1,...N}$ consists of N observation-action pairs. Each observation $O_i = ((I_v)_{v \in V}, s)$ is a tuple of RGB images I_v from view $v \in V$ and the current state of the robot $s \in \mathcal{S}$. Each action $a_i \in \mathcal{A}$ is the action the expert performs during demonstration.

Our architecture shown in Fig. 2 is inspired by imitation learning evaluation frameworks from Robomimic [18], R3M [10], and MVP [11]. In our implementation, the policy π_{θ} consists of three parts: the image preprocessor f, the image encoder g_{ϕ} , and the policy head h_{ψ} . The image preprocessor $f: \mathcal{I}^{640 \times 480} \to \mathcal{I}^{224 \times 224}$ crops and resizes the original RGB image to a consistant size for fair comparison

of all vision encoder models (ViT-B/16 requires this size). The image encoder $g_{\phi}: \mathcal{I}^{224 \times 224} \rightarrow \mathbb{R}^{D}$ is a neural network that deterministically maps an RGB image I_v to a D-dimensional image embedding e_v . The policy head h_{ψ} : $\mathbb{R}^D \times ... \times \mathbb{R}^D \times S \to \mathcal{A}$ is a multi-layer perceptron on top of concatenated image embeddings $(e_v)_{v \in V}$ and robot state s which produces the final output action a. In summary, output of the policy $\pi_{\theta}(O) = h_{\psi}(g_{\phi}(f(I_{v_1})), ..., g_{\phi}(f(I_{v_{|V|}})), s) =$ \hat{a} is the predicted action. We train either the parameters ψ (frozen g) or both ϕ and ψ (unfrozen g) by back-propagating the mean squared error loss $\mathcal{L} = MSE(a, \hat{a})$.

We choose $S \subseteq SE(3) \times SE(3)$ and $A \subseteq SE(3) \times SE(3)$ to be absolute gripper poses of both arms. For each arm, there are 3 values representing xyz position and 6 values representing the first two columns of the rotation matrix [25], so we represent both as a 18 dimensional vector. The reason for this choice is explained in Sec. V.

Problem Statements

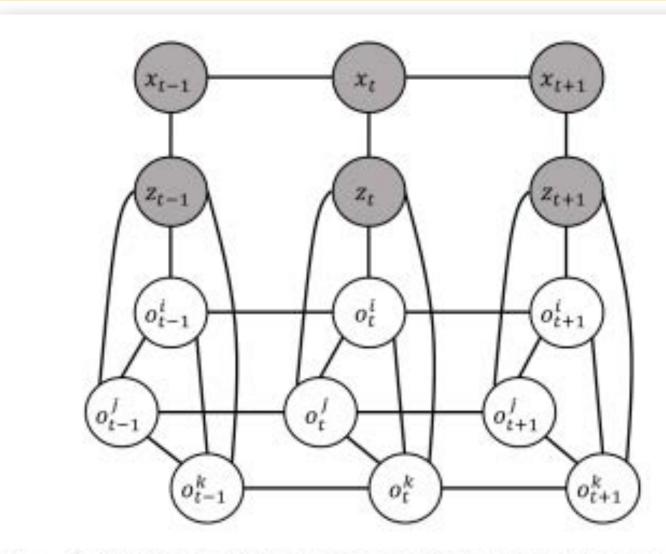


Fig. 2: Graphical model of the semantic mapping problem. Observed variables are robot poses x_t and observations z_t . Unknown variables are objects $\{o^1, o^2, \cdots, o^N\}$. We compute the posterior over objects while modeling contexual relations between all pairs of objects at each time point, and temporal consistency of each object across consecutive time points.

Z. Zeng, Y. Zhou, O. C. Jenkins and K. Desingh, "Semantic Mapping with Simultaneous Object Detection and Localization," 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, pp. 911-918, doi: 10.1109/IROS.2018.8594205.

III. PROBLEM FORMULATION

We focus on semantic mapping at the object level. Our proposed CT-Map method maintains a belief over object classes and poses across an observed scene. We assume that the robot stays localized in the environment through an external localization routine (e.g., ORB-SLAM [23]). The semantic map is composed by a set of N objects O = $\{o^1, o^2, \dots, o^N\}$. Each object $o^i = \{o^c, o^g, o^{\psi}\}$ contains the object class $o^c \in C$, object geometry o^g , and object pose o^{ψ} , where C is the set of object classes $C = \{c_1, c_2, \dots, c_n\}$.

At time t, the robot is localized at x_t . The robot observes $z_t = \{I_t, S_t\}$, where I_t is the observed RGB-D image, and S_t are semantic measurements. The semantic measurements $s_k = \{s_k^s, s_k^b\} \in S_t$ are returned by an object detector (as explained in section V-A), which contains: 1) a object detection score vector s_k^s , with each element in s_k^s denoting the detection confidence of each object class, and 2) a 2D bounding box s_k^b .

We probabilistically formalize the semantic mapping problem in the form of a CRF, as shown in Figure 2. Robot pose x_t and observation z_t are known. The set of objects O are

unknown variables. We model the contextual dependencies between objects and the temporal consistency of each individual object over time. The posterior probability of the semantic map is expressed as:

$$p(O_{0:T}|x_{0:T}, z_{0:T}) = \frac{1}{Z} \prod_{t=0}^{T} \prod_{i=1}^{N} \phi_p(o_t^i, o_{t-1}^i, u_{t-1}^i) \phi_m(o_t^i, x_t, z_t) \prod_{i,j} \phi_c(o_t^i, o_t^j) \quad (1)$$

where Z is a normalization constant, and action applied to object o^i at time t is denoted by u_t^i . ϕ_p is the prediction potential that models the temporal consistency of the object poses. ϕ_m is the measurement potential that accounts for the observation model given 3D mesh of objects. ϕ_c is the context potential that captures the contextual relations between objects.

Problem Statements

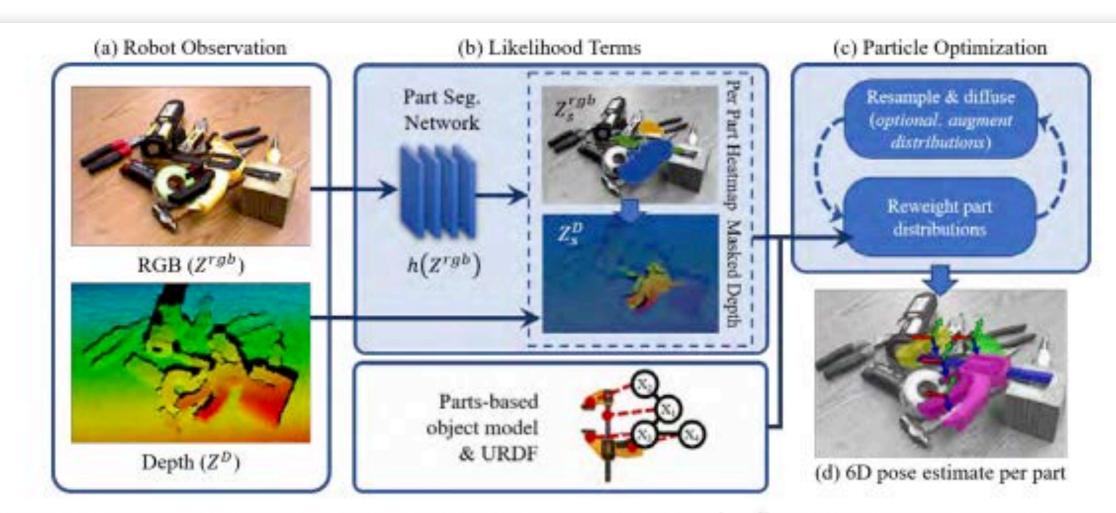


Fig. 3: The inference pipeline. (a) The robot observes a scene as an RGB-D image, $Z = (Z^{rgb}, Z^D)$. (b) The RGB image is passed through a trained part segmentation network, $h(Z^{rgb})$, that generates a pixel-wise heatmap for the P_k parts of an object class of interest, $\{Z_s^{rgb}\}_{s=1}^{P_k}$ (in this example, the clamp, which has one fully occluded part). The heatmaps are used to generate masked depth images, $\{Z_s^D\}_{s=1}^{P_k}$ (c) The inference is initialized with part poses using these heatmaps and the depth image. Hypotheses are iteratively reweighed using Equation 4, and resampled with importance sampling. (d) The inference process generates an estimate of the 6D pose of each part. (Best viewed in color).

J. Pavlasek, S. Lewis, K. Desingh and O. C. Jenkins, "Parts-Based Articulated Object Localization in Clutter Using Belief Propagation," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 10595-10602, doi: 10.1109/IROS45743.2020.9340908.

III. PROBLEM STATEMENT

Given a scene containing objects O, such that $\{O_k\}_{k=1}^K$ is the set of K relevant objects, we wish to localize each

object O_k . The state of an object O_k is represented by the set of part poses $\mathcal{X} = \{X_i\}_{i=1}^{P_k}$, where X_s is the 6D pose of an articulating rigid part s of O_k , with P_k parts. Each object O_k in the scene is estimated independently.

This estimation problem is formulated as a Markov Random Field (MRF). Let G = (V, E) denote an undirected graph with nodes V and edges E. An example MRF is illustrated in Figure 2. The joint probability of the graph G is expressed as:

$$p(\mathcal{X}, \mathcal{Z}) \propto \prod_{(s,t)\in E} \psi_{s,t}(X_s, X_t) \prod_{s\in V} \phi_s(X_s, Z_s)$$
 (1)

where \mathcal{X} denotes the hidden state variables to be inferred and Z denotes the observed sensor information in the form of an RGB-D image. The function $\psi_{s,t}$ is the pairwise potential, describing the correspondence between part poses based on the articulation constraints, and ϕ_s is the unary potential, describing the correspondence of a part pose X_s with its observation Z_s . The problem of pose estimation of an articulated model O_k is interpreted as the problem of estimating the marginal distribution of each part pose, called the belief, $bel(X_s)$.

In addition to the sensor data, the articulation constraints and 3D geometry of the object, in the form of a Unified Robot Description Format (URDF), and the 3D mesh models of the objects are provided as inputs. We assume that the object articulations are produced by either fixed, prismatic or revolute joints. We consider scenes which contain only one instance of an object. In Section IV, our proposed inference mechanism is detailed, along with a description of our modelling of the potentials in Equation 1.

Brainstorming task due 09/23

- Pick one of the ideas that you listed.
- Abstract the ideas into a general formulation.
- Write down variables with mathematical notations.
- Write down assumptions and technique that is suitable for this.
- Search for a paper that suits your formulation.

An example:

[1]: Robot Making Coffee using a Mug and K-Cup Pod Coffee Maker: A Robot with a single arm and a camera should be able to sense the mug on the table, and pick and place it in the K-Cup Pod Coffee Maker. Then, it should open the K-Cup lid. Pick up the K-cup from a tray, insert it into the coffee maker, closer the lid. The robot should press the button and wait for the coffee to be poured. The robot should pick up the filled coffee mug and place it on the table.

Given an observation of the scene in the form of RGB image $I \in R^{w imes h imes 3}$, that contains three objects $O = \{o_{mug}, o_{kcup}, o_{coffee-m}\}$, this project aims to develop a learning method that can produce actions $A=(x,y,z,\pi,\phi,
ho,g)$ where x,y,z are the gripper position to reach, $\pi,\phi,
ho$ are the orientation of the gripper, together representing SE(3) pose of the gripper. g denotes whether the gripper should be open or close at the end of the action. For this task of coffee making, we aim to develop an end-to-end learning method that can implicitly determine the objects' and their locations, as well as actions to execute from a number of demonstration data that can go from I o A.

