.| DeepRob

Lecture 5
Neural Networks
University of Minnesota

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course 1

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Project 1—Reminder

* |[nstructions and code available on the website
» Here: https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/projecti/

» Uses Python, PyTorch and Google Colab
* Implement KNN, linear SVM, and linear softmax classifiers

* Autograder is available!
* Due Monday, Sept 29th 11:59 PM CT

L\ 2

https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project1/

Recap from Previous Lectures

Use Linear Models for image
classification problems.

Use Loss Functions to express
preferences over different choices
of weights.

Use Regularization to prevent
overfitting to training data.

Use Stochastic Gradient Descent
to minimize our loss functions and
train the model.

\)

P) Softmax
Y exp¥

L = Z max(0,s; = —s, +1) SVM

J 7’5)’1'

1 N
[= — L.+ R(W
NZ‘ -+ R(W)

v = 0

for t in range(num_steps):
dw = compute_gradient(w)
vV = rho * v + dw
w —= learning_rate *x v

DR

Neural Networks

®P

roblem: Linear Classifiers aren’t that powerful

Geometric Viewpoint

®P

roblem: Linear Classifiers aren’t that powerful

Geometric Viewpoint Visual Viewpoint

One template per class:
Can’t recognize different modes of a

class
master tomato
chef cracker sugar soup mustard
can box box can ~ bottle

gelatin meat large
box marker

DR

One solution: Feature Transforms

Original space Feature space
Y
O
O = (xz n y2)1/2

© Olo O 0 = tan™'(y/x) O
ﬁ @

O Feature r O

Transform OQ
O

DR

One solution: Feature Transforms

Original space

Feature space

0 O
O
r= (2 + y?)l2 g O
0 = tan~'(y/x) O 08
O© | Q3
ﬁ ‘.
Feature r O
Transform O O

Linear classifier In
feature space

DR

One solution: Feature Transforms

Original space Feature space
v,
O
= ()C2 4 y2)1/2 O
0 = tan™'(y/x) (8
Feature r O
Transform
O

Nonlinear classifier
In original space!

— Linear classifier In
feature space

Image Features: Color Histogram

lgnores texture,
spatial positions

+1

Frog image is in the public domain

10

https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

@mage Features: Histogram of Oriented Gradients (HoG)

1. Compute edge direction/
strength at each pixel

2. Divide image into 8x8 regions

3. Within each region compute a
histogram of edge direction
weighted by edge strength

Lowe, “Object recognition from local scale-invariant features,” ICCV 1999 11
Dalal and Triggs, “Histograms of oriented gradients for human detection,” CVPR 2005

L\

@mage Features: Histogram of Oriented Gradients (HoG)

P - £ - - - -
e v TR e TR SR el o TR TR, T T, TR T
Sl oy -3 -)

o, i S S R T S S e S T S Tk
- ." s -)) .

e ._____ ._'._r-‘ ! -2-‘13-_ % ._.._-- .2.‘.:-_ i °8 - z

1. Gompute edge direction/ Example: 320x240 image gets
rengt cp | divided into 40x30 bins;
2. DIYI(j.e iImage mt.o 8x8 regions 9 directions per bin:
> Ll each fegion compute & feature vector has 30°40*9 =
J J 10,800 numbers

weighted by edge strength

M Lowe, “Object recognition from local scale-invariant features,” ICCV 1999 15
Dalal and Triggs, “Histograms of oriented gradients for human detection,” CVPR 2005

@mage Features: Histogram of Oriented Gradients (HoG)

Strong diagonal edges

—

Fdges in all directions | St St

P " £ - - - -
Tl v TR T T S el o TR TR T T, TR T
. O ¥) 8

o, i S S R T S S e S T S Tk
- .' s -)) .

Capture L e

1. Compute edge direction/

strength at each pixel text.u.re and Example: 320x240 imaqe gets
T | | position, divided into 40x30 bins;
°- D'f"qe mage mt.o OxS regions robust to 9 directions per bin;
i achregon Somae s smallimage feaw vctor s 30403
changes 10,800 numbers

weighted by edge strength

M Lowe, “Object recognition from local scale-invariant features,” ICCV 1999 13
Dalal and Triggs, “Histograms of oriented gradients for human detection,” CVPR 2005

@mage Features: Bag of Words (Data-Driven!)

Step

1: Build codebook

Extract random
patches

Cluster patches to ™ '..‘

form “codebook”
of “visual words”

EEENEE
D I
A

B
T

L\

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories,” CVPR 2005

@mage Features: Bag of Words (Data-Driven!)

Step

1: Build codebook

" L

Cluster patches to ™ '..‘
form “codebook” ..n..l
of “visual words” B 15
——— |=-g
NN
|

Extract random
patches

]

] L1 [—
* FaEYSSEENEEERT ==

]]

] 1 [] —
- ExENEET" ol

IMI Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories,” CVPR 2005 15

Image Features

s

1]
LIHLIHU U

~L

16

®E

Low-level feature extraction & 10k patches per image
 SIFT: 128-dims
e (Color: 96-dim

xample: Winner of 2011 ImageNet Challenge

} Reduced to 64-dim with PCA

FV extraction and compression:
« N=1024 Gaussians, R=4 regions — 520K dim x 2

 Compression: G=8, b=1 bit per dimension
One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

M F. Perronnin, J. Sanchez, “Compressed Fisher vectors for LSVRC”, PASCAL VOC / ImageNet workshop, ICCV, 2011.

Image Features

Feature Extraction
10 numbers giving

scores for classes

HHHHHI‘IHHH Hnﬂﬂuﬂﬂnuﬂnﬂﬂuuﬂn i D

e : training

18

R

Image Features vs Neural Networks

Feature Extraction
10 numbers giving

scores for classes

HHHHHI‘IHHH Hn HHUHHHUHHHHuUﬂmUﬂ D

e training

19

Image Features vs Neural Networks

Feature Extraction

HHHHHHHHHHHHWWHmHHu I M .
oy e I training

10 numbers giving
scores for classes

| J Krizhevsky, Sutskever, and Hinton, “Imagenet classification
4 L 4N\ with deep convolutional neural networks”, NIPS 2012.
\ ‘ , Figure copyright Krizhevsky, Sutskever, and Hinton, 2012.
\ / vy \aen . . .
- s S \ <088 \ e Reproduced with permission.
K A \
13 \
y \/ {1 1
[
) > r >
(gense dense
| 500
Max L
pooling) 048

——m am§ 10 numbers giving
‘v scores for classes

training .

Neural Networks

Input: x € | D Output: f(x) € | ¢

Before: Linear Classifier: f(x) = Wx + b
DxC b =3 C

Learnable parameters: W € |

Neural Networks

Input: x € | D Output: f(x) € | ¢

Before: Linear Classifier: f(x) = Wx + b
Learnable parameters: W € | DxC p e RC

Now: Two-Layer Neural Network: f(x) = W, max(0,W,x + b,) + b,

Neural Networks

Input: x € | D Output: f(x) € | ¢

Before: Linear Classifier: f(x) = Wx + b
DxC b =3 C

Learnable parameters: W € |

Now: Two-Layer Neural Network: f(x) = W, max(0,W,x + b,) + b,
Learnable parameters: W, € | HXD. b, €l " W, €l CxH b, € C

AN\

DR

Neural Networks

Input: x € | D Output: f(x) € | ¢

Before: Linear Classifier: f(x) = Wx + b
DxC b =3 C

Feature Extraction

Learnable parameters: W € |
Linear Classifier

Now: Two-Layer Neural Network: f(x) = W, max(0,W.x + b,) + b,
Learnable parameters: W, € | HXD. b, €l " W, €l CxH b, € C

AN\

DR

Neural Networks

Input: x € | D Output: f(x) € | ¢

Before: Linear Classifier: f(x) = Wx + b
DxC b =3 C

Feature Extraction

Learnable parameters: W € |
Linear Classifier

Now: Two-Layer Neural Network: f(x) = W, max(0,W.x + b,) + b,
Learnable parameters: W, € | HXD. b, €l " W, €l CxH b, € C

Or Three-Layer Neural Network:
f(x) = Wymax(0,W, max(0,W,x + b)) + b,) + b,

AN\

DR

Neural Networks

Before: Linear Classifier: fx)=Wx+5b

Now: Two-Layer Neural Network: fx) = W, max(0,W,x + b)) + b,

o X W R W, S

_ Output:10
Hidden Layer:

100

x € RP, W, € R™*P W, € R

DR

Neural Networks

Before: Linear Classifier: fx)=Wx+5b

Now: Two-Layer Neural Network: fx) = W, max(0,W,x + b)) + b,

Element (z,j) of W,
gives the effect on Input: x

h. from X; 3072

Element (i,) of W,
S gives the effect on
s; from h;

_ Output:10
Hidden Layer:

100

AR x € RP, W, € R"™P, W, e R

DR

Neural Networks

Before: Linear Classifier: fx)=Wx+b>b

Now: Two-Layer Neural Network:

Element (z,j) of W,
gives the effect on

h; from x;

All elements of x affect
all elements of i

L\

Input:
3072

\)

Output:10

Hidden Layer:
100

Fully-connected neural network also
“Multi-Layer Perceptron” (MLP)

f(X) — W2 maX(O,Wlx + bl) + b2

Element (i,) of W,
gives the effect on

s; from hj

All elements of /1 affect
all elements of s

28

Neural Networks

. .. Before: Linear score function
Linear classifier: One template per class

master tomato Now: Two-Layer Neural Network:
chef cracker sugar soup mustard
can box box can bottle
fish gelatin meat large 3072
can box can marker
Output:10
Hidden Layer:

100
x € RP, W, € R"™*P W, e R

29

Neural Networks

Neural net: first layer is bank of templates;
Second layer recombines templates Before: Linear score function

r‘ g

] R ;-u (- ': 4 -
. R - o Bt
. s -
- ! A b4 ? '-
f z
4,.~_ﬂ “
- ! o
U ‘ - - » -

Now: Two-Layer Neural Network:

BI Output:10
Hidden Layer:

100
x € RP, W, e R™*P W, € R

30

Input:
3072

R

Can use different templates to cover
multiple modes of a class! Before: Linear score function

Neural Networks

Now: Two-Layer Neural Network:

BI Output:10
Hidden Layer:

100
x € RP, W, e R™*P W, € R

31

Input:
3072

R

Can use different templates to cover
multiple modes of a class! Before: Linear score function

r‘ g

- ..~. -
‘ - \ .
1 2 r.‘
u | ' -

Neural Networks

Now: Two-Layer Neural Network:

BI Output:10
Hidden Layer:

100
x € RP, W, e R™*P W, € R

32

Input:
3072

R

“Distributed representation”. Most
templates not interpretable! Before: Linear score function

"r_- - R

T ' 4 -
[el - -
2 3 . \ &é e
' - - ' o
Q> ‘]

Neural Networks

Now: Two-Layer Neural Network:

BI Output:10
Hidden Layer:

100
x € RP, W, e R™*P W, € R

33

Input:
3072

Deep Neural Networks

Depth = number of layers

Width:
Size of
each W2 W3 W4 WS
layer
Output:10
Input:

3072
s = W max(0,Ws max(0,W, max(0,W; max(0,W, max(0,W,x)))))

34

DR

2-Layer Neural Network

The auction ReLU(z) = max(0,z)
IS called “Rectified Linear Unit”

10

~10 10

Activation Functions

f(X) — W2 maX(O,Wlx + bl) + bz

This Is called the activation function
of the neural network

35

DR

Activation Functions

2-Layer Neural Network fx) = W, max(0O,W,x + b,) + b,
The auction ReLU(z) = max(0,7) This is called the activation function
IS called “Rectified Linear Unit” of the neural network

10
Q: What happens if we build a neural
network with no activation function?

fx) = W,(Wx+ b)) + b,

~10 10

DR

Activation Functions

2-Layer Neural Network fx) = W, max(0O,W,x + b,) + b,
The auction ReLU(z) = max(0,7) This is called the activation function
IS called “Rectified Linear Unit” of the neural network

10
Q: What happens if we build a neural
network with no activation function?

fx) = W,(Wx+ b)) + b,
= (W, Wo)x + (W,b, + b,)

~10 10 . . .
A: We end up with a linear classifier

@

Activation Functions

Leaky RelL U
max(0.2x, x)
tanh : Softplus
tanh(x) = e -1 =) log(1 + exp(x))
e + 1 s

Sigmoid

o(x) =

l +e~

ELU g

X, x>0
) = {a(exp(x) —), x<0

Rel U

max(0,x)

-10 10
=D

DR

Activation Functions

Sigmoid
Leaky RelL U
o(x) = |+ o max(0.2x, x)
tanh : Softplus
tanh(x) = c T log(1 + exp(x))
e + 1
ELU
X,
fto = {a(eXp(x) -),

RelLU is a good default choice for most
problems

10,

x>0
x <0

10

Input layer

Neural Net In <20 lines!

Hidden layer

import numpy as np
from numpy.random import randn

N, Din, H, Dout = 64, 1000, 100, 10
X, Y = randn(N, Din), randn(N, Dout)
wl, w2 = randn(Din, H), randn(H, Dout)
for t in range(10000):
h=1.0/ (1.0 + np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
dy pred = 2.0 x (y_pred - y)
dw2 = h.T.dot(dy_pred)
dh = dy pred.dot(w2.T)
dwl = x.T.dot(dh *x h x (1 - h))
wl —= le-4 x dwl
w2 —= le-4 x dw2

Initialize weights
and data

Compute loss (Sigmoid
activation, L2 loss)

Compute gradients

SGD step

40

Space Warping

Consider a linear transform: h = Wx + b
where x, b, h are each 2-dimensional

41

Space Warping

Consider a linear transform: h = Wx + b
where x, b, h are each 2-dimensional

hy

Feature transform:
h=Wx+b

42

Space Warping

Consider a linear transform: h = Wx + b
where x, b, h are each 2-dimensional

hy

Feature transform: B A
h=Wx+b

43

DR

Space Warping

Points not linearly separable Consider a linear transform: h = Wx + b
in original space where X, b, h are each 2-dimensional

0 oS
~Z @,

O

44

DR

Space Warping

Points not linearly separable Consider a linear transform: h = Wx + b
in original space where X, b, h are each 2-dimensional
X
C a0 0 &° L
O 0/ O O O
@ O

Points still not linearly
separable in feature space 45

Space Warping

Consider a neural net hidden layer: h = ReLU(Wx + b)
= max(0,Wx + b) where x, b, h are each 2-dimensional

42 n,

/..’00’.. ’ 0"‘ Feature transform: A
N ! h = ReLU: Wx + b)
xl 10 hl

~10 10

L\ .

Space Warping

Consider a neural net hidden layer: h = ReLU(Wx + b)

= max(0,Wx + b) where x, b, h are each 2-dimensional
| X .

¢
A ’

41X

‘&

%

Feature transform:

h=RelU ;Wx +b) o

10

0..
4
4
4
4

X1

~10 10

L\ !

DR

Space Warping

Consider a neural net hidden layer: h = ReLU(Wx + b)

= max(0,Wx + b) where x, b, h are each 2-dimensional
| X .

. A/ B

Je
®% .
%

D v /X

/
%

Feature transform:

h=RelU ;Wx +b) o

10

X1

D is “collapsed”
onto +h1 axis

~10 10

L\ .

@

Space Warping

Consider a neural net hidden layer: h = ReLU(Wx + b)
= max(0,Wx + b) where x, b, h are each 2-dimensional

I xz . R h2

L 2
A ’

."’m. ’ > B Feature transform: B é A
D - Ah = RelLU ;Wx +b) e
A R \Y4
1 101 hl C / D
C C is “collapsed” D is “Cﬁl1laps_ed”
| onto origin onto +h1 axis

—10 10

L\ .

DR

Space Warping

Points not linearly separable Consider a neural net hidden layer: h = ReLU(Wx + b)
In original space = max(0,Wx + b) where x, b, h are each 2-dimensional

Feature transform:

h = ReLU: Wx + b)

50

DR

Space Warping

Points not linearly separable Consider a neural net hidden layer: h = ReLU(Wx + b)
In original space = max(0,Wx + b) where x, b, h are each 2-dimensional

Feature transform:

h = ReLU: Wx + b)

51

DR

Space Warping

Points not linearly separable Consider a neural net hidden layer: h = ReLU(Wx + b)
In original space = max(0,Wx + b) where x, b, h are each 2-dimensional

Feature transform:

h = ReLU: Wx + b)

10 hl

~10 10

Points are linearly
separable in feature space! -

DR

Space Warping

Points not linearly separable Consider a neural net hidden layer: h = ReLU(Wx + b)
In original space = max(0,Wx + b) where x, b, h are each 2-dimensional

Feature transform:

h = ReLU: Wx + b)

10 hl

Linear classifier in
feature space gives
nonlinear classifier -1 10
In original space

Points are linearly
separable in feature space!

oo

etting the number of layers and their sizes

3 hidden uits | 6 hiddn units o 20 hiden units
l

More hidden units = more capacity

54

.Don’t regularize with size; instead use stronger L2

A =0.001

Web demo with ConvNetJS: htips://cs.stanford.edu/people/karpathy/convnetis/demo/classity2d.html

L\, .

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Universal Approximation

A neural network with one hidden layer can approximate
any function f : | N RM with arbitrary precision”

*Many technical conditions: Only holds on compact subsets of RN function must be continuous;
need to define "arbitrary precision”; etc.

56

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

Input: Output:
x(1,) @é@_@ v(1,)

First layer weights: w(3,1) Second layer weights: u(1,3)
First layer bias: b(3,) First layer bias: p(1,)

57

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

Input: Output:
x(1,) @é@_@ v(1,)

First layer weights: w(3,1) Second layer weights: u(1,3)
First layer bias: b(3,) First layer bias: p(1,)

hy = max(0,w,x + b;)
h, = max(0,w,x + b,)
hy = max(0,w,yx + by)

y = ulhl —+ l/tzhz —+ l/l3h3 +p

L\

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

Input: Output:
x(1,) @é@_@ v(1,)

First layer weights: w(3,1) Second layer weights: u(1,3)
First layer bias: b(3,) First layer bias: p(1,)

h; = max(0,w,x + b;) y = uy max(0,w;x + b)

hy, = max(0,w,x + b,) +u, max(0,w,x + b,)

hl — maX(O,W3X T b3) +I/t3 maX(O,W3x + b3)

y = uhy + uyhy + uzhy + p +p

AN\

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

Wi % Output is a sum of shifted,
Input: W» U, C Output: scaled RelLUs:
x(la) W3 u y(l,) Flip left / right based on sign of w;

od
O -
First layer weights: w(3,1) Second layer weights: u(1,3) -1 -

Slope is

First layer bias: b(3,) First layer bias: p(1,) .~ given by u;w;
h; = max(0,w,x + b;) y = uy max(0,w;x + b) 31
hy = max(0,wyx + b,) +uy max(0,wyx + b,) o’y Position of
h; = max(0,wyx + b;) +u; max(0,wyx + bs) . “bend” give by bi

y = uhy + uyhy + uzhy + p +p

L\

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

We can build a “bump function” using
Wi Uy y four hidden units
Input: W) % Output: !

X(l,) Wi U y(19)
First layer weights: w(3,1) Second layer weights: u(1,3)

m; = t/(s, — ;)
m2 — t/(S4 — S3)

First layer bias: b(3,) First layer bias: p(1,) X
h; = max(0,w,x + b;) y = uy max(0,w;x + b)
h2 — maX(O,sz + bz) +u2 maX(O,sz + bz)
hy = max(0,wsx + bs) +u; max(0,wsx + bs)

y = uhy + uyhy + uzhy + p +p

L\ :

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

We can build a “bump function” using
Wi Uy y four hidden units
Wy Output: !

Input: U ()
X(l,) W3 l/t3 y(l,) ------------------ S E ml — t/(Sz — Sl)
@/ \ 2 my = t/(sy — 53)
First layer weights: w(3,1) Second layer weights: 1(1,3)
First layer bias: b(3,) First layer bias: p(1,) B X
S1 S Sy Sy

h; = max(0,w;x + b,) y = uy max(0,w;x + b) |
h2 — maX(O,sz + bz) +u2 maX(O,sz + bz) /
iy = max(Uwsx + b3) +u3 max(0,wsx + by) o max(Our — s,

y = uhy + uyhy + uzhy + p +p

L\

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

We can build a “bump function” using
Wi Uy y four hidden units
Output: !

Input: Wy %
x(l,) W3 l/t3 y(l,) : E ml — t/(Sz — Sl)
@/ T TR my=al(sy = sy)
First layer weights: w(3,1) Second layer weights: 1(1,3)
First layer bias: b(3,) First layer bias: p(1,) B X
S| Sy Sy Sy
hl — maX(O,Wlx + bl) y = l/tl maX(O,Wlx + bl) 1 4
hy, = max(0,w,x + b,) +u, max(0,w,x + b,) / \
h; = max(0,wsx + bs) +u; max(0,wsx + b3) s ma)I((O!x i 5) L, max(0,x — s,)

y = uhy + uyhy + uzhy + p +p

L\ .

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

Input: W)

Wi @%A
% Output:

X(l,) W3 U y(la)
First layer weights: w(3,1) C

First layer bias: b(3,)

hy = max(0,w,x + b;)
h, = max(0,w,x + b,)
hy = max(0,w,yx + by)

y = ulhl —+ l/tzhz —+ l/l3h3 +p

L\

Second layer weights: u(1,3)

First layer bias: p(1,)

y = uy max(0,w;x + b)
+u, max(0,w,x + b,)
+u; max(0,wsx + b3)
4

We can build a “bump function” using
four hidden units

Vi

my = t/(s, — $)
m2 — t/(S4 — S3)

X

-

—m; max(0,x — s,)

51 9

L.

m; max(0,x — s,)

e

—m, max(0,x — s5)

64

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

Wi %
Input: W) % Output:
u y(1,)

x(1 9) W3 3 p
First layer weights: w(3,1) C Second layer weights: u(1,3)

First layer bias: b(3,) First layer bias: p(1,)

hy = max(0,w,x + b;)
h, = max(0,w,x + b,)
hy = max(0,w,yx + by)

y = uy max(0,w;x + b,)
+u, max(0,w,x + b,)

+u; max(0,wsx + b3)
y = ujhy + uyhy + ushy + p +p

L\

We can build a “bump function” using
four hidden units

Vi

my = t/(s, — $)
m2 — t/(S4 — S3)

o 1\

m; max(0,x — s,) —m; max(0,x — s,)

.

—m, max(0,x — s5) m, max(0,x — 54)

Iy

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

We can build a “bump function” using
Wi Uy y four hidden units
Input: W) % Output: !
y v(l,) b _ my = t/(s, — ;)

x(1 9) Wi 3
@/ i my = t/(54 — 53)
First layer weights: w(3,1) Second layer weights: u(1,3)

First layer bias: b(3,) First layer bias: p(1,) B : : X
S| 8y S3 Sy
hy = max(0,w;x + b)) y = uymax(0,w;x + b,) With 4K hidden units we can build a
h, = max(0,w,x + b,) +u, max(0,w,x + b,) sum of K bumps
hl — maX(O,W3X + b3) +I/l3 maX(O,W3x + b3)

y = uhy + uh, + uzhy +p +p
JR N\ !

Approximate functions with bumps! 66

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

Input: W)

First layer bias: b(3,)

hy = max(0,w,x + b;)
h, = max(0,w,x + b,)
hy = max(0,w,yx + by)

y = ulhl —+ l/tzhz —+ l/l3h3 +p

L\

Wi %

% Output:
X(l,) W3 l/t3 y(19)
First layer weights: w(3,1) C

Second layer weights: u(1,3)

First layer bias: p(1,)

y = uy max(0,w;x + b,)
+u, max(0,w,x + b,)
+u; max(0,wsx + b3)
4

Vi

We can build a “bump function” using
four hidden units

my = t/(s, — $)

m2 — t/(S4 — S3)

X

S; S Sy 8y

With 4K hidden units we can build a
sum of K bumps

7—
_—

I'{\ X

Approximate functions with bumps! 67

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

Wy % What about ...
Input: W) U < > Output: - Gaps between bumps?

x(1,) Ws s y(1,) - Other nonlinearities?
@/ - Higher-dimensional functions?
First layer weights: w(3,1) Second layer weights: u(1,3)
First layer bias: b(3,) First layer bias: p(1,) See Nielsen, Chapter 4
hy = max(0,w;x + b)) y = uy max(0,w;x + b;) With 4K hidden units we can build a
h, = max(0,w,x + b,) +u, max(0,w,x + b,) sum of K bumps

hy = max(0,wsx + bs) +u; max(0,wsx + b3)
y: M1h1+u2h2+u3h3 +p +p Axw X \

Approximate functions with bumps!

http://neuralnetworksanddeeplearning.com/chap4.html

@

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

Input: W)

First layer bias: b(3,)

hy = max(0,w,x + b;)
h, = max(0,w,x + b,)
hy = max(0,wsx + b,)

y = ulhl —+ l/tzhz —+ M3h3 +p

L\

Wi %

% Output:
X(l,) W3 l/t3 y(19)
First layer weights: w(3,1) C

Second layer weights: u(1,3)

First layer bias: p(1,)

y = uy max(0,w;x + b,)
+u, max(0,w,x + b,)
+u; max(0,wsx + b3)
4

Reality check: Networks don't really learn bumps!

\

\

With 4K hidden units we can build a
sum of K bumps

A X

Approximate functions with bumps! 69

DR

Universal Approximation

Example: Approximating a function f : R — R with a two-layer ReLU network

Wi % Reality check: Networks don't really learn bumps!
W) Output:

Input: i |< >
X(l,) W3 Uz ¥ y(la) ~

Universal approximation tells us: W
. \
- Neural nets can represent any function

. . . With 4K hidden units we can build a
Universal approximation DOES NOT tell us: sum of K bumps

- Whether we can actually learn any function with SGD —
- How much data we need to learn a function

Remember: KNN Is also a universal approximator! be ‘\A

L\

X

Approximate functions with bumps! 70

DR

Convex Functions

A functionf: X C RY - R is convex if for all X, X € X,t €10,1],

ftx, + (1 = Dx, < 1f(x)) + (1 = D)f(xy)

2

Example: f(x) = x“ is convex:

L\ :

DR

Convex Functions

A functionf: X C RY - R is convex if for all X, X € X,t €10,1],

J(ox, + (1 = Dx; < 1f(x)) + (1 —)f(x,)

2

Example: f(x) = x“ is convex:

L\

72

@ Convex Functions

A functionf: X C RY - R is convex if for all X, X € X,t € [0,1],

2

Example: f(x) = x“ is convex:

73

DR

Convex Functions

A functionf: X C RY - R is convex if for all X, X € X,t €10,1],

ftxy + (1 — D)xy < tf(x) + (1 — D)f(xy)

Example: f(x) = cos(x) is not
convex:

2 N\

L\ .

DR

Convex Functions

A functionf: X C RY - R is convex if for all X, X € X,t €10,1],

ftx, + (1 = Dx, < 1f(x)) + (1 = D)f(xy)

Intuition: A convex function is a
(multidimensional) bowl

Generally speaking, convex functions are

easy to optimize: can derive theoretical
guarantees about converging to global |
minimum*

0 ."L. ||'I'
— S '||'.
2 . B ',I"I
—_— /
0 Tm— /
______ ———— y"
M 75

DR

Convex Functions

A functionf: X C RY - R is convex if for all X, X € X,t €10,1],
Jftxy + (1 = Dx, < 1f(xy) + (1 —)f(x)

Linear classifiers optimize a
convex function!

s =f(x; W)= Wx

Intuition: A convex function is a
(multidimensional) bowl

\)

Generally speaking, convex functions are e

easy to optimize: can derive theoretical L; = — log(Y+ jesj) Softmax
guarantees about converging to global
minimum* L;=Y max(0.5;— s, + 1) SVM

JFY;

N
L = i Z L.+ R(W) where R(W) is L2 or
¥ =1

L1 regularization

AN\

DR

Convex Functions

A functionf: X C RY - R is convex if for all X, X € X,t €10,1],

ftx, + (1 = Dx, < 1f(x)) + (1 = D)f(xy)

Neural net losses sometimes look

Intuition: A convex function is a .
convex-ish:

(multidimensional) bowl

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum®

AN\

loss

wl[O, O]

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

DR

Convex Functions

A functionf: X C RY - R is convex if for all X, X € X,t €10,1],

ftx, + (1 = Dx, < 1f(x)) + (1 = D)f(xy)

Intuition: A convex function is a But often clearly nonconvex:
(multidimensional) bowl

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum®

AN\

0SS

wl[O0, O]

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

DR

Convex Functions

A functionf: X C RY - R is convex if for all X, X € X,t €10,1],

ftx, + (1 = Dx, < 1f(x)) + (1 = D)f(xy)

Intuition: A convex function is a
(multidimensional) bowl

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum®

AN\

With local minima:

0SS

wl[O, O]

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

DR

Convex Functions

A functionf: X C RY - R is convex if for all X, X € X,t €10,1],

ftx, + (1 = Dx, < 1f(x)) + (1 = D)f(xy)

Intuition: A convex function is a
(multidimensional) bowl

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum®

AN\

Can get very wild!

0SS

wl[0, O]

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

DR

Convex Functions

A functionf: X C RY - R is convex if for all X, X € X,t €10,1],
Jftxy + (1 = Dx, < 1f(xy) + (1 —)f(x)

Intuition: A convex function is a

(multidimensional) bowl Most neural networks need

nonconvex optimization

Generally speaking, convex functions are - Few or no guarantees
easy to optimize: can derive theoretical about convergence
minimum®

anyway

- Active area of research

AN\

DR

Summary

Feature transform + Linear classifier Neural Networks as learnable feature
allows nonlinear decision boundaries transforms
Original space Feature space
Y 0 : f
O SIS N O FRRILE: EximRCtion — 10 numbers giving
O dai :)) O <« scores for classes
O. O O O G tanAy/%) 8 bl il training
Y O —%
2 O Og Feature ; O
OO O Transform o
Nonlinear classifier Linear classifier in
in original space! — eature space
RO e - ’ > 10 numbers giving
< scores for classes

training

82

R

Linear classifier: One template per class
From linear classifiers to e racker sugar e tard
fully-connected networks . - + H
fish gelatin W meat large
f(x) — W2 maX(O,Wlx -+ bl) -+ b2 = __ - i a
Input:
3072

Output:10

Hidden Layer:
100

DR

Summary

Space Warping Universal approximation

From linear classifiers to \
fully-connected networks o [o
R .

fx) = W, max(O,W,x + b)) + b, YT [{-\A /_X_\ .

Input: Nonconvex
X w, o h W, S

3072

Output:10
Hidden Layer: uthu

100

L\ .

w1l[O, O]

0SS

DR

Problem: How to compute gradients?

s = W, max(0,W,x + b)) + b, Nonlinear score function
L, = Z maX(O,SJ- — 5, + 1) Per-element data loss
J7Yi
R(W) = Z W,? L2 regularization
k

1 N
LWy, W, by, by) = —) L+ iR(W,) + AR(W,) Total loss

i=1
oL oL oL oL
If we can compute ——, ——, ——, —— then we can optimize with SGD
SW, W, &b, b,

AN\

DR

Next time: Backpropagation

@ Problem Statements

as04 saddug ainjosqy

: h
Image Embeddings
top
€. e T e
L ion Vision Encoder "
7 :
—_— e = &=
I o s .‘ 1 1024 1024
left 4 '; . i?" 4 Robot Proprioception | == Linear + RelU
(Absolute Gripper Pose) = s
3 x (640 x 480) 3x (224 x 224) , ST

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of
Visual Representations for Object Assembly Task Requiring Spatio-Geometrical
Reasoning," 2024 IEEE International Conference on Robotics and Automation
(ICRA), Yokohama, Japan, 2024, pp. 831-837, doi: 10.1109/

M ICRA57147.2024.10610774.

18

|

III. IMITATION LEARNING FRAMEWORK

The goal of imitation learning is to train a policy w :
O — A that maps all observations to an action that will
progress the robot towards executing the task. Our dataset
D = {(O,,a;)}i=1.. .~ consists of N observation-action

| pairs. Each observation O; = ((I,.).ev ., s) is a tuple of RGB

images [, from view v € V and the current state of the robot
s € 8. Each action a; € A is the action the expert performs
during demonstration.

Our architecture shown in Fig. 2 is inspired by imita-
tion learning evaluation frameworks from Robomimic [18],
R3M [10], and MVP [11]. In our implementation, the policy
mg consists of three parts: the image preprocessor f, the
image encoder g,, and the policy head h,. The image
preprocessor f : Z940x480 _, 7224%224 ¢rops and resizes the
original RGB image to a consistant size for fair comparison

of all vision encoder models (ViT-B/16 requires this size).
The image encoder g, : Z?%**??* — R is a neural
network that deterministically maps an RGB image [, to a
D-dimensional image embedding e,.. The policy head h,, :
R” x...xR” x 8§ — A is a multi-layer perceptron on top of
concatenated image embeddings (e,).y and robot state s
which produces the final output action a. In summary, output
of the pOllC)‘ 779(0) - hw"(gd’(f(lvx))* seey g¢(f(1,,-,‘,.|)),s) -
@ 1s the predicted action. We train either the parameters ¢
(frozen g) or both ¢ and v’ (unfrozen g) by back-propagating
the mean squared error loss £ = MSE(a.a).

We choose S € SE(3)xSE(3)and A C SE(3)xSE(3)
to be absolute gripper poses of both arms. For each arm,
there are 3 values representing xyz position and 6 values
representing the first two columns of the rotation matrix [25],
so we represent both as a 18 dimensional vector. The reason
for this choice 1s explained in Sec. V.

87

Problem Statements

(o (7

0, 0441

k K

Fig. 2: Graphical model of the semantic mapping problem. Ob-
served variables are robot poses x, and observations z,. Unknown
variables are objects {o', 0%, ---,0"}. We compute the posterior
over objects while modeling contexual relations between all pairs
of objects at each time point, and temporal consistency of each
object across consecutive time points.

Z. Zeng, Y. Zhou, O. C. Jenkins and K. Desingh, "Semantic Mapping with
Simultaneous Object Detection and Localization," 20718 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, pp.

L\

911-918, doi: 10.1109/IR0S.2018.8594205.

III. PROBLEM FORMULATION

We focus on semantic mapping at the object level. Our
proposed CT-Map method maintains a belief over object
classes and poses across an observed scene. We assume

that the robot stays localized in the environment through an
external localization routine (e.g., ORB-SLAM [23]). The

semantic map i1s composed by a set of N objects O =
{o'.0%,--- ,0"}. Each object o' = {0°,0%,0¥} contains the
object class o° € C, object geometry of, and object pose oY,
where C is the set of object classes C = {c|.c2,-,Cn}.

At time ¢, the robot is localized at x,. The robot observes
7z = {I;,S;}, where I, is the observed RGB-D image, and
S, are semantic measurements. The semantic measurements
sk = {si,5;} € S, are returned by an object detector (as
explained in section V-A), which contains: 1) a object
detection score vector s;, with each element in s, denoting
the detection confidence of each object class, and 2) a 2D
bounding box si’

We probabilistically formalize the semantic mapping prob-
lem in the form of a CREF, as shown in Figure 2. Robot pose
x; and observation z; are known. The set of objects O are

unknown variables. We model the contextual dependencies
between objects and the temporal consistency of each in-
dividual object over time. The posterior probability of the
semantic map 1s expressed as:

p(OO;T IxO:T y ZO.'T) =
N

T
211) CCRREMISCRES) § CERINY
—0i= ,
where Z 1s a normalization constant, and action applied to
object o' at time t is denoted by u,. @, is the prediction
potential that models the temporal consistency of the object
poses. @, 1s the measurement potential that accounts for
the observation model given 3D mesh of objects. @, is
the context potential that captures the contextual relations
between objects.

88

III. PROBLEM STATEMENT
Problem Statements G g s .ot et O}
1s the set of K relevant objects, we wish to localize each

object Oj.. The state of an obJect Oy 1is rcprcscnted by the
set of part poses & = {X; }t 1» where X, is the 6D pose of

an articulating rigid part s of Oy, with P parts. Each object
;. in the scene is estimated independently.

This estimation problem is formulated as a Markov Random

(a) Robot Observation (b) Likelithood Terms (¢) Particle Optimization :
P Field (MRF). Let G = (V. E) denote an undirected graph
2 Resample & difluse . « »
Nlnmi 250 DR il with nodes V' and edges . An example MRF is illustrated
‘ SexiN) in Figure 2. The joint probability of the graph G is expressed
as:

p(X.2)ox || vae(Xa. X)) [] 0u(Xsn20) ()

(s.t)EE seV

where A denotes the hidden state variables to be inferred
N and Z denotes the observed sensor information in the form
object model & of an RGB-D image. The function v, i1s the pairwise
Depth (27)) &URDF ° potential, describing the correspondence between part poses

based on the articulation constraints, and ¢, 1s the unary
potential, describing the correspondence of a part pose X,

= (d) 6D pose estimate per part

Fig. 3: The inference pipeline. (a) The robot observes a scenc as an RGB-D image, Z = (Z79% ZD). (b) The RGB image is gasscd through a trained part
segmentation network, h(Z79%), that generates a pixcl-wise heatmap for the Py parts of an objcct class of interest, {Z:7 } 4oy (in this example, the

clamp, which has one fully occluded part). The heatmaps are used to generate masked depth images, {Z2 }, "1 (c) The inference 1s initialized with part with its observation 2 g The problem of poOsc estimation of
poses using these heatmaps and the depth image. Hypotheses are iteratively reweighed using Equation 4, and rcsamplod with importance sampling. (d) The . - =
inference process generates an estimate of the 6D pose of each part. (Best viewed in color). an articulated model Ok IS mtchmtcd as the PTOblcm of

estimating the marginal distribution of each part pose, called
the belief, bel(X,).

In addition to the sensor data, the articulation constraints
and 3D geometry of the object, in the form of a Unified Robot

Description Format (URDF), and the 3D mesh models of the

J. Pavlasek, S. Lewis, K. Desingh and O. C. Jenkins, "Parts-Based Articulated objects are provided as inputs. We assume that the object
Object Localization in Clutter Using Belief Propagation," 2020 IEEE/RSJ articulations are produced by either fixed, prismatic or revolute
International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, joints. We consider scenes which contain only one instance of

L\

USA, 2020, pp. 10595-10602, doi: 10.1109/IROS45743.2020.9340908. an object. In Section IV, our proposed inference mechanism
1s detailed, along with a description of our modelling of the

potentials in Equation 1.
e I IIIIIII—mm—————

@Brainstorming task due 09/23

An example:
[1]: Robot Making Coffee using a Mug and K-Cup Pod Coffee Maker: A Robot with a single arm and a
camera should be able to sense the mug on the table, and pick and place it in the K-Cup Pod Coffee

Maker. Then, it should open the K-Cup lid. Pick up the K-cup from a tray, insert it into the coffee maker,
closer the lid. The robot should press the button and wait for the coffee to be poured. The robot should

pick up the filled coffee mug and place it on the table.

* Pick one of the ideas that you

Given an observation of the scene in the form of RGB image I € , that contains three

¢ AbStraCt th e Id eaS I nto a g e n e ral objects O = {omug, Okcup ocoffee_m}, this project aims to develop a learning method that can

produce actions A = (z,y, 2, T, ¢, p, g) where x, y, z are the gripper position to reach, 7, ¢, p

fO rm u Iath n _ are the orientation of the gripper, together representing SE(3) pose of the gripper. g denotes
whether the gripper should be open or close at the end of the action. For this task of coffee

O erte d Own Varl ab I eS Wlth making, we aim to develop an end-to-end learning method that can implicitly determine the

objects' and their locations, as well as actions to execute from a number of demonstration data

mathematlcal nOtatlonS- that can go from I — A.

* Write down assumptions and
technique that is suitable for this.

Yifeng Zhu'! Abhishek Joshi Peter Stone’ 2 Yuke Zhu'

wahx3

TThe University of Texas at Austin 2Sony Al

» Search for a paper that suits your it i ol
formulation. i S =

L\

90

.| DeepRob

Lecture 5
Neural Networks
University of Minnesota

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course 91

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

