

Project 0

- Instructions and code available on the website
 - Here: <u>https://rpm-lab.github.io/CSCI5980-F24-DeepRob/</u>

projects/project0/

- Autograder will be made available today!
- Due Sept 16, 11:59 PM CT

Project 1

- Will be due on Sept 25th, 11:59 pm CT.

Instructions and code will be available on the website today. Classification using K-Nearest Neighbors and Linear Models

Recap: Image Classification—A Core Computer Vision Task

Input: image

Output: assign image to one of a fixed set of categories

Chocolate Pretzels

Granola Bar

Potato Chips

Water Bottle

Popcorn

Recap: Image Classification Challenges

Viewpoint Variation & Semantic Gap

Illumination Changes

Intraclass Variation

- Collect a dataset of images and labels
- Use Machine Learning to train a classifier 2.
- Evaluate the classifier on new images 3.

def train(images, labels): # Machine learning! return model

def predict(model, test_images): # Use model to predict labels return test_labels

Recap: Machine Learning—Data-Driven Approach

Example training set

Linear Classifiers

Building Block of Neural Networks

Linear classifiers

This image is CC0 1.0 public domain

Progress Robot Object Perception Samples Dataset

Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

Recall PROPS

10 classes 32x32 RGB images **50k** training images (5k per class) **10k** test images (1k per class)

Parametric Approach

Array of **32x32x3** numbers (3072 numbers total)

W parameters or weights

 $f(\mathbf{x}, \mathbf{W})$

10 numbers giving class scores

Parametric Approach—Linear Classifier

Array of 32x32x3 numbers (3072 numbers total)

Parametric Approach—Linear Classifier

f(x,W) (10,)

I I

Image

Array of 32x32x3 numbers (3072 numbers total)

parameters or weights

(3072,) (10, 3072)→ f(x,W)

10 numbers giving class scores

Parametric Approach—Linear Classifier

f(x,W) (10,)

. .

Image

Array of **32x32x3** numbers (3072 numbers total)

parameters or weights

(3072,) = Wx + b(10,) (10, 3072)**10** numbers giving → f(x,W) class scores

DR Example for 2x2 Image, 3 classes (crackers/mug/sugar)

Stretch pixels into

(2, 2)

column

f(x,W) = Wx + b

Example for 2x2 Image, 3

Stretch pixels into

0	1.5	0.2
0.25	1.3	-0.5

nput image (2, 2)

Linear Classifier

DR

Stretch pixels into

column

0	1.5	0.2
0.25	1.3	-0.5

 \leq

(2, 2)

0.2 2.1 0.1 (3, 4) -0.3 0.0 2.0 (4,) 231 24 56 Ν (Ĵ) **ס** -1.2 3.2 1.1 f(x,W) = Wx + b61.95 437.9 -96.8 (3,)

Linear Class

Stretch pixels into

(2, 2)

5

17

Linear Classifier—Predictions are Linear

- f(x, W) = Wx (ignore bias)
- f(cx, W) = W(cx) = c * f(x, W)

Linear Classifier—Predictions are Linear

- f(x, W) = Wx (ignore bias)
- f(cx, W) = W(cx) = c * f(x, W)

_

Interpreting a Linear Classifier

Algebraic Viewpoint

f(x,W) = Wx + b

Interpreting a Linear Classifier

<u>Algebraic Viewpoint</u>

Interpreting a Linear Classifier

master chef can

Interpreting a Linear Classifier

Stretch pixels into column

nput image (2, 2)	W (3, 4)				
	0	0.25	0.2	-0.3	
24 2	1.5	1.3	2.1	0.0	
56 231	0.2	-0.5	0.1	2.0	

Interpreting a Linear Classifier—Visual Viewpoint

Linear classifier has one "template" per category

Stretch pixels into column

A single template cannot capture multiple modes of the data^{1.5} ^{1.3} 2.1 0.0 **W** (3, 4) e.g. mustard bottles can rotate master tomato chef cracker mustard sugar soup bottle box box can can

Interpreting a Linear Classifier—Visual Viewpoint

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

255

t

f(x,W) = Wx + b

255

Array of **32x32x3** numbers (3072 numbers total)

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

f(x,W) = Wx + b

Mag score increases this way

Array of **32x32x3** numbers (3072 numbers total)

t

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

Mug score increases this way

> Mug Score = 0

Hyperplanes carving up a high-dimensional space

Plot created using Wolfram Cloud

Hard Cases for a Linear Classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2: Everything else

Class 1: Three modes

Class 2: Everything else

Hard Cases for a Linear Classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2: Everything else

Class 1: Three modes

Class 2: Everything else .

Hard Cases for a Linear Classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

Everything else

Class 1: Three modes

Class 2: Everything else

Algebraic Viewpoint

f(x,W) = Wx

master chef can

cracker box

fish can

Linear Classifier—Three Viewpoints

-2 -2

Plot created using Wolfram Cloud

So far—Defined a Score Function

-2.93

6.14

master chef can	-3.45	-0.51	3.42
mug	-8.87	6.04	4.64
tomato soup can	0.09	5.31	2.65
cracker box	2.9	-4.22	5.1
mustard bottle	4.48	-4.19	2.64
tuna fish can	8.02	3.58	5.55
sugar box	3.78	4.49	-4.34
gelatin box	1.06	-4.37	-1.5
potted meat can	-0.36	-2.09	-4.79
large marker	-0.72	-2.93	6.14

$$f(x,W) = Wx + b$$

Given a W, we can compute class scores for an image, x.

But how can we actually choose a good W?

So far—Choosing a Good W

-2.93

6.14

master chef can	-3.45	-0.51	3.42
mug	-8.87	6.04	4.64
tomato soup can	0.09	5.31	2.65
cracker box	2.9	-4.22	5.1
mustard bottle	4.48	-4.19	2.64
tuna fish can	8.02	3.58	5.55
sugar box	3.78	4.49	-4.34
gelatin box	1.06	-4.37	-1.5
potted meat can	-0.36	-2.09	-4.79
large marker	-0.72	-2.93	6.14

$$f(x,W) = Wx + b$$

TODO:

- 1. Use a **loss function** to quantify how good a value of W is
- 2. Find a W that minimizes the loss function (optimization)

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Loss Function

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i is an image and y_i is a (discrete) label

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i is an image and y_i is a (discrete) label

Loss for a single example is $L_i(f(x_i, W), y_i)$

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i is an image and y_i is a (discrete) label

Loss for a single example is $L_i(f(x_i, W), y_i)$

Loss for the dataset is average of per-example losses:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Want to interpret raw classifier scores as probabilities

cracker 3.2 mug 5.1 sugar -1.7

Want to interpret raw classifier scores as probabilities

cracker 3.2 mug 5.1 sugar -1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Want to interpret raw classifier scores as probabilities

 $S = f(x_i; W)$ $P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$ Softmax function

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

 $s = f(x_i)$

Probabilities must be >=0

Unnormalized probabilities

cracker

mug

sugar

3.2

5.1

-1.7

Unnormalized log-

probabilities (logits)

 $exp(\cdot)$

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

Probabilities must be >=0

Unnormalized probabilities

mug

sugar

 $exp(\cdot)$

Unnormalized logprobabilities (logits)

-1.7

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax}$$

Probabilities
must sum to 1
0.13
0.87
0.00

Probabilities

Cross-Entropy Loss Multinomial Logistic Regression

 $s = f(x_i)$ **Probabilities** must be >=0cracker 3.2 24.5 $exp(\cdot)$ 164.0 5.1 mug 0.18 -1.7 sugar **Unnormalized** log-Unnormalized probabilities (logits) probabilities

Want to interpret raw classifier scores as **probabilities**

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax} \\ \text{Frobabilities} \\ \text{must sum to 1} \\ \textbf{0.13} \\ \textbf{0.13} \\ \textbf{0.87} \\ \textbf{0.00} \\ \end{bmatrix} \quad L_i = -\log P(Y = y_i \mid X = L_i) \\ L_i = -\log(0.13) \\ = 2.04 \\ \textbf{0.00} \\ \end{bmatrix}$$

Probabilities

 $s = f(x_i)$ **Probabilities** must be >=0cracker 3.2 24.5 $exp(\cdot)$ 164.0 5.1 mug 0.18 -1.7 sugar **Unnormalized** log-Unnormalized probabilities (logits) probabilities

Want to interpret raw classifier scores as **probabilities**

(W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax
Frobabilities
must sum to 1
 $L_i = -\log P(Y = y_i | X = L_i)$
 $L_i = -\log(0.13)$
 $L_i = -\log(0.13)$
 $= 2.04$
Maximum Likelihood Estim
Choose weights to maximize

Probabilities

Unoose weights to maximize the likelihood of the observed data (see CSCI 5521)

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

 $s = f(x_i)$

Probabilities must be >=0

Unnormalized probabilities

Unnormalized logprobabilities (logits)

(W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax
function
Probabilities
must sum to 1
0.13
0.87
0.87
0.00
Probabilities

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

Probabilities must be >=0

Unnormalized probabilities

cracker

mug

sugar

3.2

5.1

-1.7

Unnormalized log-

probabilities (logits)

 $exp(\cdot)$

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax function}$$
Probabilities
must sum to 1
$$(O.13) \quad O.13 \quad \text{Compare} \quad (O.13) \quad (O.13) \quad \text{Compare} \quad (O.13) \quad (O$$

y

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

 $s = f(x_i)$

Probabilities must be >=0

 $exp(\cdot)$

Unnormalized probabilities

cracker3.2mug5.1sugar-1.7

Unnormalized logprobabilities (logits)

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax function}$$

Probabilities
must sum to 1

$$(0.13) \quad \text{compare} \quad 1.0$$

$$(0.00) \quad Cross \text{Entropy}$$

$$H(P, Q) = H(P) + D_{KL}(P \mid |Q)$$

Probabilities

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y =$

cracker 3.2 5.1 mug -1.7 sugar

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

$$y_i \mid X = x_i)$$

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

Maximize probability of correct class $L_i = -\log P(Y =$

Q: What is the min / max possible loss L_i ?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

$$y_i \mid X = x_i)$$

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

Maximize probability of correct class $L_i = -\log P(Y =$

Q: What is the min / max possible loss L_i ?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

$$y_i \mid X = x_i)$$

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

A: Min: 0, Max: $+\infty$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: If all scores are small random values, what is the loss?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j}\exp(s_{j})}\right)$$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y =$

Q: If all scores are small random values, what is the loss?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

$$y_i \mid X = x_i)$$

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

A:
$$-\log(\frac{1}{C})$$

 $\log(\frac{1}{10}) \approx 2.3$

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{\substack{j \neq y_i \\ j \neq y_i}} \max(0, s_j - s_{y_i} + 1)$

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$ $= \max(0, 5.1 - 3.2 + 1)$ $+ \max(0, -1.7 - 3.2 + 1)$ $= \max(0, 2.9) + \max(0, -3.9)$ = 2.9 + 0= 2.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$ $= \max(0, 1.3 - 4.9 + 1)$ +max(0, 2.0 - 4.9 + 1) $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0= 0

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$ $= \max(0, 2.2 - (-3.1) + 1)$ +max(0, 2.5 - (-3.1) + 1) $= \max(0, 6.3) + \max(0, 6.6)$ = 6.3 + 6.6= 12.9

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Loss over the dataset is: L = (2.9 + 0.0 + 12.9) / 3= 5.27

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q: What happens to the loss if the scores for the mug image change a bit?

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q2: What are the min and max possible loss?

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q3: If all the scores were random, what loss would we expect?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What is cross-entropy loss? What is SVM loss?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What is cross-entropy loss? What is SVM loss?

A: Cross-entropy loss > 0 SVM loss = 0

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100] and $y_i =$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

- Q: What happens to each loss if I slightly change the scores of the last datapoint?
- A: Cross-entropy loss will change; SMMosssiwillasteretaenearorest and 3rd example SVM loss will change for the 2nd

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

- **Q**: What happens to each loss if I double the score of the correct class from 10 to 20?
- A: Cross-entropy loss will decrease, SVM loss still 0

Algebraic Viewpoint

f(x,W) = Wx

Plot created using Wolfram Clou

fish can

Recap—Three Ways to Interpret Linear Classifiers

- We have some dataset of (x, y)
- We have a **score function:**
- We have a **loss function**:

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i})$

Recap—Loss Functions Quantify Preferences

s = f(x; W, b) = Wx + bLinear classifier

- We have some dataset of (x, y)
- We have a **score function:**
- We have a **loss function**:

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i})$

Recap—Loss Functions Quantify Preferences

Q: How do we find the best W,b? s = f(x; W, b) = Wx + bLinear classifier

Next time: Regularization + Optimization

Task brainstorming!

Robotic arms can assist people without arms			Robot Library Book Sorter		Robot ironing shirts	Robot that can fol
Robot Underwater Coral Reef Restoration		Rc	Robot that be a steward Robot for manipulating		ng components on a spaceci	
Robotic coffee	e maker Robo	tic toothbrush	Robot that can be	~ Robot	in an Airplane	Robot that can tie someon
<i>Robotic arm massages for people Robot for helping paraplegia patients move</i>			<i>Robot that retrieves basketballs Robot organizing a</i> <i>Robot that plays chess</i>		a fildes	<i>cooks spaghetti administer first aid and CPR</i>
Robot Recycling Ele	,	le Assembly Assist		Rinsing dishes and arran	iyiliy ili uisilwasilei	<i>to do laundry and fold my c</i> <i>Robot to change a baby's</i>
Robot Chef Assis		all the electronic ng Vegetables	<i>devices in the home:</i> <i>Robot can</i>		and stock refilling robot e with dexterous hands	Robot for waterin
Robot for feeding or g	rooming the pet	Monitoring a	n power loom	Robot Setting up Surgio	cal Instruments in Operating	Rooms Robot calibrating
Robot Performir Robot Syringe Admi	ng Minimally Invasi		obot Assisting in Plan		<i>Robot for Disaste Ing and Storage Automation</i>	r Response and Recovery Robot that can wi System
		eading Assistant R	ωροι	ispensing medication	Robot-Assisted Bed Makir	
	Domestic con	npanion robot to p	olav Table Tennis(TT)	Robot calibrating p		Surface Cleaning 81

Domestic companion robot to play lable lennis(11)

Task brainstorming!

Deep Learning X Robot Manipulation 010

Next brainstorming exercise: How will you collect data? What is the input to your DL? What is the output of your DL? ... 82

