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DeepRob
Lecture 3
Linear Classifiers
University of Minnesota

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

DR 

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/


Project 0
• Instructions and code available on the website
• Here: https://rpm-lab.github.io/CSCI5980-F24-DeepRob/

projects/project0/

• Autograder will be made available today!

• Due Sept 16, 11:59 PM CT
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https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project0/
https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project0/
https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project0/
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• Instructions and code will be available on the website today.
• Classification using K-Nearest Neighbors and Linear Models
• Will be due on Sept 25th, 11:59 pm CT.

Project 1
DR 



Recap: Image Classification—A Core Computer Vision Task
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Input: image Output: assign image to one 
of a fixed set of categories
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Recap: Image Classification Challenges
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Viewpoint Variation & Semantic Gap

Illumination Changes

Intraclass Variation
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Recap: Machine Learning—Data-Driven Approach
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1. Collect a dataset of images and labels

2. Use Machine Learning to train a classifier

3. Evaluate the classifier on new images

Example training set

Justin Johnson January 10, 2022

First classifier: Nearest Neighbor

Lecture 2 - 40

Memorize all data 
and labels

Predict the label of 
the most similar 
training image

Justin Johnson January 10, 2022

First classifier: Nearest Neighbor

Lecture 2 - 40

Memorize all data 
and labels

Predict the label of 
the most similar 
training image
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def trai (images, labels): 
# Machine ear ·ng! 
return mode 

def predict(model, test_images): 
# Use mode to predict labels 
eturn test labels -

master chef can - -
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Linear Classifiers

DR 



Building Block of Neural Networks
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This image is CC0 1.0 public domain

Neural Network

Linear 
classifiers

This image is CC0 1.0 public domain
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https://www.maxpixel.net/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Recall PROPS
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10 classes

32x32 RGB images

50k training images (5k per class)

10k test images (1k per class)

Chen et al., “ProgressLabeller: Visual Data Stream Annotation 
for Training Object-Centric 3D Perception”, IROS, 2022.

Progress Robot Object Perception Samples Dataset
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Parametric Approach
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Parametric Approach

Lecture 3 - 10

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)
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Parametric Approach: Linear Classifier

Lecture 3 - 11

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx

Parametric Approach—Linear Classifier
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Parametric Approach: Linear Classifier

Lecture 3 - 12
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Parametric Approach—Linear Classifier
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Parametric Approach: Linear Classifier

Lecture 3 - 13

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b
(10,) (10, 3072)

(3072,)
(10,)

Parametric Approach—Linear Classifier
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Exam
ple for 2x2 im

age, 3 classes (cat/dog/ship)

Lecture 3 -14
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Linear C
lassifier—

Algebraic View
point
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Justin Johnson
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Linear Classifier: Bias Trick
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Linear Classifier—Predictions are Linear
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Justin Johnson January 12, 2022

Linear Classifier: Predictions are Linear!

Lecture 3 - 19

f(x, W) = Wx (ignore bias)

f(cx, W) = W(cx) = c * f(x, W)
Image 0.5 * ImageScores
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-48.4
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31.0

0.5 * Scores

DR 



Linear Classifier—Predictions are Linear
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Linear Classifier: Predictions are Linear!
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Interpreting a Linear Classifier
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Interpreting a Linear Classifier
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Interpreting a Linear Classifier
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Interpreting a Linear Classifier
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Interpreting a Linear Classifier
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Interpreting a Linear Classifier
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Instead of stretching pixels into columns, we 
can equivalently stretch rows of W into images!
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Interpreting a Linear Classifier
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Instead of stretching pixels into columns, we 
can equivalently stretch rows of W into images!
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Interpreting a Linear Classifier—Visual Viewpoint
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Linear classifier has one 
“template” per category

Instead of stretching pixels into columns, we 
can equivalently stretch rows of W into images!

Justin Johnson January 12, 2022Lecture 3 - 21

Interpreting a Linear Classifier
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Interpreting a Linear Classifier—Visual Viewpoint
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Linear classifier has one 
“template” per category

A single template cannot capture 
multiple modes of the data

e.g. mustard bottles can rotate

Instead of stretching pixels into columns, we 
can equivalently stretch rows of W into images!
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Interpreting a Linear Classifier
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Interpreting a Linear Classifier—Geometric Viewpoint
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Interpreting a Linear Classifier: Geometric Viewpoint
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Interpreting a Linear Classifier—Geometric Viewpoint
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Interpreting a Linear Classifier: Geometric Viewpoint
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Interpreting a Linear Classifier—Geometric Viewpoint
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Interpreting a Linear Classifier: Geometric Viewpoint
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Interpreting a Linear Classifier—Geometric Viewpoint
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Interpreting a Linear Classifier: Geometric Viewpoint
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 28
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Interpreting a Linear Classifier—Geometric Viewpoint
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Interpreting a Linear Classifier—Geometric Viewpoint
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 30
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)

Interpreting a Linear Classifier—Geometric Viewpoint
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Hard Cases for a Linear Classifier
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Hard Cases for a Linear Classifier

Lecture 3 - 32
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Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)
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So Far: Defined a linear score function

Lecture 3 - 35

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Given a W, we can 
compute class scores 
for an image x.

But how can we 
actually choose a 
good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain
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Given a W, we can 
compute class scores 
for an image, x.

But how can we actually 
choose a good W?

master chef can

cracker box

sugar box

tomato soup can

mustard bottle
tuna fish can

gelatin box
potted meat can

mug

large marker
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So Far: Defined a linear score function
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Given a W, we can 
compute class scores 
for an image x.

But how can we 
actually choose a 
good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

TODO:

1. Use a loss function to quantify 
how good a value of W is

2. Find a W that minimizes the 
loss function (optimization)
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A loss function measures how 
good our current classifier is

Low loss = good classifier

High loss = bad classifier

Also called: objective function, 
cost function
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A loss function measures how 
good our current classifier is

Low loss = good classifier
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Also called: objective function, 
cost function

Negative loss function 
sometimes called reward 
function, profit function, utility 
function, fitness function, etc.
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A loss function measures how 
good our current classifier is

Low loss = good classifier

High loss = bad classifier

Also called: objective function, 
cost function

Negative loss function 
sometimes called reward 
function, profit function, utility 
function, fitness function, etc.

Given a dataset of examples
{(xi, yi)}N

i=1
where  is an image and 

            is a (discrete) label

xi
yi
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A loss function measures how 
good our current classifier is

Low loss = good classifier

High loss = bad classifier

Also called: objective function, 
cost function

Negative loss function 
sometimes called reward 
function, profit function, utility 
function, fitness function, etc.

Given a dataset of examples
{(xi, yi)}N

i=1
where  is an image and 

            is a (discrete) label

xi
yi

Loss for a single example is
Li( f(xi, W), yi)
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A loss function measures how 
good our current classifier is

Low loss = good classifier

High loss = bad classifier

Also called: objective function, 
cost function

Negative loss function 
sometimes called reward 
function, profit function, utility 
function, fitness function, etc.

Given a dataset of examples
{(xi, yi)}N

i=1
where  is an image and 

            is a (discrete) label

xi
yi

Loss for a single example is
Li( f(xi, W), yi)

Loss for the dataset is average 
of per-example losses:

L =
1
N ∑

i

Li( f(xi, W), yi)
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#
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3.2cat
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5.1
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Lecture 3 - 43
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function! = # $!;& # $ = & | ( = !! = exp ,"
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Unnormalized log-
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Unnormalized 
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must be >=0

exp( )⋅
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43
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car
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Unnormalized log-
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3.2
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-1.7
Unnormalized 
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Probabilities

0.13
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Probabilities 
must sum to 1

normalize

sugar
mug
cracker

DR 

( ) ( ) 
( ) 

( ) 



Cross-Entropy Loss
Multinomial Logistic Regression

50

Justin Johnson January 12, 2022

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function! = # $!;& # $ = & | ( = !! = exp ,"

∑# exp ,#

Unnormalized log-
probabilities (logits)

3.2
5.1

-1.7
Unnormalized 
probabilities

24.5
164.0
0.18

Probabilities 
must be >=0

exp( )⋅

Probabilities

0.13
0.87
0.00

Probabilities 
must sum to 1

normalize

Justin Johnson January 12, 2022

Cross-Entropy Loss (Multinomial Logistic Regression)
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Want to interpret raw classifier scores as probabilities
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car
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5.1
-1.7
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164.0
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0.87
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must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(See EECS 445 or EECS 545)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

"! = − log( ) = *! | , = -!
Li = − log(0.13)

= 2.04
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∑
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∑# exp ,#

"! = − log( ) = *! | , = -!

Maximize probability of correct class
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Cross-Entropy Loss (Multinomial Logistic Regression)
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Maximize probability of correct class Putting it all together:

Q: What is the min / 
max possible loss Li?

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

+$ = − log- . = /$ | 0 = 1$ .! = − log exp ,$!
∑# exp ,#

Putting it all together
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probabilities / logits

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

"! = − log( ) = *! | , = -!

Maximize probability of correct class

Justin Johnson January 12, 2022

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 53

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min / 
max possible loss Li?

! = # $!;& # $ = & | ( = !! = exp ,"
∑# exp ,#

+$ = − log- . = /$ | 0 = 1$ .! = − log exp ,$!
∑# exp ,#

Putting it all together

Q: If all scores are 
small random values, 
what is the loss?

A: −log(
1
C

)

log(
1
10

) ≈ 2.3
59

sugar
mug
cracker

DR 

( ) ( ) 
( ) 

( ) 

( ) 
( ) 

( ) 



Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 58

Loss

Score for 
correct class

Highest score 
among other classes

DR 
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 59

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 59

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 61

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1

Justin Johnson January 12, 2022

Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1sugar
mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 63

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0

= max(0, 1.3 - 4.9 + 1) 
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 63

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0

= max(0, 1.3 - 4.9 + 1) 
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1sugar

mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 64

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

= max(0, 2.2 - (-3.1) + 1) 
+max(0, 2.5 - (-3.1) + 1)

= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 64

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

= max(0, 2.2 - (-3.1) + 1) 
+max(0, 2.5 - (-3.1) + 1)

= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1sugar

mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1sugar
mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

DR 
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Q: What happens to the 
loss if the scores for the 
mug image change a bit?
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1sugar

mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 67

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Q2: What are the min 
and max possible loss?

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1sugar

mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 68

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Q3: If all the scores 
were random, what 
loss would we expect?

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1

Multiclass SVM Loss
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:
+$ =&

%&#!
max 0, 3% − 3#! + 1sugar

mug

cracker
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 1$ , /$
(1$ is image, /$ is label)

Let  3 = 4 1$ ,5 be scores

Then the SVM loss has the form:

+$ =&
%&#!

max 0, 3% − 3#! + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 75

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
slightly change the scores of the last 
datapoint?

A: Cross-entropy loss will change;
SVM loss will stay the same

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 75

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
slightly change the scores of the last 
datapoint?

A: Cross-entropy loss will change;
SVM loss will stay the same

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1

SVM loss will change for the 2nd
SVM loss will stay the same for 1st and 3rd example
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Cross-Entropy vs SVM Loss

Lecture 3 - 77

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
double the score of the correct class 
from 10 to 20?

A: Cross-entropy loss will decrease,
SVM loss still 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1

Cross-Entropy vs SVM Loss
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 77

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
double the score of the correct class 
from 10 to 20?

A: Cross-entropy loss will decrease,
SVM loss still 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1

Cross-Entropy vs SVM Loss

76
Justin Johnson January 12, 2022

Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

+$ = − log exp 3#!
∑% exp 3%

!! =*
"#$$

max 0, /" − /$$ + 1
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Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space

Justin Johnson January 12, 2022

Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)
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Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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Recap: Loss Functions quantify preferences

Lecture 3 - 79

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: Linear classifier

Softmax: !! = − log %&' (%$
∑& %&' (&

SVM: !! = ∑"#$$max 0, /" − /$$ + 1

/ = " #;%, 7 = %# + 7
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Recap: Loss Functions quantify preferences

Lecture 3 - 79

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: Linear classifier

Softmax: !! = − log %&' (%$
∑& %&' (&

SVM: !! = ∑"#$$max 0, /" − /$$ + 1

/ = " #;%, 7 = %# + 7
Q: How do we find the best W,b?

DR 
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y-L----------



80

Next time: Regularization + Optimization
DR 

W2 -

Negative gradient 
direction 

Original W 

W 1 -



Task brainstorming!
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Robot Morning Assistant

Robot Setting up Surgical Instruments in Operating Rooms

Robot Library Book Sorter

LEGO Sorting and Storage Automation System

Micro-Soldering Precision Robot

Adaptive Puzzle Assembly Assistant

Robot that can fold clothes

Robot that can be a service dog

Robot that be a steward

Robot that can tie someone's shoes

Robot that can administer first aid and CPR

Robot that can wrap gifts

Robot can assemble a smartphone with dexterous hands

Robotic arm massages for people

Robotic arms can assist people without arms

Robotic toothbrush
Robotic coffee maker

Robot for helping paraplegia patients move

Robot Chef Assistant

Robot Syringe Administrator

Bedside Book Reading Assistant Robot

Robot cooking dumplings

Robot calibrating piano

Robot ironing shirts

Robot calibrating piano

Robot for Disaster Response and Recovery

Robot for Multi-Surface Cleaning

Robot for watering plants

Robot for manipulating components on a spacecraft

Robot for feeding or grooming the pet

Robot Underwater Coral Reef Restoration

Robot Performing Minimally Invasive Surgery

Robot Recycling Electronic Waste

Robot Cutting Vegetables

Robot Assisting in Plant Harvesting

Robot-Assisted Bed Making

Robot that retrieves basketballs
Robot in an Airplane

Robot to change a baby's diapers

Robot that cooks spaghetti

Robot that changes car oil

Robot that plays chess
Robot to do laundry and fold my clothes

Domestic companion robot to play Table Tennis(TT)

Grocery Shopper and stock refilling robot

Robot Rinsing dishes and arranging in dishwasher

Monitoring a power loom

Robotic Violinist

Robot organizing a fridge

Robot dispensing medication

Robot charging all the electronic devices in the home:

DR 



Task brainstorming!
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Robot Manipulation

Next brainstorming exercise: 
How will you collect data? What is the input to your 

DL? What is the output of your DL? …

Deep Learning X

DR 
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DeepRob
Lecture 3
Linear Classifiers
University of Minnesota

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

DR 

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



