

Overview

- Motivation behind diffusion models
- Denoising Diffusion Probabilistic Models
 - Diffusion Process and Reverse Diffusion Process
 - Training and Sampling a Diffusion Model
 - Results from a Diffusion Model that we trained
- Conditioned v/s Unconditioned Diffusion
- Policy Learning
- Toy Problem
- Diffusion Policy on Real Robots
 - Advantages
 - Network Architect
 - Evaluation & Results

Image Output ~ Generated using ChatGPT - 40

Text Input ~ "Generate an image of me delivering a presentation on diffusion models."

Text Input ~ "Generate an image where the attendees are getting bored during my presentation on diffusion policies."

Image Output ~ Generated using ChatGPT - 40

Text Input ~ 'Generate an image of me delivering a presentation on diffusion models.'

Text Input ~ 'Generate an image of Porsche 911'

Overview

Motivation behind diffusion models

- Denoising Diffusion Probabilistic Models
 - Diffusion Process and Reverse Diffusion Process
 - Training and Sampling a Diffusion Model
 - Results from a Diffusion Model that we trained
- Conditioned v/s Unconditioned Diffusion
- Policy Learning
- Toy Problem
- Diffusion Policy on Real Robots
 - Advantages
 - Network Architect
 - Evaluation & Results

Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models

Jonathan Ho UC Berkeley jonathanho@berkeley.edu

Ajay Jain UC Berkeley ajayj@berkeley.edu

Pieter Abbeel UC Berkeley pabbeel@cs.berkeley.edu

Abstract

We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our implementation is available at https://github.com/hojonathanho/diffusion.

Ref: Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, pp.6840-6851.

Denoising Diffusion Probabilistic Models

Diffusion Process / Adding Noise

Ref: Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, pp.6840-6851.

Reverse Diffusion Process / Removing Noise

Joint probability of the states x1, x2, ..., xT in a Markov chain, given the initial state x0.

$$\prod_{t=1}^{T} q(\mathbf{x}_t | \mathbf{x}_{t-1}), \qquad q(\mathbf{x}_t | \mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

 $q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \sqrt{1 - \beta_t} \cdot \mathbf{x}_{t-1} + \sqrt{\beta_t} \cdot \text{noise}$

Ref: Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, pp.6840-6851.

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \sqrt{1-eta_t} \ \cdot$$

C

Ref: Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, pp.6840-6851.

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \sqrt{1 - eta_1} \cdot x_0 + \sqrt{eta_1} \cdot ext{noise}$$

- $\beta 1 = 0.0001$, $\beta 2 = 0.0003$, $\beta 3 = 0.0005$
- noise = 5
- input = 10

q(X1|X0) = (
$$\sqrt{(1-0.0001)*10}$$
) + ($\sqrt{0.0001*5}$) = 10.0494
q(X2|X1) = ($\sqrt{(1-0.0003)*9.9999}$) + ($\sqrt{0.0003*5}$) = 10.1344
q(X3|X2) = ($\sqrt{(1-0.0005)*1.0012}$ + ($\sqrt{0.0005*5}$) = **10.24**

 $q(\mathbf{x}_t | \mathbf{x}_0) = \sqrt{\bar{lpha}_t} \cdot \mathbf{x}_0 + \sqrt{1 - \bar{lpha}_t} \cdot ext{noise}$

- $\alpha = 0.9999$, $\alpha = 0.9997$, $\alpha = 0.9995$
- $\alpha' = 0.9999$, $\alpha' = 0.9996$, $\alpha' = 0.9991$
- noise = 5
- input = 10

q(X3|X0) = $\sqrt{(0.9991)*10} + \sqrt{(1-0.9991)*5} = 10.14$

Ref: Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, pp.6840-6851.

Diffusion Process / Adding Noise

Timestep 0

Timestep 100

Timestep 200

Ref: Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, pp.6840-6851.

$q(\mathbf{x}_t | \mathbf{x}_0) = \sqrt{\bar{lpha}_t} \cdot \mathbf{x}_0 + \sqrt{1 - \bar{lpha}_t} \cdot ext{noise}$

Reverse Diffusion / Removing Noise

Reverse Diffusion Process / Removing Noise

 $\mathbf{x}_{t-1} = rac{1}{\sqrt{lpha_t}} \left(\mathbf{x}_t - rac{1}{\sqrt{2}} \right)$

Ref: Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, pp.6840-6851.

$$p_T \coloneqq p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t), \qquad p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta})$$

This is what the model is trying to learn

$$rac{1-lpha_t}{\sqrt{1-arlpha_t}}\cdot oldsymbol{\epsilon}_ heta(\mathbf{x}_t,t)ig)+\sigma_t\cdot Z$$

Where, $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\sigma_t^2 = \beta_t$

Overview

- Diffusion Process and Reverse Diffusion Process • Training and Sampling a Diffusion Model Results from a Diffusion Model that we trained

- Motivation behind diffusion models • Denoising Diffusion Probabilistic Models Conditioned v/s Unconditioned Diffusion
- Policy Learning
- Toy Problem
- Diffusion Policy on Real Robots
 - Advantages
 - Network Architect
 - Evaluation & Results

Training a Diffusion Model

Ref: Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, pp.6840-6851.

Training a Diffusion Model

Sampling from a Diffusion Model

Ref: Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, pp.6840-6851.

Overview

Motivation behind diffusion models

- Denoising Diffusion Probabilistic Models
 - Diffusion Process and Reverse Diffusion Process
 - Training and Sampling a Diffusion Model
- Results from a Diffusion Model that we trained Conditioned v/s Unconditioned Diffusion
- Policy Learning
- Toy Problem
- Diffusion Policy
 - Advantages
 - Network Architect
 - Evaluation & Results

Denoising Diffusion Probabilistic Models

Stanford Cars Image Dataset

Hardware: RTX 3090 Ti Train Time: 1.5 days **Epochs:** 500

Denoising Diffusion Probabilistic Models

Diffused Cars!

Overview

- Motivation behind diffusion models
- Denoising Diffusion Probabilistic Models

 - Training and Sampling a Diffusion Model
- Conditioned v/s Unconditioned Diffusion
- Policy Learning
- Toy Problem
- Diffusion Policy on Real Robots
 - Advantages
 - Network Architect
 - Evaluation & Results

• Diffusion Process and Reverse Diffusion Process • Results from a Diffusion Model that we trained

Training a Diffusion Model

Unconditioned v/s Conditioned

$$oldsymbol{\epsilon}_{ heta}(\mathbf{x}_t,t)$$

$$\mathbf{x}_{t-1} = rac{1}{\sqrt{lpha_t}} \left(\mathbf{x}_t - rac{1-lpha_t}{\sqrt{1-ar{lpha}_t}} \cdot oldsymbol{\epsilon}_ heta(\mathbf{x}_t,t)
ight) + \sigma_t \cdot Z$$

$$oldsymbol{\epsilon}_{ heta}(\mathbf{x}_t,t,y)$$

$$x_{t-1} = rac{1}{\sqrt{lpha_t}} \left(x_t - rac{1-lpha_t}{\sqrt{1-ar lpha_t}} \cdot ilde \epsilon_ heta(x_t,t,y)
ight) + \sigma_t \cdot Z$$

Conditioned Diffusion

$\widetilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{x}_{t}, t, y) = \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) + \lambda(\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t, y) - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t))$

Overview

- Motivation behind diffusion models
- Denoising Diffusion Probabilistic Models

 - Training and Sampling a Diffusion Model
- Conditioned v/s Unconditioned Diffusion
- Policy Learning
- Toy Problem
- Diffusion Policy on Real Robots
 - Advantages
 - Network Architect
 - Evaluation & Results

 Diffusion Process and Reverse Diffusion Process • Results from a Diffusion Model that we trained

Policy Learning

Policy Learning

Policy: Given current observations, Policy tells a robot what to do next.

Policy: Given current observations, Policy tells a robot what to do next.

Policy Learning

$A = \pi(O)$

Image Source: https://www.lakeelsinorehonda.com/blogs/5482/9-things-you-didnt-know-about-self-driving-cars

Policy Learning

Policy: Given current observations, Policy tells a robot what to do next.

$A = \pi(O)$

Image Source: https://www.lakeelsinorehonda.com/blogs/5482/9-things-you-didnt-know-about-self-driving-cars

Policy Learning

Policy: Given current observations, Policy tells a robot what to do next.

Policy

 $A = \pi(O)$

Image Source: https://www.lakeelsinorehonda.com/blogs/5482/9-things-you-didnt-know-about-self-driving-cars

Policy Learning

Policy: Given current observations, Policy tells a robot what to do next. $A = \pi(O)$

Policy can be hardcoded or can be learned through data(**Policy Learning**)

Image Source: https://www.lakeelsinorehonda.com/blogs/5482/9-things-you-didnt-know-about-self-driving-cars

Policy Learning

Policy: Given current observations, Policy tells a robot what to do next. $A = \pi(O)$

Toy Problem Definition

Toy Problem Definition

Toy Problem Definition

Robot End Effector need to move from Start to the End

Toy Problem Definition

- Robot End Effector need to move from Start to the End .
- End Effector **X** location(*State*) is defined by two variable $(x, y) : x, y \in [0, 1000]$
 - Example: EFF is at (400, 800)

Toy Problem Definition

- Robot End Effector need to move from Start to the End .
- End Effector **X** location(*State*) is defined by two variable $(x, y) : x, y \in [0, 1000]$
 - Example: EFF is at (400, 800)
- Action is defined by two variables $(x, y) : x, y \in [0, 1000]$
 - Example: Go to (405, 790)

- We formulate our problem as a Supervised Learning problem.

- We formulate our problem as a Supervised Learning problem.
- Let's say we collected data from human demonstration to complete the task

- We formulate our problem as a Supervised Learning problem.
- Let's say we collected data from human demonstration to complete the task***

- We formulate our problem as a Supervised Learning problem.
- Let's say we collected data from human demonstration to complete the task***
- Every dot in the plot represents action taken by robot's end effector

Now we have "State" to "Action" mapping to train our Model.

Now we have "State" to "Action" mapping to train our Model.

ate/ XI @	
servation Y 500	- - >
servation Y	00

X	0	12	25	38	50	62	75	88	100	112	125	138	150	162	 175
Y	500	512	524	535	545	556	565	574	583	591	599	607	614	621	628

Now we have "State" to "Action" mapping to train our Model.

52	75	88	100	112	125	138	150	162	175	
56	565	574	583	591	599	607	614	621	628	
00	112	125	138	150	162	175	188	200	212	
33	591	599	607	614	621	628	634	640	646	

- It takes time to infer from the model, robot will be idle for a this time?

- It takes time to infer from the model, robot will be idle for a this time? - Move the robot while model is predicting in parallel.

- It takes time to infer from the model, robot will be idle for a this time?
- Move the robot while model is predicting in parallel.
- Only having information about current location is enough??

- It takes time to infer from the model, robot will be idle for a this time?
- Move the robot while model is predicting in parallel.
- Only having information about current location is enough??
- Provide history of states

- It takes time to infer from the model, robot will be idle for a this time?
- Move the robot while model is predicting in parallel.
- Only having information about current location is enough??
- Provide history of states
- Only predicting the next Action is not efficient, motion will be Zig-Zaggy

- It takes time to infer from the model, robot will be idle for a this time?
- Move the robot while model is predicting in parallel.
- Only having information about current location is enough??
- Provide history of states
- Only predicting the next Action is not efficient, motion will be Zig-Zaggy
- Predict sequence of actions

- For Toy Example:
 - Observation Horizon: 5
 - Prediction Horizon: 16
 - Action Horizon: 8 (used when policy is rolled out)

3	4	5	6	7	8	9	10	11	12	13	

Toy Model Denoising

With the setup discuss we train a Diff conditioned upon the last 5 states.

The output from the model is visualized in next slide.

With the setup discuss we train a Diffusion Model to predict next 16 actions

Overview

- Motivation behind diffusion models
- Denoising Diffusion Probabilistic Models

 - Training and Sampling a Diffusion Model
- Conditioned v/s Unconditioned Diffusion
- Policy Learning
- Toy Problem
- Diffusion Policy on Real Robots
 - Advantages
 - Network Architect
 - Evaluation & Results

 Diffusion Process and Reverse Diffusion Process • Results from a Diffusion Model that we trained

Transfer to Real Robot for Manipulation

Transfer to Real Robot for Manipulation

- Observation could include

- Robot EEF location & orientation
- Robot Joint Configuration
- Image Input
- Other information that you want your model to have....
- Action could be:
 - Robot EFF location & orientation
 - Robot Joint Configuration
 - Joint Velocities, etc.

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

Image Observation Sequence

Diffusion Policy Paper

How does the Maths transfer from Image Space?

Unconditional Image $\mathbf{x}^{k-1} = \alpha(\mathbf{x}^k - \gamma \varepsilon_{\theta}(\mathbf{x}^k, k) + \mathcal{N}(0, \sigma^2 I))$ generation

Unconditional In generation

Conditional Ima Generation

nage
$$\mathbf{x}^{k-1} = lpha(\mathbf{x}^k - \gamma arepsilon_{ heta}(\mathbf{x}^k,k) + \mathcal{N}(0,\sigma^2)$$

age
$$\mathbf{x}^{k-1} = lpha(\mathbf{x}^k - \gamma arepsilon_ heta(\mathbf{x}^k,\mathbf{y},k) + \mathcal{N}(0,\sigma^2)$$

Two Modifications:

Unconditional In generation

Conditional Ima Generation

nage
$$\mathbf{x}^{k-1} = lpha(\mathbf{x}^k - \gamma arepsilon_{ heta}(\mathbf{x}^k,k) + \mathcal{N}(0,\sigma^2)$$

age
$$\mathbf{x}^{k-1} = lpha(\mathbf{x}^k - \gamma arepsilon_ heta(\mathbf{x}^k,\mathbf{y},k) + \mathcal{N}(0,\sigma^2)$$

Two Modifications:

1. $Image(x) \rightarrow Action(A)$

Unconditional In generation

Conditional Ima Generation

nage
$$\mathbf{x}^{k-1} = lpha(\mathbf{x}^k - \gamma arepsilon_{ heta}(\mathbf{x}^k,k) + \mathcal{N}(0,\sigma^2)$$

age
$$\mathbf{x}^{k-1} = lpha(\mathbf{x}^k - \gamma arepsilon_ heta(\mathbf{x}^k,\mathbf{y},k) + \mathcal{N}(0,\sigma^2)$$

Two Modifications:

- 1. $Image(x) \rightarrow Action(A)$
- 2. Denoising conditioned on observation(O)

Unconditional In generation

Conditional Ima Generation

nage
$$\mathbf{x}^{k-1} = lpha(\mathbf{x}^k - \gamma arepsilon_{ heta}(\mathbf{x}^k,k) + \mathcal{N}(0,\sigma^2)$$

age
$$\mathbf{x}^{k-1} = lpha(\mathbf{x}^k - \gamma arepsilon_ heta(\mathbf{x}^k,\mathbf{y},k) + \mathcal{N}(0,\sigma^2)$$

Two Modifications:

- 1. $Image(x) \rightarrow Action(A)$
- 2. Denoising conditioned on observation(O)

Unconditional In generation

Conditional Ima Generation

Action Predicti

$$\begin{aligned} \mathbf{x}^{k-1} &= \alpha(\mathbf{x}^k - \gamma \varepsilon_{\theta}(\mathbf{x}^k, k) + \mathcal{N}(0, \sigma^2 \\ \end{aligned} \\ \end{aligned} \\ \mathbf{x}^{k-1} &= \alpha(\mathbf{x}^k - \gamma \varepsilon_{\theta}(\mathbf{x}^k, \mathbf{y}, k) + \mathcal{N}(0, \sigma^2 \\ \end{aligned} \\ \end{aligned}$$

Two Modifications:

- 1. $Image(x) \rightarrow Action(A)$
- 2. Denoising conditioned on observation(O)

Unconditional In generation

Conditional Ima Generation

Action Predicti

suomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available:

$$\begin{aligned} \mathbf{x}^{k-1} &= \alpha(\mathbf{x}^k - \gamma \varepsilon_{\theta}(\mathbf{x}^k, k) + \mathcal{N}(0, \sigma^2 \\ \end{aligned} \\ \end{aligned} \\ \mathbf{x}^{k-1} &= \alpha(\mathbf{x}^k - \gamma \varepsilon_{\theta}(\mathbf{x}^k, \mathbf{y}, k) + \mathcal{N}(0, \sigma^2 \\ \end{aligned} \\ \end{aligned}$$

Diffusion Policy Paper

What advantages does using diffusion for learning policy have?

1. MultiModal Action Distribution

If half of the data say move right and the other half says move left:

1. MultiModal Action Distribution

If half of the data say move right and the other half says move left: Simple MLPs -> Move Center

1. MultiModal Action Distribution

Diffusion Policy

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

If half of the data say move right and the other half says move left: Simple MLPs -> Move Center

1. MultiModal Action Distribution

Diffusion Policy

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

If half of the data say move right and the other half says move left: Simple MLPs -> Move Center

1. MultiModal Action Distribution

If half of the data say move right and the other half says move left: Simple MLPs -> Move Center

Diffusion Policy

Figure 3. Multimodal behavior. At the given state, the end-effector (blue) can either go left or right to push the block. **Diffusion Policy** learns both modes and commits to only one mode within each rollout. In contrast, both **LSTM-GMM** Mandlekar et al. (2021) and IBC Florence et al. (2021) are biased toward one mode, while BET Shafiullah et al. (2022) fails to commit to a single mode due to its lack of temporal action consistency. Actions generated by rolling out 40 steps for the best-performing checkpoint.

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

For a Image size of: 64*64

Output Dimensions: 12288

Allows joint inference of sequence of Actions.

x	807	33	274	458	-629	1062	-413	3	698	735	262	293	1603	339	492	571
Y	671	483	551	404	514	765	517	545	348	492	493	425	519	494	234	842

Toy example:

(2 * 16) -> 32 dimensional output

Allows joint inference of sequence of Actions.

x	807	33	274	458	-629	1062	-413	3	698	735	262	293	1603	339	492	571
Y	671	483	551	404	514	765	517	545	348	492	493	425	519	494	234	842

Toy example:

6-DOF Manipulator:

(2 * 16) -> 32 dimensional output

(6 * 16) -> 96 dimensional output

Allows joint inference of sequence of Actions.

x	807	33	274	458	-629	1062	-413	3	698	735	262	293	1603	339	492	571
Y	671	483	551	404	514	765	517	545	348	492	493	425	519	494	234	842

Toy example:

6-DOF Manipulator:

Dual 6-DOF arm Manipulator: with Gripper Control

(2 * 16) -> 32 dimensional output

(6 * 16) -> 96 dimensional output

(14 * 16)-> 224 dimensional output

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

Because diffusion model directly predict the gradient of energy function

Because diffusion model directly predict the gradient of energy function

Figure 1. Policy Representations. a) Explicit policy with different types of action representations. b) Implicit policy learns an energy function conditioned on both action and observation and optimizes for actions that minimize the energy landscape c) Diffusion policy refines noise into actions via a learned gradient field. This formulation provides stable training, allows the learned policy to accurately model multimodal action distributions, and accommodates high-dimensional action sequences.

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

Because diffusion model directly predict the gradient of energy function

Figure 1. Policy Representations. a) Explicit policy with different types of action representations. b) Implicit policy learns an energy function conditioned on both action and observation and optimizes for actions that minimize the energy landscape c) Diffusion policy refines noise into actions via a learned gradient field. This formulation provides stable training, allows the learned policy to accurately model multimodal action distributions, and accommodates high-dimensional action sequences.

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [O. Available: https://arxiv.org/abs/2303.04137

Slides by Prof. Yang Song: <u>https://www.youtube.com/watch?v=wMmqCMwuM2Q&t=4141s</u>

The key challenge for building complex generative models

Data distribution is extremely complex for high dimensional data.

How to build a complex model to fit the data distribution?

Slides by Prof. Yang Song: <u>https://www.youtube.com/watch?v=wMmqCMwuM2Q&t=4141s</u>

Small Maths Detour

The key challenge for building complex generative models

Slides by Prof. Yang Song: <u>https://www.youtube.com/watch?v=wMmqCMwuM2Q&t=4141s</u>

The key challenge for building complex generative models

Tackling the intractable normalizing constant

Approximating the normalizing constant

Energy-based models [Ackley et al. 1985, LeCun et al. • 2006]

Tackling the intractable normalizing constant

Approximating the normalizing constant

· Energy-based models [Ackley et al. 1985, LeCun et al. 2006]

Tackling the intractable normalizing constant

Approximating the normalizing constant

Energy-based models [Ackley et al. 1985, LeCun et al. 2006]

Using restricted neural network models

- Autoregressive models [Bengio & Bengio 2000, van ٠ den Oord et al. 2016]
- Normalizing flow models [Dinh et al. 2014, Rezende ٠ & Mohamed 2015]
- Variational auto-encoders [Kingma & Welling . 2014, Rezende et al. 2014]

Approximating the normalizing constant

Energy-based models [Ackley et al. 1985, LeCun et al. 2006]

Using restricted neural network models

- Autoregressive models [Bengio & Bengio 2000, van 0 den Oord et al. 2016]
- Normalizing flow models [Dinh et al. 2014, Rezende 0 & Mohamed 2015]
- Variational auto-encoders [Kingma & Welling а. 2014, Rezende et al. 2014]

Approximating the normalizing constant

Energy-based models [Ackley et al. 1985, LeCun et al. 2006]

Using restricted neural network models

- Autoregressive models [Bengio & Bengio 2000, van den Oord et al. 2016]
- Normalizing flow models [Dinh et al. 2014, Rezende . & Mohamed 2015]
- Variational auto-encoders [Kingma & Welling] 0 2014, Rezende et al. 2014]

Modeling the Generation Process Only

Generative Adversarial Networks (GANS) . [Goodfellow et al. 2014]

Because diffusion model directly predict the gradient of energy function

Figure 1. Policy Representations. a) Explicit policy with different types of action representations. b) Implicit policy learns an energy function conditioned on both action and observation and optimizes for actions that minimize the energy landscape c) Diffusion policy refines noise into actions via a learned gradient field. This formulation provides stable training, allows the learned policy to accurately model multimodal action distributions, and accommodates high-dimensional action sequences.

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [O. Available: https://arxiv.org/abs/2303.04137

using policy rollouts in simulation).

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

3. Stable Training

Figure 6. Training Stability. Left: IBC fails to infer training actions with increasing accuracy despite smoothly decreasing training loss for energy function. Right: IBC's evaluation success rate oscillates, making checkpoint selection difficult (evaluated

Overview

- Motivation behind diffusion models
- Denoising Diffusion Probabilistic Models

 - Training and Sampling a Diffusion Model
- Conditioned v/s Unconditioned Diffusion
- Policy Learning
- Toy Problem
- Diffusion Policy on Real Robots
 - Advantages
 - Network Architect
 - Evaluation & Results

 Diffusion Process and Reverse Diffusion Process • Results from a Diffusion Model that we trained

Closed Loop Action-Sequence Prediction

Closed Loop Action-Sequence Prediction

0			0		0	0	4.0		4.0	4.0	
 3	4	5	6	7	8	9	10	11	12	13	14

Closed Loop Action-Sequence Prediction

Output: Action Sequence

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

a) Diffusion Policy General Formulation

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

Image Source: https://www.assemblyai.com/blog/how-imagen-actually-works/

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

Image Source: https://www.assemblyai.com/blog/how-imagen-actually-works/

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

Image Source: https://www.assemblyai.com/blog/how-imagen-actually-works/

Network Architecture for ε_{θ}

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

Overview

- Motivation behind diffusion models
- Denoising Diffusion Probabilistic Models

 - Training and Sampling a Diffusion Model
- Conditioned v/s Unconditioned Diffusion
- Policy Learning
- Toy Problem
- Diffusion Policy on Real Robots
 - Advantages
 - Network Architect
 - Evaluation & Results

 Diffusion Process and Reverse Diffusion Process • Results from a Diffusion Model that we trained

Real World Push-T task: - trained with 136 Proficient-Human demonstrations

	Human	an IBC		LST	M-GMM	Diffusion Policy				
	Demo	pos	vel	pos	vel	T-E2E	ImgNet	R3M	E2E	
IoU	0.84	0.14	0.19	0.24	0.25	0.53	0.24	0.66	0.80	
Succ%	1.00	0.00	0.00	0.20	0.10	0.65	0.15	0.80	0.95	
Dur.	20.3	56.3	41.6	47.3	51.7	57.5	55.8	31.7	22.9	

- Results on 20 rollouts
- Rollout is Successful if IoU
 Last Step > min(IoU from human demonstrations)

- Max. steps 600 in a rollout

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

Evaluation

Real World Push-T task: - trained with 136 Proficient-Human demonstrations

C. Chi et al., "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," arXiv preprint arXiv:2303.04137, 2024. [Online]. Available: https://arxiv.org/abs/2303.04137

Evaluation

Visual Results

Let's go to the website to see the policies performance in action: https://diffusion-policy.cs.columbia.edu

Overview

- Motivation behind diffusion models Denoising Diffusion Probabilistic Models
 - Training and Sampling a Diffusion Model
- Conditioned v/s Unconditioned Diffusion
- Policy Learning
- Toy Problem
- Diffusion Policy on Real Robots
 - Advantages
 - Network Architect
 - Evaluation & Results

 Diffusion Process and Reverse Diffusion Process • Results from a Diffusion Model that we trained

Next Lecture: Student Lecture 7 **Dual-arm Manipulation**

Happy Thanksgiving! No class on 11/27

