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Dual-arm Manipulation - Learning
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What is Bimanual Manipulation?

e The term “Bimanual Manipulation” originates
from psychological studies on motor skills

e Refers specifically to tasks requiring the use and
coordination of both hands acting on an object

e Used in developmental psychology studies of
infants and their motor skill development

e Later used in robotics after robotic bimanual
manipulators were developed

“Role-differentiated bimanual manipulation
(RDBM) is a complementary movement of both
hands that requires differentiation between actions

of the hands.”

Kimmerle, Marliese et al. “Development of role-differentiated bimanual manipulation during
the infant's first year.” Developmental psychobiology vol. 52,2 (2010): 168-80.
doi:10.1002/dev.20428
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Kimmerle, Marliese et al. “Development of role-differentiated bimanual manipulation during
the infant's first year.” Developmental psychobiology vol. 52,2 (2010): 168-80.
doi:10.1002/dev.20428

“Behavioral studies provide evidence that
bimanual tasks are more than the simple sum
of unimanual tasks as they have to consider
spatial and temporal coordination as well as the
interactions between both hands.”

| |

Fig. 1. Examples of bimanual actions: Asymmetric such as stir (a) and cut
(b), and symmetric such as rolling (c).

Quote and figure from F. Krebs and T. Asfour, "A Bimanual Manipulation Taxonomy," in
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11031-11038, Oct. 2022, doi:
10.1109/LRA.2022.3196158
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Humanoid Robots are a
subset of Bimanual Robots
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Why is Bimanual Manipulation important?

We want robots to help
humans in their
environments.
It makes sense to build
bimanual manipulation
robots!

Objects in human
environments are built for
dual-arm agents
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Why is Bimanual Manipulation important?

Many policy training
methods require expert

demonstrations , ,
It’s much easier to

teleoperate a bimanual

robot to record expert
demonstrations since we

already innately know

how to perform these
bimanual tasks ourselves!
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Why is Bimanual Manipulation important?

s
'l
. . '
— ‘ ’ .
'
, .u
' - .

’
i

ALOHA 2 & P8

https://www.youtube.com/watch?v=PHXQFE-Rteo
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Why is Bimanual Manipulation important?

. Similarity to operator
. Teleoperation becomes near-trivial as the operator’s innate bimanual
manipulation skills can be applied to the robot’s operation

From Dual arm manipulation -- A survey

C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Dimarogonas, D. Kragic
KTH Royal Institute of Technology

DOI 10.1016/j.robot.2012.07.005
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manipulation skills can be applied to the robot’s operation

. Manipulability
. The ability to manipulate both ends of a task (i.e. peg-in-hole or nut+bolt screw
assembly) provides more avenues towards solving a task

. Cognitive Motivation
. Humans have an innate understanding of bimanual manipulation, so it becomes
much easier to relate to and understand what a manipulator is trying to do

. Human form factor
. Robots are often expected to operate in environments intended for human use,
thus it motivates the creation of humanlike (and thus, bimanual) robots

From Dual arm manipulation -- A survey

C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Dimarogonas, D. Kragic
KTH Royal Institute of Technology

DOI 10.1016/j.robot.2012.07.005
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Select milestones from the past 30 years

1994

Yaskawa Motoman introduces
the MRC system

Allowed for synchronized
control and coordination of
two robotic arms by
“teaching” it a sequence of
movements, or |
programming ataskona PC = =

IMI https://ifr.ora/robot-history



https://ifr.org/robot-history
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Select milestones from the past 30 years
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Da Vinci surgical robot system

Enables less invasive surgeries
through the use of smaller robotic
tools with bimanual teleoperation
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Select milestones from the past 30 years

https://robotsquide.com/robots/davinci

Intuitive Surgical releases first
Da Vinci surgical robot system

Enables less invasive surgeries
through the use of smaller robotic
tools with bimanual teleoperation

1999
1994 2006
Yaskawa Motoman introduces Personal Robotics Lab develops
the MRC system Herb (Home Exploring Robot

Butler)

Allowed for synchronized
control and coordination of
two robotic arms by
“teaching” it a sequence of
movements, or
programming a task on a PC

Bimanual robot for domestic

tasks developed by the Personal
Robotics Lab at CMU (now at UW !!t!.
Seattle) i)
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Timeline of Bimanual Manipulators

Select milestones from the past 30 years
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Intuitive Surgical releases first Rethink Robotics releases Baxter
Da Vinci surgical robot system
Now-defunct Rethink Robotics
Enables less invasive surgeries releases Baxter, a bimanual
through the use of smaller robotic : manufacturing robot that can be
tools with bimanual teleoperation programmed simply by moving its

arms by hand

1999 2012

1994 2006 2013
Yaskawa Motoman introduces Personal Robotics Lab develops Boston Dynamics develops first
the MRC system Herb (Home Exploring Robot iteration of Atlas Robot

Butler)

Allowed for synchronized Developed as a disaster-response
control and coordination of Bimanual robot for domestic robot for the Defence Advanced
two robotic arms by tasks developed by the Personal Research Projects Agency
“teaching” it a sequence of Robotics Lab at CMU (now at UW an
movements, or Seattle) | 111 https://robotsguide.com/robots/atlas2013
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Intuitive Surgical releases first
Da Vinci surgical robot system

Enables less invasive surgeries
through the use of smaller robotic :
tools with bimanual teleoperation programmed simply by moving its

Rethink Robotics releases Baxter

Now-defunct Rethink Robotics
releases Baxter, a bimanual
manufacturing robot that can be

arms by hand

https://aloha-unleashed.qithub.io/

ALOHA Unleashed

Diffusion policy-backed imitation
learning framework capable of
learning complex bimanual tasks
with deformable objects

1999 2012 2024
1994 2006 2013
Yaskawa Motoman introduces Personal Robotics Lab develops Boston Dynamics develops first
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Butler)
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Humanoid Robots, too!

2020

2000 1X Technologies releases

EVE h id robot
NASA Completes first umanol

iteration of Robonaut https://robotsquide.com/robots/eve

https://robotsquide.com/robots/pr2

| Willow Garage releases
. 4 humanoid PR2 Robot
i. o https://robotsquide.com/robots/pr2
3 ‘j’ "
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ROBOTIC APPLE HARVESTERS

I-JML{’C‘:DS://Www.voutu be.com/watch?v=TUOmMZCcRKbI

.

Why stop at two manipulators?

&

PUT THEIR ARMS TO THE TEST

)
9

.,(

Multi-arm robotic apple
picker

While the robot has more
than two arms, it’s
effectively multiple
single-arm manipulation
tasks in parallel

Robots with more arms
tend to be more specialized
towards specific tasks

We want a robot that can
be generalized to as many
domestic tasks as possible


http://www.youtube.com/watch?v=TUOmZCcRKbI&t=17
https://www.youtube.com/watch?v=TUOmZCcRKbI
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Why stop at two manipulators?

Recall, we want to be able to perform as many
tasks as possible in a domestic environment.
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Task Variety

bimanual manipulation

f |
l l

uncoordinated coordinated
| |
’ ' : '
unimanual bimanual loosely coupled tightly coupled
rtght ' ‘ l l
i |i; ' asymmetric symmetric
left dommant right dominant

Fig. 2. Bimanual manipulation taxonomy. Tasks are classified based on the aspects coordination, interaction, hand role and symmetry

Figure from F. Krebs and T. Asfour, "A Bimanual Manipulation Taxonomy," in IEEE

Robotics and Automation Letters, vol. 7, no. 4, pp. 11031-11038, Oct. 2022, doi:
10.1109/LRA.2022.3196158




Task Variety

No contact detected between hand groups

TRUE FALSE
TRl < Vin AND (right hand | xg —x Il — ”xR,O . xL,O” < Xsym,th AND
group contains only hand) (contact detected even with minimal model inflation)
TRUE FALSE TRUE FALSE
| ' '
1Dl < ve, AND (left hand 1D,l| < vy, AND (left hand TRl < |19,
group contains only hand) group contains only hand)
TRUE FALSE
TRUE FALSE TRUE | FALSE
: ' : I ' ' '

no_action uni_left uni_right loosely tightly sym tightly asym_ right tightly asym left

Fig. 4. Decision tree for the rule-based classification

Figure from F. Krebs and T. Asfour, "A Bimanual Manipulation Taxonomy," in IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 11031-11038, Oct. 2022, doi:
10.1109/LRA.2022.3196158
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Coordination

With regards to the task(s)...

® Fach type of the task as defined by the
decision tree shown previously
warrants its own planning strategy
o Sometimes the arms are each doing
their own, uncoordinated tasks
o Other times forces transfer between
end effectors
o Constraints for each effector can
interact with each other
® The category of a task can change
partway through!

Information adapted from F. Krebs and T. Asfour, "A Bimanual Manipulation Taxonomy," in
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11031-11038, Oct. 2022, doi:

10.1109/LRA.2022.3196158
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Coordination

With regards to the task(s)...  With regards to the

® Each type of the task as defined by the manipulators...
decision tree shown previously
warrants its own planning strategy
o Sometimes the arms are each doing
their own, uncoordinated tasks
o Other times forces transfer between
end effectors
o Constraints for each effector can
interact with each other
® The category of a task can change
partway through!

® The addition of a second manipulator
constitutes an added, dynamic set of
obstacles for each manipulator

® Imposes a whole new set of
constraints upon the configuration
space (more details later)

® Manipulators take on “roles” (leader +
follower, fixed transformation...)

Information adapted from F. Krebs and T. Asfour, "A Bimanual Manipulation Taxonomy," in
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11031-11038, Oct. 2022, doi:

10.1109/LRA.2022.3196158
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Methodologies

Control based method

1K
. Control
. Manipulation

Policy learning methods

. ALOHA
. VLAS

T

L\



Kinematic-based methodologies
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Forward Kinematics (FK)

. What is “forward kinematics”

https://www.mathworks.com/discovery/inverse-kinematics.html
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. Singular solution for each configuration

https://www.mathworks.com/discovery/inverse-kinematics.html



https://www.mathworks.com/discovery/inverse-kinematics.html

Forward Kinematics (FK)

. Given each joint position, determine the end effector pose
. Singular solution for each configuration

https://www.mathworks.com/discovery/inverse-kinematics.html



https://www.mathworks.com/discovery/inverse-kinematics.html

Forward Kinematics (FK)

. Each joint has its own coordinate frame
. Transformations between each join represented by homogeneous

transformations
| 2,
Tlo T21 15
%- ’H '?
"\’) g o _ T3,
- ' \"6’4 = %
& g

Ré? T;»U — T(’)LUTS |
T =TT TsT; T3 TG

https://rpm-lab.qithub.io/CSCI5551-Spr24/assets/slides/lecO6 manipulation 1 fk decision making.pdf
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Inverse Kinematics (1K)

. What is “inverse kinematics”?

https://www.mathworks.com/discovery/inverse-kinematics.htmi
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Inverse Kinematics (1K)

. Given the end effector pose, determine each joint position
. Can be many solutions for each joint position
. Summarized by these equations (humerical):

L,
T End Effector

s

https://www.mathworks.com/discovery/inverse-kinematics.htmi
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Inverse Kinematics (1K)

. Given the end effector pose, determine each joint position
. Can be many solutions for each joint position
. Summarized by these equations (humerical):

AX, = X7 — X,,

Start with error from end point

https://rpm-lab.qithub.io/CSCI5551-Spr24/assets/slides/lecO8 manipulation 3 ik jacobian.pdf

https://www.mathworks.com/discovery/inverse-kinematics.htmi
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Inverse Kinematics (1K)

. Given the end effector pose, determine each joint position
. Can be many solutions for each joint position
. Summarized by these equations (humerical):

Aqn — J(qn)_lAXn

Find the direction to move

https://rpm-lab.qithub.io/CSCI5551-Spr24/assets/slides/lecO8 manipulation 3 ik jacobian.pdf

https://www.mathworks.com/discovery/inverse-kinematics.htmi
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Inverse Kinematics (1K)

. Given the end effector pose, determine each joint position
. Can be many solutions for each joint position
. Summarized by these equations (humerical):

Aq, = J(q,) 'A%,
dn+1 = dn + YAQn

https://rpm-lab.qithub.io/CSCI5551-Spr24/assets/slides/lecO8 manipulation 3 ik jacobian.pdf

Take a step in that direction!

,__\\
'l
M https://www.mathworks.com/discovery/inverse-kinematics.htmi
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Forward vs Inverse Kinematics

Forward Kinematics (FK)
Joint Angles e End Effector Pose
1, 92> 93,94 Gy x,y,0

Inverse Kinematics (IK)

https://www.mathworks.com/discovery/inverse-kinematics.htmi
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In the case of dual arm manipulation, is it as
simple as applying IK to both arms?



https://www.aimodels.fyi/papers/arxiv/peract2-benchmarking-learning-robotic-bimanual-manipulation-tasks

@

In the case of dual arm manipulation, is it as
simple as applying IK to both arms?

Maybe a bit more
involved...



https://www.aimodels.fyi/papers/arxiv/peract2-benchmarking-learning-robotic-bimanual-manipulation-tasks

®Bimanual manipulation kinematics
Challenges:

. The transform between the end effectors must remain fixed

Cohn, Thomas, Seiji Shaw, Max Simchowitz, and Russ Tedrake. "Constrained bimanual planning with analytic inverse
kinematics." In 2024 |IEEE International Conference on Robotics and Automation (ICRA




®Bimanual manipulation kinematics
challenges:

. Configuration space becomes a non-linear mess with obstacles and

other arm
Obstacles in T2

* Workspace: set of all reachable eeff points

. . . . . 360)
* Configuration space: all possible configurations -
for the robots joints A - Q,
Yo
, y 180 T
\ '|| @ 4
\‘ \\ 8 |
\'. “\,"*Q 90 T |
I kY W
0 s
; ; 45 90 135 180
Circular obstacle in workspace C-space representation
CSCI 5551 - Spring 2024 Slide borrowed from Michigan Robotics autorob.org

https://rom-lab.github.io/CSCI5551-Spr24/assets/slides/lec11 planning 3 confiquration spaces.pdf
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®Bimanual manipulation kinematics
challenges:

. The transform between the end effectors must remain fixed
. Configuration space becomes a non-linear mess with obstacles and
other arm

* Workspace: set of all reachable eeff points
* Configuration space: all possible configurations
for the robots joints

Workspace is w.r.t. end-effector position (x,y)
C-space is w.r.t. joint angles (©),0,)

https://rpm-lab.qgithub.io/CSCI15551-Spr24/assets/slides/lec11_planning_3_configuration_spaces.pdf

M. CSCI 5551 - Spring 2024 Slide borrowed from Michigan Robotics autorob.or
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®Bimanual manipulation kinematics
challenges:

. Numeric IK becomes very computationally expensive




®Bimanual manipulation kinematics
challenges:

. The transform between the end effectors must remain fixed

. Configuration space becomes a non-linear mess with obstacles and
other arm

. Numeric IK becomes very computationally expensive
. How would we tackle all of these?

Cohn, Thomas, Seiji Shaw, Max Simchowitz, and Russ Tedrake. "Constrained bimanual planning with analytic inverse
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Constrained Bimanual Planning with Analytic Inverse Kinematics

Thomas Cohn, Seiji Shaw, Max Simchowitz, and Russ Tedrake

Abstract— In order for a bimanual robot to manipulate an

object that is held by both hands, it must construct motion
plans such that the transformation between its end effectors
remains fixed. This amounts to complicated nonlinear eguality
constraints in the configuration space, which are difficult for
trajectory optimizers. In addition, the set of feasible configura-
tions becomes a measure zero set, which presents a challenge
to sampling-based motion planners. We leverage an analytic
solution to the inverse Kinematics problem to parametrize the
configuration space, resulting in a lower-dimensional repre-
sentation where the set of valid configurations has positive
measure. We describe how to use this parametrization with
existing motion planning algorithms, including sampling-based
approaches, trajectory optimizers, and techniques that plan
through convex inner-approximations of collision-free space.

I. INTRODUCTION

Enabling bimanual robots to execute coordinated actions
with both arms is essential for achieving (superjhuman-like
skill in automation and home contexts. There exists a variety
of tasks that are only solvable when two arms manipulate in
concert [I]). such as camrying an unwicldy object, folding
clothes, or assembling parts. In many manipulation tasks,
one gripper can be used to provide fixture to the manipuland,
while the other performs the desired action [2)]; such tasks
include opening a bottle, chopping vegetables, and tightening
a bolt. Furthermore. some tools explicitly require two arms
to use, such as hand mixers, rolling pins. and can openers.

To accomplish many of these desired tasks, the motion
of the robot arms becomes subject to equality constraints
imposed in task space. For example, when moving an object
that is held by both hands, the robot must ensure that the
transformation between the end effectors remains constant.
Such task space constraints appear as complicated nonlincar
equality constraints in configuration space. posing a major
challenge to traditional motion planning algorithms.

In the existing literature. there are general techniques
for handling task-space constraints in configuration-space
planning. Sampling-based planners can project samples onto
the constraint manifold [3] or use numerical continuation []]
to construct piccewise-linear approximations. Constraints can
also be relaxed [§] or enforced directly with trajectory
optimization [l]. In the case of certain bimanual planning
problems. there is additional structure that is not exploited

This work was supporsed by Amazon.com, PO No. 2D-06310236,
the MIT Quest for Intelligence, and the National Science Founda.
ton Graduate Research Fellowship Program under Gramt No. 2131064,
Anry opinsons, findings, and coaclussons or recommendations expressed
in this material are those of the author(s) and do ot necessanly
reflect the views of the Natwonal Sciemce Foendatton. The authors
are with the Compuer Science and Amnificial Intelligence Laboratory
(CSAIL). Massachusetts Institute of Techmology, Cambridge, Massachusetts
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Fig. 1: Hardware setup for our expenments. The two arms
must work together to move an objects between the shelves.,
avoiding collisions and respecting the kinematic constraint.

by these gencral methods. For certain classes of robot arms.
analytic inverse kinematics (analytic IK) can be used to map
an end-effector pose (along with additional parameters to
resolve kinematic redundnacy) to joint angles in closed form.
Such solutions are specific to cenain classes of robot arms,
but are a powerful tool to be leveraged if available. Fortu-
nately. analytic IK is available for many popular robot arms
available today. including the KUKA iiwa. See Figurcm.

If a robot must move an object that it 1s holding with both
hands, we propose constructing a plan for one “controllable™
arm, and then the other “subordinate™ arm can be made to
follow it via an analytic IK mapping. Conhigurations where
the subordinate arm cannot reach the end-effector of the
primary arm. or where doing so would require violating joint
limits, are treated as obstacles. In this way, we parametrize
the constraint manifold so that the feasible set has positive
measure in the new planning space. Because we no longer
have to consider the equality constraints, sampling-based
planning algorithms can be applied without modification. We
can also differentiate through the IK mapping. enabling the
direct application of trajectory optimization approaches.

The remainder of this paper is organized as follows.
First. we give an overview of the existing techniques used
for constrained motion planning. and describe the available
analytic IK solutions. Then, we present our parametriza-
tion of the constraint manifold for bimanual planning, and
discuss 1ts relevant geometric and topological properties.
We describe the slight modifications which are necessary
to adapt standard planning algorithms (including sampling-
based planning and trajectory optimization) to operate in
this framework. We then present a technique for generating

Cohn, Thomas, Seiji Shaw, Max Simchowitz, and Russ Tedrake. "Constrained bimanual planning with analytic inverse
kinematics." In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6935-6942. IEEE, 2024.




Analytic IK

. Rather than gradient descent - find closed form solution for joint
angles instead...




Analytic IK

. Rather than gradient descent - find closed form solution for joint
angles instead...

. Geometric algebra can be very difficult, many common configurations
are already solved
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Figure 1: Coordinate frames for UR arm. Joints rotate around the z-axes and are Table 1: Denavit-
pictured at §; = 0 for 1 <1 < 6. Hartenberg parame-

ters for the UR Arms

Z6

Figure 2: Illustration of the geometry of finding #,. This is essentially an overhead view of the robot. looking
down on the x-v plane.

https://www.universal-robots.com/products/ur5-robot/

https://repository.qatech.edu/server/api/core/bitstreams/e56759bc-92c8-43df-aa62-0dc47581459d/content
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Analytic IK

. Rather than gradient descent - find closed form solution for joint

angles instead...

. Geometric algebra can be very difficult, many common configurations

are already solved

https://www.kuka.com/en-se/products/robotics-systems/industrial-robots/Ibr-iiwa
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6.2. Trajecrory example Fig. 1. Manipulator generic structure, joint variables and DH frames assigned. The 7-DoF manipulator model of LBR iiwa 7 R800 from KUKA AG is used to

depict the shape of an anthropomorphic arm without offsets.

To demonstrate the redundancy resolution strategy, we createa an example linear trajectory to pe perrormea Dy the robot
manipulator. The robot is purposely positioned at a configuration near its mechanical joint limits. The robot starts at the
joint angles in degrees:

f° = [—5.4101 —26.4986 —48.1542 -61.6500 152.6198 114.4466 8.]8]2] (37)
which correspond to the global configuration GC = 3, arm angle ¥ = 58.5882° and pose:
-0.2634 -09112 -0.3166 -0.1174

e 03014 -0.3895 0.8703 -0.1464 (38)
771 -09164 0.1338 0.3773 1.0203
0 0 0 1

The manipulator performs a linear motion in Cartesian space, keeping the same end-effector orientation but translating
its position along the z-axis (°R; ;) of a distance of 0.25 m, ending at the target pose:

-0.2634 -09112 -0.3166 —0.1966

opd _ 03014 -0.3895 0.8703 0.0712

771 -09164 0.1338 0.3773 1.1146
0 0 0 1

The path is interpolated and a new pose is passed to the redundancy resolution algorithm (Fig. 10) every iteration. The
global configuration remains unchanged throughout the trajectory, and the arm angle varies according to the parameters
defined (« and K).”

(39)

https://www.sciencedirect.com/science/article/pii/S0094114X17306559
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Analytic IK

. Rather than gradient descent - find closed form solution for joint
angles instead...
. Look towards existing software solutions, OpenRAVE IK Fast
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Self-motion

. TL;DR - There a a degree of freedom that exists by virtue of 7 DoF

arms (such as the Kuka) that allows for movement without changing
end-effector position.

. Show JS example...

Fig. 3: Continuous (left) and discrete (right) self-motions of
a 7DoF arm. The continuous self-motion yields an additional
degree of freedom for the planner to consider, whereas the
discrete self-motion 1s not utilized.

Cohn, Thomas, Seiji Shaw, Max Simchowitz, and Russ Tedrake. "Constrained bimanual planning with analytic inverse
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Constrained configuration space

. Constantly checking configuration space to determine the following:

. Are there any collisions?
. |Is the transformation between end effectors the same?

. Constraint manifold - set of possible configurations that satisfy the

systems constraints
. Requires offline planning to build

P

3
J., 1.5 P Ty

= e S = - 2 25

(a) 3-DOF robot (b) Constraint manifold

https://www.semanticscholar.org/paper/Learning-the-Metric-of-Task-Constraint-Manifolds-Zha-Liu/c3e11e5447a30b9f8
ea16d73866bdd8ddccfecf6
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Quick aside - Manifolds

. Set of points resembling Euclidean space
. Connectedness is defined

sphere

double torus

» 7\“ B
RA /

\

e = \
Ty
A

cross surface

Klein bottle

https://en.wikipedia.org/wiki/Manifold

https://mathworld.wolfram.com/CompactManifold.html
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Quick aside - Manifolds

. Set of points resembling Euclidean space
. Connectedness is defined

sphere
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double torus

cross surface

Klein bottle

https://en.wikipedia.org/wiki/Manifold
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Path and motion planning

. Planning occurs in configuration space using constraint manifold

Trajopt (Baseline) IK-Trajopt (Ours)

Atlas-BiRRT (Baseline) IK-BiRRT (Ours)

Manilold Approximate Metric

(a) Manifold approximate graph (b) Manifold approximate matric

Zha, Fusheng, Yizhou Liu, Wei Guo, Pengfei Wang, Mantian Li, Xin Wang, and Jingxuan Li. "Learning the
metric of task constraint manifolds for constrained motion planning." Electronics 7, no. 12 (2018): 395.

https://www.youtube.com/watch?v=vmujyn4EqTU

Cohn, Thomas, Seiji Shaw, Max Simchowitz, and Russ Tedrake. "Constrained bimanual planning with analytic inverse
kinematics." In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6935-6942. IEEE, 2024.



https://www.youtube.com/watch?v=vmujyn4EgTU

Path and motion planning

. Common path planning/graph algorithms can be used

Fig. 6. (Left) Atlas of a sphere. Each polygonal patch corresponds to a given

Pi: a conservative approximation of the validity area for the associated chart.

(Right) A roadmap can be extracted from the atlas where the nodes are the chart
centers and where the edges are given by the neighborhood relations between

Fig. 2. Two RRTs of 500 samples built on a torus-like manifold. (Top) With charts. This roadmap could be used to devise collision free paths between any

an ambient space sampling method, the exploration focuses on the outer parts two given configurations.

of the torus. and many samples do not produce a tree extension. (Bottom) With

an AtlasRRT, the diffusion process is largely independent of the ambient space.

which improves the coverage.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6352929

(a)

(b) (c)

Fig. 1. Example of exploration with AtlasRRT. (a) Full atlas of the bidimen-
sional configuration space of the cyclooctane. (b) AtlasRRT intertwines the
construction of a bidirectional RRT with an atlas construction. The trees rooted
at the start and goal configurations are represented in yellow and green. respec-
tively. (c) When the two RRTs are connected. a solution path (represented in
red) can be readily computed. Observe that only a small fraction of the full atlas
is necessary to connect the query configurations.

L. Jaillet and J. M. Porta, "Path Planning Under Kinematic Constraints by Rapidly Exploring Manifolds," in IEEE Transactions on Robotics, vol. 29, no. 1, pp. 105-117, Feb.

2013, doi: 10.1109/TR0O.2012.2222272.

keywords: {Manifolds;Kinematics;Path planning;Joints;Space exploration;Robot kinematics;Higher-dimensional continuation;kinematic constraints;manifolds;path planning},


https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6352929
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Intuition for the papers method

. Constrain manifold is created using with obstacle collisions for each
arm

. If the transformation between end effectors differs, that is treated as
an obstacle

. The left arm is controlled

. Right arm follows

. Any path planning algorithm
can be used for trajectories

Cohn, Thomas, Seiji Shaw, Max Simchowitz, and Russ Tedrake. "Constrained bimanual planning with analytic inverse




Results - setup

Trajopt (Baseline) IK-Trajopt (Ours)

Atlas-BiRRT (Baseline) IK-BiRRT (Ours)

Fig. 1: Hardware setup for our experiments. The two arms
must work together to move an objects between the shelves,
avoiding collisions and respecting the Kinematic constraint.

Cohn, Thomas, Seiji Shaw, Max Simchowitz, and Russ Tedrake. "Constrained bimanual planning with analytic inverse
kinematics." In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6935-6942. IEEE, 2024.




Results

Method Top to Middle | Middle to Bottom | Bottom to Top
Trajopt 4.58% [ 2.85% 4.35%
Atlas-BiRRT 4.72 5.04 6.61
Atlas-PRM 5.43 [ 567 6.99
IK-Trajopt 4.24% ' 1.81% 8.87
IK-BiRRT 991 8.69 11.42
[K-PRM 1.67 [ .03 9.21
IK-GCS 2.09 | 332 5.62

Method Top to Middle | Middle to Bottom | Bottom to Top
Trajopt | 10.37 l 5.36 7.25
Atlas-BiRRT 140.82 155.91 201.32
Atlas-PRM 0.69 0.86 0.96
IK-Trajopt | 19.48 I 18.70 2229
IK-BiRRT | 49.42 52.53 54.10
IK-PRM 0.46 0.64 0.61
IK-GCS : 341 2.32 3.32

TABLE I: Path lengths (measured in configuration space) for
each method with various start and goal configurations. Paths
marked with an asterisk were not collision-free.

path arc length (feet)

TABLE II: Online planning time (in seconds) for each
method with various start and goal configurations. Atlas-

BiRRT runtimes were only averaged over successful runs

(not including timeouts).

Cohn, Thomas, Seiji Shaw, Max Simchowitz, and Russ Tedrake. "Constrained bimanual planning with analytic inverse
kinematics." In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6935-6942. IEEE, 2024.
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Trajopt 4.58% | 2.85% 4.35%
Atlas-BiRRT 4.72 5.04 6.61
Atlas-PRM 5.43 [ 567 6.99
IK-Trajopt 4.24% ' 1.81% 8.87
IK-BiRRT 991 8.69 11.42
[K-PRM 1.67 [ 8.03 9.21
IK-GCS 2.09 | 3.32 5.62

TABLE I: Path lengths (measured in configuration space) for
each method with various start and goal configurations. Paths
marked with an asterisk were not collision-free.

path arc length (feet)

Method Top to Middle | Middle to Bottom | Bottom to Top
Trajopt | 10.37 ' 5.36 7.25
Atlas-BiRRT | 140.82 ’ 155.91 201.32
Atlas-PRM 0.69 0.86 0.96
IK-Trajopt | 19.48 18.70 2229
IK-BiRRT | 49.42 52.53 54.10
IK-PRM 0.46 0.64 0.61
IK-GCS | 341 2.32 3.32

TABLE II: Online planning time (in seconds) for each
method with various start and goal configurations. Atlas-

BiRRT runtimes were only averaged over successful runs
(not including timeouts).

Cohn, Thomas, Seiji Shaw, Max Simchowitz, and Russ Tedrake. "Constrained bimanual planning with analytic inverse
kinematics." In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6935-6942. IEEE, 2024.




esults
1x _ (Unconstrained) BiRRT

T

https://www.youtube.com/watch?v=vmujyn4EqTU

Cohn, Thomas, Seiji Shaw, Max Simchowitz, and Russ Tedrake. "Constrained bimanual planning with analytic inverse
kinematics." In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6935-6942. IEEE, 2024.
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Policy learning approaches




Methods

Recall:

Imitation Learning

@ IBC: Implicit Behavior Cloning

px‘cdiclcd }\lCdiL‘lCd E9 (O,a)
actions actions e
T T 5

Explicit Policy Implicit Policy

trgmm Eyloa)

@ @ @ argmin FEjy(o,a)

Uh\u\ ations observations actions acA

Figure 1. (a) In contrast to explicit policies, implicit policies leverage parameterized energy functions that take both observations (e.g. images) and
actions as inputs, and optimize for actions that minimize the energy landscape (b). For leamning complex, closed-loop, multimodal visuomotor tasks
such as precise block insertion (c) and sorting (d) from human demonstrations, implicit policies perform substantially better than explicit ones.

Much more sample efficient than RL!




ALOHA Unleashed

T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour, C. Finn, and A. Wahid. ALOHA unleashed: A simple recipe for robot
dexterity. In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/forum?id=gvdXE7ikHI.



ALOHA Unleashed - Data

 ALOHA allows
bimanual
teleoperation for data
collection

5 different tasks

* Tasks are somewhat
long horizon and
require precision and
dexterity

Insert Right Collar

-

T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour, C. Finn, and A. Wahid. ALOHA unleashed: A simple recipe for robot
dexterity. In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/forum?id=gvdXE7ikHI.




ALOHA Unleashed - Architecture

Noise
€ 2 €, €48 €49 €50
Proj. Proj. Proj. Proj. Proj. Proj.
CNN
X-Attn
CNN
Proj.  Proj.  Proj. Proj.  Proj.  Proj.
CNN QG tE 91TE ATE, Aug * E4g 949 + €49 50 * &5
Noisy Actions
Proprioception MLP Diffusion
Timestep

T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour, C. Finn, and A. Wahid. ALOHA unleashed: A simple recipe for robot
dexterity. In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/forum?id=gvdXE7ikHI.




ALOHA Unleashed - Architecture

* Encoder-decoder
architecture with
diffusion loss

* 4 cameras +
proprioception

* CNNs are ResNet-50s

* 50 diffusion steps(ie:
during inference decoder
runs 50 times) |

« e . . Proprioception ~ MLP Diffusion

* This is just diffusion T

policy!

X-Attn

IMI T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour, C. Finn, and A. Wahid. ALOHA unleashed: A simple recipe for robot
dexterity. In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/forum?id=gvdXE7ikHI.

ooooo

Noise

1111111111

Noisy Actions



ALOHA Unleashed - Results

* Messy demonstrations help
the agent learn to recover
from mistakes

Task Success Rate  Number of Demonstrations
ShirtEasy 75% ,

ShirtMessy 70% 8658 (5345 Easy; 3313 Messy)
LaceEasy 70% _

LaceMessy 40% 5133 (2212 Easy; 2921 Messy)
FingerReplace 75% 5247

Gearlnsert-1 95%

Gearlnsert-2 75% 4005
GearlInsert-3 40%

RandomKitchen-Bowl 95%

RandomKitchen-Bowl+Cup 65% 3198 (216 In-Domain)
RandomKitchen-Bowl+Cup+Fork 25%

T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour, C. Finn, and A. Wahid. ALOHA unleashed: A simple recipe for robot
dexterity. In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/forum?id=gvdXE7ikHI.



https://docs.google.com/file/d/1ERLa5BLUEwDhV0fCTUCyzSdpB57KzSu5/preview

L\

ALOHA Unleashed - Results

* Messy demonstrations help
the agent learn to recover
from mistakes

Num Demos

Success Rate

Task Number of Demonstrations
ShirtEasy 75% ,

ShirtMessy 70% 8658 (5345 Easy; 3313 Messy)
LaceEasy 70% ,

LaceMessy 40% 5133 (2212 Easy; 2921 Messy)
FingerReplace 75% 5247
Gearlnsert-1 95%

Gearlnsert-2 75% 4005
Gearlnsert-3 40%

95%
65%
25%

RandomKitchen-Bowl
RandomKitchen-Bowl+Cup
RandomKitchen-Bowl+Cup+Fork

3198 (216 In-Domain)

Task DP(S) DP (XS-LowRes) ACT (XS-LowRes)
Singlelnsertion (sim) 72 58 +3 32
Doublelnsertion (sim) 60 48 42 58
MugOnPlate (sim) 80 74 +0 40

Task DP(S) ACT (150M) Num Demos

8658

ShirtMessy (real) 70 25

* Qutperforms previous
methods significantly

T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour, C. Finn, and A. Wahid. ALOHA unleashed: A simple recipe for robot
dexterity. In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/forum?id=gvdXE7ikHI.
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ALOHA Unleashed - Results

* Ridiculous number of
demonstrations required

* Messy demonstrations help
the agent learn to recover

L\

from mistakes

Task Success Rate  Number of Demonstrations
ShirtEasy 75% ,

ShirtMessy 70% 8658 (5345 Easy; 3313 Messy)
LaceEasy 70% ,

LaceMessy 40% 5133 (2212 Easy; 2921 Messy)
FingerReplace 75% 5247
GearlInsert-1 95%

Gearlnsert-2 75% 4005
GearlInsert-3 40%

RandomKitchen-Bowl 95%

RandomKitchen-Bowl+Cup 65% 3198 (216 In-Domain)
RandomKitchen-Bowl+Cup+Fork 25%

T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour, C. Finn, and A. Wahid. ALOHA unleashed: A simple recipe for robot

Ridiculous amount of
demonstrations.

dexterity. In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/forum?id=gvdXE7ikHI.




VLAS - Briefly
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Language Instruction

*» “What should the robot do to {task}? A:"”

IMI Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan Foster, Grace Lam,
Pannag Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.



VLAS - Briefly

e Make use of LLMs

* Visual understanding
OpenVLA [Action De-Tokenizerj ] frOm S|gL|P and D|nOV2
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*» “What should the robot do to {task}? A:"

* Takes in visual observation + textual input

M Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan Foster, Grace Lam,
Pannag Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.



VLAS - Briefly

* Make use of LLMs
* Visual understanding
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*» “What should the robot do to {task}? A:"

Llama Tokenizer

* The output translates to
robot actions

Language Instructidp

* Takes in visual observation + textual input

M Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan Foster, Grace Lam,
Pannag Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.
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robot dataset

Internet-scale Open X-Embodiment Dataset Zero-shot in-distribution tasks
pre-training
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difficult tasks
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pack shelf flatten box

and many more!

unseen tasks

replace paper towel

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones,
Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and
Ury Zhilinsky. Physical Intelligence (2024). Available at https://www.physicalintelligence.company/download/piO.pdf.
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Next Lecture:

Foundational Models and Robot
Manipulation
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Reminder for Final Project Check-ins

Edstem post

12/04 Model Check-in: The presentations should include a discussion of the neural network models, loss

functions, details on the training data and the test data, visualization of data and the amount of data, loss
curves (train vs. test), and any other information you would like to share. Please upload your google-slides

(not more than 4 slides per group) as "G#_model_training" in this folder. DUe 9am 12/04

12/11 Evaluation Check-in: Using the trained model, how accurate is the task performance on the

manipulation task? What scenarios are you experimenting with, etc.? How is your method compared to
baseline(s)? What are your ongoing experiments? Please upload your google-slides (not more than 4

slides per group) as "G#_evaluation_baselines" in this folder. Due 9am 12/11
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[Group 7] Lecture 7
Dual-arm Manipulation - Learning
by Ryan Roche, Matt Rajala, Adit Kadepurkar

University of Minnesota




