

DeepRob

[Group 5] Lecture 5 Multisensory Learning + Manipulation by Mason Hawver, Ryan Diaz, and Hanchen Cui University of Minnesota

pp. 4177–4184, 2021.

adding slides to the deck mason - datagen hanchen- multimae ryan - learning with visuotactile data

intro to multimodal sensors

- Different sensors (camera, depth, audio, contact, etc, force and torque, temporal)
 - Structures (Dimensions and examples) [one each]
 - · Maps
 - · Clouds
 - Point cloud (Lidars, multi camera), gaussian splate [Hanchen]
 - Time series:
 - Force Torque, audio [Ryan]
 - This is not the only set of sensors...
- Intro to Multi Modal Learning wrt to Foundation models
 - · Multimodal (vision+language) vs multisensory (raw sensor data)
 - Inrto pretraining (foundation models) (quick) [mason]
 - individual [one each]
 - CNNs, ViTs for maps
 - Point++ for point clods
 - Time series models???? -> ask ryan (FFT, MLP)
 - Individual encoders (images (ResNet, ViT), force-torque (MLP, CausalConv, etc.), audio)
 - pretraining with multimodal data (add timeline stuff here) —<u>LLM vs VLM stuff [Hanchen]</u>

 - Multimae [hanchen]

Each person has one theme and take away - think about that when

cite the image/vid src slide for questions practice slides

Image, Depth, Segmentation, visual tactile (GelSight / bubble grippers!!!!) [Mason]
Multi Spectral images (all frequencies of light <- great for farming!) [Mason]

• MSVT, VTT, SVFL, AugInsert [Ryan] <- Using visuotactile data, [with audio] Hearing Touch, See Hear Feel

How do we sense and perceive the world?

How can **robots** sense and perceive the world?

RGB Color

3xWxH, uint8

Credit: Robomimic and Mason Hawver

2D Maps

Depth Segmentation

1xWxH, float

1xWxH, uint8

Credit: Robomimic and Mason Hawver

Visuotactile: Represent Tactile Information with Vision

Visuotactile: Represent Tactile Information with Vision

Credit: RPM Miles and Aaron, and TRI

Two Grayscale Images 2x1xWxH, unit8

Visuotactile: Represent Tactile Information with Vision

Vector Field, Map of Vectors: 2xWxH, floats

Credit: Rui Li and GelSight

Gel Sight, RGB Image: 3xWxH, unit8

D. F. Gomes, P. Paoletti, and S. Luo, "Generation of gelsight tactile images for sim2real learning," IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 4177–4184, 2021.

Visuotactile: Represent Tactile Information with Vision

2D Map of Histograms BinsxWxH, unit8

2D Maps - MultiSpectral

Credit: IdeaForge and Mathworks

Credit: IdeaForge and Mathworks

2D Maps - MultiSpectral

data structure: (N,X,Y,Z) unordered: permutation invariant

Zhang, Tong, et al. "A universal semantic-geometric representation for robotic manipulation." arXiv preprint arXiv:2306.10474 (2023).

3D Point Clouds Accurate geometric information

Force-Torque Sensing

R. P. Ubeda, S. C. Guti'errez Rubert, R. Zotovic Stanisic, and 'A. Perles Ivars, "Design and manufacturing of an ultra-low-cost custom torque sensor for robotics," Sensors, vol. 18, no. 6, 2018.

Force-Torque Sensing

R. P. Ubeda, S. C. Guti'errez Rubert, R. Zotovic Stanisic, and 'A. Perles Ivars, "Design and manufacturing of an ultra-low-cost custom torque sensor for robotics," Sensors, vol. 18, no. 6, 2018.

6-axis force-torque sensor along X,Y,Z axes relative to EEF frame

F/T measured using electrical signals

Force-Torque Sensing

R. P. Ubeda, S. C. Guti'errez Rubert, R. Zotovic Stanisic, and 'A. Perles Ivars, "Design and manufacturing of an ultra-low-cost custom torque sensor for robotics," Sensors, vol. 18, no. 6, 2018.

6-axis force-torque sensor along X,Y,Z axes relative to EEF frame

F/T measured using electrical signals

Hx6, float

Contact Audio Sensing

https://modularsynthlab.com/product/high-quality-piezo-contact-mi crophone-piezo-transducer-27mm-120cm-cable-mono-jack-3-5mm/? v=0b3b97fa6688

Contact Audio Sensing

https://modularsynthlab.com/product/high-quality-piezo-contact-mi crophone-piezo-transducer-27mm-120cm-cable-mono-jack-3-5mm/? <u>v=0b3b97fa6688</u>

Z. Liu, C. Chi, E. Cousineau, N. Kuppuswamy, B. Burchfiel, and S. Song, "Maniwav: Learning robot manipulation from in-the-wild audio-visual data," arXiv preprint arXiv:2406.19464, 2024.

Contact Audio Sensing Spectrograms: Transferring audio into the vision domain

1. Record an audio sample over time (i.e. last few seconds from contact microphone)

Contact Audio Sensing Spectrograms: Transferring audio into the vision domain

2. Extract frequencies for each time step

Credit: By Aquegg - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=5544473

Contact Audio Sensing Spectrograms: Transferring audio into the vision domain

3. Plot amplitudes of each frequency for each timestep

Credit: By Aquegg - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=5544473

These are not all the types of sensors...

How can we encode each sensor data type?

Credit: Attention Is All You Need and Wikipedia and PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

1.000

Classifying 2D Maps

Input Image 224 x 224 x 3

CNNs

ViTs

Encoding 2D Maps Task Encoding

Credit: Jeremy Jordan

Encoding 2D Maps Autoregressive Encoding

Measure reconstruction loss against original image

Credit: Jeremy Jordan

How to process point cloud data—pointnet

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

capture local geometric features 1 .hierarchical structure 2. multi-scale feature aggregation

Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." Advances in neural information processing systems 30 (2017).

Processing Time Series Data

Fourier Transform

https://mriguestions.com/fourier-transform-ft.html

(Mother Wavelet)

f(t)

Wavelet Transform

https://ccrma.stanford.edu/~jos/sasp/Continuous Wavelet Transform.html

Processing Time Series Data

RNNs / Attention

https://www.geeksforgeeks.org/introduction-to-recur rent-neural-network/#

Processing Time Series Data

RNNs / Attention

https://www.geeksforgeeks.org/introduction-to-recur rent-neural-network/#

Causal Convolution

Questions?

What is the difference between Multi*sensory* vs. Multi*modal* ?

H. Li, Y. Zhang, J. Zhu, S. Wang, M. A. Lee, H. Xu, E. Adelson, L. Fei-Fei, R. Gao, and J. Wu, "See, hear, and feel: Smart sensory fusion for robotic manipulation," in Conference on Robot Learning, pp. 1368–1378, PMLR, 2023.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., "Learning transferable visual models from natural language supervision," in International conference on machine learning, pp. 8748–8763, PMLR, 2021.

Putting it all together

Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks

Michelle A. Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese, Li Fei-Fei, Animesh Garg, Jeannette Bohg

> ICRA 2019 [Best Paper Award] T-RO 2020 [Extended Version]

How can we learn good latent representations for contact-rich tasks?

Reaching

M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg, "Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks," in 2019 International conference on robotics and automation (ICRA), pp. 8943–8950, IEEE, 2019.

Alignment Insertion

time (ms)

Idea: Decouple representation and policy learning

M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg, "Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks," in 2019 International conference on robotics and automation (ICRA), pp. 8943–8950, IEEE, 2019.

Idea: Decouple representation and policy learning

1. Learn latent embedding space through self-supervised learning

M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg, "Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks," in 2019 International conference on robotics and automation (ICRA), pp. 8943–8950, IEEE, 2019.

Idea: Decouple representation and policy learning

- 1. Learn latent embedding space through self-supervised learning
- 2. Use pretrained representation for policy learning

1. Learn latent embedding space through self-supervised learning

RGB Camera

Depth

Sensing modes

Force-Torque Sensor

Proprioception

1. Learn latent embedding space through self-supervised learning **Domain-specific** encoders

1. Learn latent embedding space through self-supervised learning **Domain-specific** encoders image encoder

M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg, "Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks," in 2019 International conference on robotics and automation (ICRA), pp. 8943–8950, IEEE, 2019.

CNN (FlowNet)

CNN (VGG-16)

M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg, "Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks," in 2019 International conference on robotics and automation (ICRA), pp. 8943–8950, IEEE, 2019.

1. Learn latent embedding space through self-supervised learning **Domain-specific** encoders

CNN (FlowNet)

CNN (VGG-16)

Causal Convolution Layer

1. Learn latent embedding space through self-supervised learning **Domain-specific** encoders

CNN (FlowNet)

CNN (VGG-16)

Causal Convolution Layer

Fully-Connected Network (MLP)

1. Learn latent embedding space through self-supervised learning

M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg, "Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks," in 2019 International conference on robotics and automation (ICRA), pp. 8943–8950, IEEE, 2019.

Multimodal Fusion

1. Simple concatenation

1. Learn latent embedding space through self-supervised learning

M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg, "Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks," in 2019 International conference on robotics and automation (ICRA), pp. 8943–8950, IEEE, 2019.

Multimodal Fusion

1. Simple concatenation

(very similar to VAEs)

1. Learn latent embedding space through self-supervised learning skip connections

1. Learn latent embedding space through self-supervised learning **Self-Supervised Objectives** skip connections

1. Learn latent embedding space through self-supervised learning **Self-Supervised Objectives** skip connections

1. Learn latent embedding space through self-supervised learning **Self-Supervised Objectives** skip connections

2. Use pretrained representation for policy learning

Visuo-Tactile Transformers for Manipulation

CoRL 2022

Yizhou Chen, Andrea Sipos, Mark Van der Merwe, Nima Fazeli

Focusing on contact-rich tasks

Pushing

Picking

Figure 3: Manipulation Tasks: We evaluate VTT on four tasks in Pybullet. We vary visual and physical parameters in each task.

Y. Chen, M. Van der Merwe, A. Sipos, and N. Fazeli, "Visuo-tactile transformers for manipulation," in Conference on Robot Learning, pp. 2026–2040, PMLR, 2023.

Door-Open

Peg-Insertion

Same decoupling with a new encoder!

AugInsert: Learning Robust Visual-Force Policies via Data Augmentation for Object Assembly Tasks

Ryan Diaz, Adam Imdieke, Vivek Veeriah, Karthik Desingh

arXiv Preprint 2024 [Under Review]

Different flavors of the same task

R. Diaz, A. Imdieke, V. Veeriah, and K. Desingh, "Auginsert: Learning robust visual-force policies via data augmentation for object assembly tasks," arXiv preprint arXiv:2410.14968, 2024.

Multisensory Encoding Architecture

R. Diaz, A. Imdieke, V. Veeriah, and K. Desingh, "Auginsert: Learning robust visual-force policies via data augmentation for object assembly tasks," arXiv preprint arXiv:2410.14968, 2024.

Multisensory Encoding Architecture

Tokenization and output representation inspired by Visuotactile Transformers

R. Diaz, A. Imdieke, V. Veeriah, and K. Desingh, "Auginsert: Learning robust visual-force policies via data augmentation for object assembly tasks," arXiv preprint arXiv:2410.14968, 2024.

Multisensory Encoding Architecture

R. Diaz, A. Imdieke, V. Veeriah, and K. Desingh, "Auginsert: Learning robust visual-force policies via data augmentation for object assembly tasks," arXiv preprint arXiv:2410.14968, 2024.

Latent cross-attention inspired by Perceiver/PerceiverIO

Hearing Touch: Audio-Visual Pretraining for Contact-Rich Manipulation

Jared Mejia, Victoria Dean, Tess Hellebrekers, Abhinav Gupta

ICRA 2024

Two key ingredients for improved manipulation: pretraining on large datasets and using multisensory input (with tactile data)

Two key ingredients for improved manipulation: pretraining on large datasets and using multisensory input (with tactile data)

How can we combine the two?

datasets and using multisensory input (with tactile data)

How can we combine the two?

Large internet-scale image datasets exist, but not much for tactile

. Mejia, V. Dean, T. Hellebrekers, and A. Gupta, "Hearing touch: Audio-visual pretraining for contact-rich manipulation," in 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6912–6919, 2024.

Two key ingredients for improved manipulation: pretraining on large

datasets and using **multisensory input** (with tactile data)

How can we combine the two?

Large internet-scale image datasets exist, but not much for tactile

Idea: Leverage *contact audio* as a tactile sensing mode to enable the use of internet-scale audio datasets for pretraining

. Mejia, V. Dean, T. Hellebrekers, and A. Gupta, "Hearing touch: Audio-visual pretraining for contact-rich manipulation," in 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6912–6919, 2024.

Two key ingredients for improved manipulation: pretraining on large

Hearing Touch: Audio-Visual Pretraining for Contact-Rich Manipulation

1 R3M **AVID** Large-scale pretraining

J. Mejia, V. Dean, T. Hellebrekers, and A. Gupta, "Hearing touch: Audio-visual pretraining for contact-rich manipulation," in 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6912–6919, 2024.

Framework

J. Mejia, V. Dean, T. Hellebrekers, and A. Gupta, "Hearing touch: Audio-visual pretraining for contact-rich manipulation," in 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6912–6919, 2024.

R3M: Trained on **Ego4D** (>3670 hours of egocentric human video) AVID: Trained on Audioset (>2 million 10-sec audio clips from YouTube)

Framework

J. Mejia, V. Dean, T. Hellebrekers, and A. Gupta, "Hearing touch: Audio-visual pretraining for contact-rich manipulation," in 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6912–6919, 2024.

Multisensory transformer for modality fusion

Framework

J. Mejia, V. Dean, T. Hellebrekers, and A. Gupta, "Hearing touch: Audio-visual pretraining for contact-rich manipulation," in 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6912–6919, 2024.

MLP policy network trained via behavior cloning

MultiMAE: Multi-modal Multi-task Masked Autoencoders

Roman Bachmann, David Mizrahi, Andrei Atanov, Amir Zamir

ECCV 2022

Masked autoencoder

motivation:

- 1. image is heavily redundant
- 2. computationally efficient

He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.

implementation:

- 1. mask rate: 75%
- 2. a light weight decoder
- 3. loss only calculate on masked patches

Masked Visual Pre-training for Motor Control

(a) masked visual pretraining

Xiao, Tete, et al. "Masked visual pre-training for motor control." arXiv preprint arXiv:2203.06173 (2022).

(b) learning motor control

MultiMAE pre-training objective

Bachmann, Roman, et al. "Multimae: Multi-modal multi-task masked autoencoders." European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022.

MultiMAE pre-training

Bachmann, Roman, et al. "Multimae: Multi-modal multi-task masked autoencoders." European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022.

Demonstration of cross-modal interaction

Thank you!

Next Lecture: **Student Lecture 6**

DeepRob

[Group 5] Lecture 5 Multisensory Learning + Manipulation by Mason Hawver, Ryan Diaz, and Hanchen Cui University of Minnesota

pp. 4177–4184, 2021.

