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https://docs.google.com/file/d/10haUnvXK0NLe_-_swKetZyDsZpcO20U2/preview


P4 is released - Due Nov 13th
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RGB Image Stream Depth Image Stream• Instructions available on the webpage

– Here: 

https://rpm-lab.github.io/CSCI5980-F24-Deep

Rob/projects/project4/

– Uses PROPS Pose Estimation Dataset

• Implement PoseCNN

• Autograder is available. 

• Due Wednesday, November 13th, 11:59 PM CT

https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project4/
https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project4/
https://rpm-lab.github.io/CSCI5980-F24-DeepRob/datasets/props-pose/


Team task - Data viz - Due Nov 6th
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RGB Image Stream Depth Image Stream



What is RGB-D data?
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RGB Image Stream Depth Image Stream

Source: Fu, H., Xu, D., Lin, S., & Liu, J. Object-based RGBD Image Co-segmentation with Mutex Constraint.
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RGB Image Stream Depth Image Stream

Organized and Unorganized point clouds   Organized and Unorganized point clouds   

Source : https://www.ac3filter.net/what-is-a-stereo/
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RGB Image Stream Depth Image Stream

Organized and Unorganized point clouds   Organized and Unorganized point clouds   

Source : https://www.ac3filter.net/what-is-a-stereo/
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RGB Image Stream Depth Image Stream

Organized and Unorganized point clouds   Organized and Unorganized point clouds   
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RGB Image Stream Depth Image Stream

Organized and Unorganized point clouds   Organized and Unorganized point clouds   

Source : https://www.ac3filter.net/what-is-a-stereo/
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RGB Image Stream Depth Image Stream

Organized and Unorganized point clouds   Organized and Unorganized point clouds   

Source : https://www.ac3filter.net/what-is-a-stereo/
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Organized and Unorganized point clouds   

Source : https://www.ac3filter.net/what-is-a-stereo/ Source: :https://www.blickfeld.com/blog/understanding-lidar-specifications/



Why depth matters in manipulation?

1
1

1.  Safe and Strategic Movement Planning

Source : Flacco, F., Kröger, T., De Luca, A., & Khatib, O. (2012). A depth space approach to human-robot collision avoidance. 

http://www.youtube.com/watch?v=k5OSme1Ti4g&t=42


Why depth matters in manipulation?
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2. Accurate Object Grasping

Source : https://www.youtube.com/watch?v=ry0mqY5I-04

http://www.youtube.com/watch?v=ry0mqY5I-04&t=96
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 Foundations for RGB-D based Robot Grasp Manipulation: 
Traditional Techniques Before Deep Learning
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 Foundations for RGB-D based Robot Grasp Manipulation: 
Traditional Techniques Before Deep Learning

1. Traditional Pose Estimation Techniques
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 Foundations for RGB-D based Robot Grasp Manipulation :

Traditional Methods Before Deep Learning : 

1. Traditional Pose Estimation Methods
2. Traditional Feature Extraction Methods
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Pose Estimation

Source : https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2020.616775/full



Traditional Pose Estimation Methods
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● Template Matching using RGB data                                              

Source : https://datahacker.rs/014-template-matching-using-opencv-in-python/

● Template Matching using RGB-D data
      

1. Enhanced Object Localization

2. Robust Matching Process                                       



Traditional Pose Estimation Methods
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● ICP (Iterative Closest Point)

Source:https://unibe-cas-assignment.readthedocs.io/en/late
st/assignment.registration.html

Source : Wan, T., Du, S., Xu, Y., Xu, G., Li, Z., Chen, B., & Gao, Y. (2019). RGB-D point 
cloud registration via infrared and color camera. 



Traditional Feature Extraction Methods
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● 3D SIFT  (Scale Invariant Feature Transformation)                                          

Source: "Comparison of 3D Interest Point Detectors and Descriptors for Point Cloud Fusion," ISPRS Annals of the 
Photogrammetry, Remote Sensing, and Spatial Information Sciences, vol. II-3, Sept. 2014, 



Traditional Feature Extraction Methods
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● 3D SURF  (Speeded-Up Robust Features)                                        

Source: Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. "Speeded-Up Robust Features (SURF)," Computer Vision and Image 
Understanding, vol. 110, no. 3, 2008, 
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Why to move to Deep Learning?

1.Sensitivity to Variations
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Why to move to Deep Learning?

1.Sensitivity to Variations

2.Handcrafted Features
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Why to move to Deep Learning?

1.Sensitivity to Variations

2.Handcrafted Features

3.Complexity in Scaling
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Let’s talk about deep neural network architectures 

for RGB-D with some examples:

●PoseCNN

●RGB-D Salient Object Detection



PoseCNN
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Object Pose Estimation

1. 3D Translation

2. 3D Rotation

Transformation from object to camera coordinate system 
Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.



Limitations of Existing Works

1. Feature - based methods:

a. Texture-less objects
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.



Limitations of Existing Works

2. Template - based methods:

a. Occlusion of objects
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.



Limitations of Existing Works

3. Image pixel to 3D coordinates mapping:

a. Symmetrical objects.
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.



Objectives of PoseCNN:

1. Develop a CNN-based 6D Pose Estimation Model Robust 

to Occlusions

2. Collect a Large-Scale RGB-D Dataset with pose annotation 

for Model Training

3. Define a Training Loss Function for Symmetrical Objects
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CNN-based 6D Pose Estimation Model
1) PoseCNN:

● Takes only RGB image as input for estimating 3D translation and rotation
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.



CNN-based 6D Pose Estimation Model
2) PoseCNN + Iterative closest point(ICP):

● Takes both RGB image as input for estimating 3D translation and rotation 
and uses depth for refinement.
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018. and RPM lab props dataset - https://drive.google.com/file/d/15rhwXhzHGKtBcxJAYMWJG7gN7BLLhyAq/view

RGB image

Depth Image
ICP refinement



Dataset
The collected dataset has:

● 3D models (with set of 3D points)
● RGB images 
● Depth images
● 6D pose annotations
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018. and RPM lab props dataset - https://drive.google.com/file/d/15rhwXhzHGKtBcxJAYMWJG7gN7BLLhyAq/view



Feature extraction 
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1/8 1/16

original image size

Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.



Semantic Labels
1. Feature embedding 

2. Softmax score for each pixel
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.



3D Translation Estimation

Required Output  : 

Method:

1. Object center: 
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.

Focal lengths of the camera

Principle points



3D Translation Estimation

2. Find Object center: 
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.

point1 n1

point2
n2

point3

n3

point4

n4 Unit length vector

Pixel in each object



3D Translation Estimation

2. Find Object center: 
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.

point1 n1

point2
n2

point3

n3

point4

n4

Object center

Object center identified 
based on voting



3D Translation Estimation

3. Training the model to estimate n
x
, n

y
 and T

z
  :

• n
x
, n

y 
 are utilized to identify c

x
, c

y

• Then  T
x
, T

y
 and T

z
 can be predicted
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.



3D Rotation Estimation
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.



3D Rotation Estimation

1. Pose loss:

2. ShapeMatch loss: 
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.

Predicted Rotation matrix

Ground truth Rotation matrix

Set of 3D model points

Number of points



Results

Results for OccludedLINEMOD dataset
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Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.



Results
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source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. 
Robotics: Science and Systems (RSS), 2018.

http://www.youtube.com/watch?v=B7I7R1GdzV8&t=5


RGB-D for 
Salient Object Detection

44
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RGB-D Salient Object Detection

1. RGB image

2. Depth image

Detection of Salient Objects 

source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE 
transactions on pattern analysis and machine intelligence, 44(9), 5541-5559.



Limitations of Existing Works

1. Fusion strategy:

a. Early fusion

Source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE 
transactions on pattern analysis and machine intelligence, 44(9), 5541-5559. 46



Limitations of Existing Works

1. Fusion strategy:

   b. Late fusion

Source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE 
transactions on pattern analysis and machine intelligence, 44(9), 5541-5559. 47



Limitations of Existing Works

1. Fusion strategy:

   c. Middle fusion

Source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE 
transactions on pattern analysis and machine intelligence, 44(9), 5541-5559. 48



Joint Learning

source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE 
transactions on pattern analysis and machine intelligence, 44(9), 5541-5559. 49

Siamese network :
Process two different inputs in 
parallel with shared weights



Densely Cooperative Fusion

source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE 
transactions on pattern analysis and machine intelligence, 44(9), 5541-5559. 50

Equ. (1) Cross modal 
fusion



Joint learning and  Densely Cooperative Fusion

source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE 
transactions on pattern analysis and machine intelligence, 44(9), 5541-5559. 51



Loss function

source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE 
transactions on pattern analysis and machine intelligence, 44(9), 5541-5559. 52

Final prediction of model

Coarse RGB prediction

Coarse Depth prediction

Ground truth



Loss function

source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE 
transactions on pattern analysis and machine intelligence, 44(9), 5541-5559. 53

Cross-entropy loss

Pixel Index



Results

Source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE transactions 
on pattern analysis and machine intelligence, 44(9), 5541-5559. 54



Depth from Single Image?

55
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Depth from Single Image?

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.



57

Monocular Depth Estimation (MDE)

Ranftl, René, et al. "Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer." IEEE transactions on pattern analysis and 
machine intelligence 44.3 (2020): 1623-1637.

Relative Depth Estimation Metric Depth Estimation

Relative Distance: 0~1 Actual Distance: meters
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Depth Anything

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

Dedicate to solving the generalization of MDE

https://huggingface.co/spaces/depth-anything/Depth-Anything-V2
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Depth Anything Pipeline

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.
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Depth Anything Pipeline

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.
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Depth Anything Pipeline

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

Student Model

Input Label
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Depth Anything Pipeline

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

Input Label

Student Model
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Depth Anything Model Architecture

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

Student Model ArchitectureDINOv2 
Encoder

DPT
Decoder
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Depth Anything Model Architecture

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

Student Model ArchitectureDINOv2 
Encoder

DPT
Decoder

What is DPT?
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Dense Prediction Transformer (DPT)

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

Student Model ArchitectureDINOv2 
Encoder

DPT
Decoder

What is DPT?

1. ViT + Convolutional Layers
2. Preserves high-resolution feature maps
3. Extract both global and local features
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Depth Anything Pipeline

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

Input Label

Student Model
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Depth Anything

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

1. Labeled Data

2. Unlabeled Data

3. Semantic-Assisted 
Perception
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Labeled Data: Affine-Invariant Loss

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

1. Labeled Data

2. Unlabeled Data

3. Semantic-Assisted 
Perception

Predicted Depth
GT Depth

absolute error loss:

Shifted & Scaled



Labeled Data: Affine-Invariant Loss

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024. 69
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Depth Anything

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

1. Labeled Data

2. Unlabeled Data

3. Semantic-Assisted 
Perception
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Unlabeled Data

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

1. Labeled Data

2. Unlabeled Data

3. Semantic-Assisted 
Perception

Problem: Failed to gain improvement at first.

Hypothesis: Teacher and Student Model behave similar.

Solution: Challenge student model with strong perturbations.

1. Strong Color Distortions

a. Color Jittering

b. Gaussian Blurring

2. Strong Spatial Distortions: CutMix
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Unlabeled Data Loss

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

1. Labeled Data

2. Unlabeled Data

3. Semantic-Assisted 
Perception

Affine-Invariant Loss



Unlabeled Loss

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024. 73
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Depth Anything

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

1. Labeled Data

2. Unlabeled Data

3. Semantic-Assisted 
Perception
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Depth Anything

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024.

1. Labeled Data

2. Unlabeled Data

3. Semantic-Assisted 
Perception



Semantic-Assisted Perception

1.Combat the potential noise 

in pseudo depth label.

2.Transfer DINOv2's strong 

semantic capability

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024. 76

DINOv2
Pretrained, Frozen



Feature Alignment Loss

Set a tolerance margin 𝛼:

DINOv2 produce similar feature for same object, but different 

part can be of varying depth.
Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2024. 77

feature from student model

feature from DINOv2



3 types of Loss
1. Affine-Invariant Loss: Labeled Data

78

2. Unlabeled Loss: Unlabeled Data

3. Feature Alignment Loss: Semantic-Assisted Perception

+ +



Depth Anything v2

Problem with v1 fine-grained Detail

79Yang, Lihe, et al. "Depth Anything V2." arXiv preprint arXiv:2406.09414 (2024).



Depth Anything v2

1. Replacing real images with synthetic images

2. Scaling up teacher model’s capacity

3. Teach student model with large-scale real images

80Yang, Lihe, et al. "Depth Anything V2." arXiv preprint arXiv:2406.09414 (2024).



Depth Anything v2

81Yang, Lihe, et al. "Depth Anything V2." arXiv preprint arXiv:2406.09414 (2024).

Image v1 v2
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Next Lecture:
Student Lecture 2
PointNets and 3D Networks
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https://docs.google.com/file/d/10haUnvXK0NLe_-_swKetZyDsZpcO20U2/preview

