

DeepRob

[Student] Lecture 1 by Tzu-Hsien Lee, Rammesh Adhav Saravanan , Fidan Mahmudova **RGB-D** Networks and Manipulation **University of Minnesota**

P4 is released - Due Nov 13th

- Instructions available on the webpage
 - Here:
 - https://rpm-lab.github.io/CSCI5980-F24-Deep
 - Rob/projects/project4/
 - Uses <u>PROPS Pose Estimation Dataset</u>
- Implement PoseCNN
- Autograder is available.
- Due Wednesday, November 13th, 11:59 PM CT

Team task - Data viz - Due Nov 6th

As a first step to narrowing down your final project, I want you to start researching the data X that will be used.

Please upload a video showing all the data streams in your project that will be used to train the deeplearning models y=f(X).

- sensor observations and the correct labels.
- data streams that will be used for training your model.
- The same goes for real-world experiments as well.

If you use an existing dataset for your project, I expect your video to contain samples of these

If you are using a simulator, I expect you to collect the data from the simulator and then show the

What is RGB-D data?

Source: Fu, H., Xu, D., Lin, S., & Liu, J. Object-based RGBD Image Co-segmentation with Mutex Constraint.

Organized and Unorganized point clouds

Source : https://www.ac3filter.net/what-is-a-stereo/

Organized and Unorganized point clouds

640

Source : https://www.ac3filter.net/what-is-a-stereo/

Organized and Unorganized point clouds

640

Source : https://www.ac3filter.net/what-is-a-stereo/

Organized and Unorganized point clouds

640

Source : https://www.ac3filter.net/what-is-a-stereo/

p = (620, 5)

idx = 640 * 5 + 620

idx = 3820

Organized and Unorganized point clouds

640

Source : https://www.ac3filter.net/what-is-a-stereo/

p = (620, 5)

idx = 640 * 5 + 620

idx = 3820

point_cloud[idx] =[X, Y, Z, R, G, B]

Organized and Unorganized point clouds

Source : https://www.ac3filter.net/what-is-a-stereo/

Source: :https://www.blickfeld.com/blog/understanding-lidar-specifications/

Why depth matters in manipulation?

1. Safe and Strategic Movement Planning

Source : Flacco, F., Kröger, T., De Luca, A., & Khatib, O. (2012). A depth space approach to human-robot collision avoidance.

Why depth matters in manipulation?

2. Accurate Object Grasping

Source : https://www.youtube.com/watch?v=ry0mqY5I-04

Foundations for RGB-D based Robot Grasp Manipulation: Traditional Techniques Before Deep Learning

1:

Foundations for RGB-D based Robot Grasp Manipulation: Traditional Techniques <mark>Before</mark> Deep Learning 1. Traditional <mark>Pose Estimation</mark> Techniques

1:

Foundations for RGB-D based Robot Grasp Manipulation : Traditional Methods Before Deep Learning : 1. Traditional Pose Estimation Methods **2. Traditional Feature Extraction Methods**

Pose Estimation

Source : https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2020.616775/full

• Template Matching using RGB data

Source : https://datahacker.rs/014-template-matching-using-opencv-in-python/

- Template Matching using RGB-D data
 - 1. Enhanced Object Localization
 - 2. Robust Matching Process

• ICP (Iterative Closest Point)

ICP iterations = 1 White: Original point cloud Red: ICP aligned point cloud

Source:https://unibe-cas-assignment.readthedocs.io/en/late st/assignment.registration.html

Source : Wan, T., Du, S., Xu, Y., Xu, G., Li, Z., Chen, B., & Gao, Y. (2019). RGB-D point cloud registration via infrared and color camera.

• 3D SIFT (Scale Invariant Feature Transformation)

Source: "Comparison of 3D Interest Point Detectors and Descriptors for Point Cloud Fusion," ISPRS Annals of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, vol. II-3, Sept. 2014,

• **3D SURF (Speeded-Up Robust Features)**

Source: Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. "Speeded-Up Robust Features (SURF)," Computer Vision and Image Understanding, vol. 110, no. 3, 2008,

1.Sensitivity to Variations

1.Sensitivity to Variations

2.Handcrafted Features

1.Sensitivity to Variations

2.Handcrafted Features

3.Complexity in Scaling

Let's talk about deep neural network architectures for RGB-D with some examples: •PoseCNN RGB-D Salient Object Detection

PoseCNN

25

Object Pose Estimation

Transformation from object to camera coordinate system

Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. Robotics: Science and Systems (RSS), 2018.

1.3D Translation

2.3D Rotation

Limitations of Existing Works

1. Feature - based methods:

a. Texture-less objects

Limitations of Existing Works

2. Template - based methods:

a. Occlusion of objects

Limitations of Existing Works

3. Image pixel to 3D coordinates mapping:

a. Symmetrical objects.

Objectives of PoseCNN:

1. Develop a CNN-based 6D Pose Estimation Model Robust

to Occlusions

2. Collect a Large-Scale RGB-D Dataset with pose annotation

for Model Training

3. Define a Training Loss Function for Symmetrical Objects

CNN-based 6D Pose Estimation Model

1) PoseCNN:

Takes only RGB image as input for estimating 3D translation and rotation

CNN-based 6D Pose Estimation Model

2) PoseCNN + Iterative closest point(ICP):

and uses depth for refinement.

Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. Robotics: Science and Systems (RSS), 2018. and RPM lab props dataset - https://drive.google.com/file/d/15rhwXhzHGKtBcxJAYMWJG7gN7BLLhyAq/view

Takes both RGB image as input for estimating 3D translation and rotation

The collected dataset has:

- 3D models (with set of 3D points)
- RGB images
- Depth images
- 6D pose annotations

Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. Robotics: Science and Systems (RSS), 2018. and RPM lab props dataset - https://drive.google.com/file/d/15rhwXhzHGKtBcxJAYMWJG7gN7BLLhyAq/view

Dataset

Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. Robotics: Science and Systems (RSS), 2018.

Feature extraction

Semantic Labels

1. Feature embedding

2. Softmax score for each pixel

Robotics: Science and Systems (RSS), 2018.

3D Translation Estimation

Required Output : $\mathbf{T} = (T_x, T_y, T_z)^T$

Method:

 f_x and $f_y \longrightarrow$ Focal lengths of the camera

 $p_x \text{ and } p_y \longrightarrow \text{Principle points}$

3D Translation Estimation

(x,y)

2. Find Object center:

Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. Robotics: Science and Systems (RSS), 2018.

$$ightarrow \left({{n_x} = rac{{{c_x} - x}}{{\left\| {\mathbf{c} - \mathbf{p}}
ight\|}},{n_y} = rac{{{c_y} - y}}{{\left\| {\mathbf{c} - \mathbf{p}}
ight\|}},{T_z}}
ight)$$

$n_x \text{ and } n_y \longrightarrow$ Unit length vector $(x, y) \longrightarrow$ Pixel in each object

3D Translation Estimation

2. Find Object center: (x,y)

Image source: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. Robotics: Science and Systems (RSS), 2018.

$$ightarrow \left({{n_x} = rac{{{c_x} - x}}{{\left\| {\mathbf{c} - \mathbf{p}}
ight\|}},{n_y} = rac{{{c_y} - y}}{{\left\| {\mathbf{c} - \mathbf{p}}
ight\|}},{T_z}}
ight)$$

Object center identified based on voting

3D Translation Estimation

3. Training the model to estimate n_x , n_v and T_z :

• n_x, n_v are utilized to identify c_x, c_v

• Then T_x , T_v and T_z can be predicted

3D Rotation Estimation

3D Rotation Estimation

- 1. Pose loss: $PLoss(\tilde{\mathbf{q}}, \mathbf{q}) = \frac{1}{2m}$
- 2. ShapeMatchloss: $SLoss(\tilde{q}, \tilde{q})$
 - $R(\tilde{\mathbf{q}})$ Predicted Rotation matrix
 - $R(\mathbf{q})$
 - $\mathcal{M} \longrightarrow$ Set of 3D model points

— Number of points m

$$egin{aligned} & \sum_{\mathbf{x}\in\mathcal{M}} \|R(ilde{\mathbf{q}})\mathbf{x}-R(\mathbf{q})\mathbf{x}\|^2 \ & \mathbf{q}) = rac{1}{2m} \sum_{\mathbf{x}_1\in\mathcal{M}} \min_{\mathbf{x}_2\in\mathcal{M}} \|R(ilde{\mathbf{q}})\mathbf{x}_1-R(\mathbf{q})\mathbf{x}_2\|^2 \end{aligned}$$

Results

Results for OccludedLINEMOD dataset

Method	Michel et al. 21	Hinterstoisser et al. [14]	Krull et al. [17]	Brachmann et al. 3	Ours PoseCNN Color	Ours PoseCNN+ICP
Ape	80.7	81.4	68.0	53.1	9.6	76.2
Can	88.5	94.7	87.9	79.9	45.2	87.4
Cat	57.8	55.2	50.6	28.2	0.93	52.2
Driller	94.7	86.0	91.2	82.0	41.4	90.3
Duck	74.4	79.7	64.7	64.3	19.6	77.7
Eggbox	47.6	65.5	41.5	9.0	22.0	72.2
Glue	73.8	52.1	65.3	44.5	38.5	76.7
Holepuncher	96.3	95.5	92.9	91.6	22.1	91.4
MEAN	76.7	76.3	70.3	56.6	24.9	78.0

Results

RGB-D for **Salient Object Detection**

RGB-D Salient Object Detection

source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE transactions on pattern analysis and machine intelligence, 44(9), 5541-5559.

1. RGB image

2. Depth image

Detection of Salient Objects

Limitations of Existing Works

1. Fusion strategy:

a. Early fusion

transactions on pattern analysis and machine intelligence, 44(9), 5541-5559.

Limitations of Existing Works

1. Fusion strategy:

b. Late fusion

Source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE transactions on pattern analysis and machine intelligence, 44(9), 5541-5559.

Limitations of Existing Works

1. Fusion strategy:

c. Middle fusion

Source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE transactions on pattern analysis and machine intelligence, 44(9), 5541-5559.

transactions on pattern analysis and machine intelligence, 44(9), 5541-5559.

Joint Learning

Siamese network : Process two different inputs in parallel with shared weights

Densely Cooperative Fusion

RGB

Depth

 $CM(\{X_{rgb}, X_d\}) = X_{rgb} \oplus X_d \oplus (X_{rgb} \otimes X_d)$ Equ. (1)

source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE transactions on pattern analysis and machine intelligence, 44(9), 5541-5559.

source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE transactions on pattern analysis and machine intelligence, 44(9), 5541-5559.

Joint learning and Densely Cooperative Fusion

Data path of RGB task

- $G \longrightarrow \text{Ground truth}$
- $S^f \longrightarrow$ Final prediction of model
- $S_{rgb}^{c} \longrightarrow$ Coarse RGB prediction

— Coarse Depth prediction S_d^c

source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE transactions on pattern analysis and machine intelligence, 44(9), 5541-5559.

l nss function

 $\mathcal{L}_{ ext{total}} = \mathcal{L}_fig(S^f,Gig) + \lambda \quad \sum \quad \mathcal{L}_g(S^c_x,Gig)$ $x \in \{rgb,d\}$

$\mathcal{L}(S,G) = -\sum \left[G_i \log(S_i) + (1-G_i) \log(1-S_i)\right]$

$\mathcal{L}(S,G) \longrightarrow \text{Cross-entropy loss}$ $i \longrightarrow \text{Pixel Index}$

 $S \in \left\{S^c_{rab}, S^c_d, S^f
ight\}$

source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE transactions on pattern analysis and machine intelligence, 44(9), 5541-5559.

loss function

Joint learning

Source: Fu, K., Fan, D. P., Ji, G. P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE transactions on pattern analysis and machine intelligence, 44(9), 5541-5559.

Results

Depth from Single Image?

Depth from Single Image?

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Monocular Depth Estimation (MDE)

Ranftl, René, et al. "Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer." IEEE transactions on pattern analysis and machine intelligence 44.3 (2020): 1623-1637.

DR

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Depth Anything

Dedicate to solving the generalization of MDE

unlabeled image

Recognition. 2024.

labeled image

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

labeled image

unlabeled image

Student Model

Input

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Label

Student Model

Input

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Label

Depth Anything Model Architecture

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Depth Anything Model Architecture

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

What is DPT?

Dense Prediction Transformer (DPT)

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Student Model

Input

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Label

Perception

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Depth Anything

Labeled Data: Affine-Invariant Loss

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unla Recognition. 2024.

Labeled Data: Affine-Invariant Loss

$\mathcal{L}_l = \frac{1}{HW}$

 $\rho(d_i^*, d_i)$

 $\hat{d}_i - t(d)$ t(d)s(d)

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

$$\begin{array}{l} & HW \\ & \sum_{i=1}^{HW} \rho(d_i^*, d_i) \\ & \stackrel{\cdot}{=} |\hat{d}_i^* - \hat{d}_i| \\ & = \mathrm{median}(d), \ s(d) = \frac{1}{HW} \sum_{i=1}^{HW} |d_i - t(d)| \end{array} \end{array}$$

i=1

Perception

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Depth Anything

unlabeled image

- Problem: Failed to gain improvement at first.
- Hypothesis: Teacher and Student Model behave similar.
- Solution: Challenge student model with strong perturbations.
 - 1. Strong Color Distortions
 - a. Color Jittering
 - b. Gaussian Blurring
 - 2. Strong Spatial Distortions: CutMix

Recognition. 2024.

Unlabeled Data

Unlabeled Data Loss

2. Unlabeled Data

 \mathcal{L}_{u}

unlabeled image

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Unlabeled Loss

$\mathcal{L}_{u} = \frac{\sum M}{HW} \mathcal{L}_{u}^{M} + \frac{\sum M$

 $\mathcal{L}_{\boldsymbol{u}}^{\boldsymbol{M}} = \rho(S(\boldsymbol{u}_{\boldsymbol{a}\boldsymbol{b}}) \odot \boldsymbol{M},$ $\mathcal{L}_u^{1-M} = \rho(S(u_{ab}) \odot ($

Recognition. 2024.

$$\frac{\sum(1-M)}{HW}\mathcal{L}_u^{1-M}.$$

$$T(u_a) \odot M),$$

 $(1-M), T(u_b) \odot (1-M))$

Perception

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Depth Anything

3. Semantic-Assisted Perception

DR

Recognition. 2024.

Depth Anything

Semantic-Assisted Perception

1. Combat the potential noise

in pseudo depth label.

2. Transfer DINOv2's strong

semantic capability

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

labeled image

Feature Alignment Loss

$\mathcal{L}_{feat} = 1 - \frac{1}{H}$

Set a tolerance margin *α*: DINOv2 produce similar featu

part can be of varying depth.

Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

DINOv2 produce similar feature for same object, but different

3 types of Loss

1. Affine-Invariant Loss: Labeled Data

2. Unlabeled Loss: Unlabeled Data

3. Feature Alignment Loss: Semantic-Assisted Perception $\mathcal{L}_{feat} = 1 - \frac{1}{HW} \sum_{i=1}^{HW} \cos(f_i, f'_i)$

$$\mathcal{L}_l = \frac{1}{HW} \sum_{i=1}^{HW} \rho(d_i^*, d_i)$$

$$\mathcal{L}_u = \frac{\sum M}{HW} \mathcal{L}_u^M + \frac{\sum (1-M)}{HW} \mathcal{L}_u^{1-M}$$

Problem with v1 fine-grained Detail

Image

Marigold [31]

Depth Anything v2

Depth Anything V1 [89]

- 1. Replacing real images with synthetic images
- 2. Scaling up teacher model's capacity
- 3. Teach student model with large-scale real images

Depth Anything v2

unlabeled real images

pseudo-labeled real images

highly diverse & precise ③ fine-grained details \odot real-world distribution \odot

student model

pseudo labels

Depth Anything v2

Image

Yang, Lihe, et al. "Depth Anything V2." arXiv preprint arXiv:2406.09414 (2024).

v1

v2

Next Lecture: Student Lecture 2 PointNets and 3D Networks

DeepRob

[Student] Lecture 1 by Tzu-Hsien Lee, Rammesh Adhav Saravanan , Fidan Mahmudova **RGB-D** Networks and Manipulation **University of Minnesota**

