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https://docs.google.com/file/d/1HTo3RWeLhMFOC_Fhid6TUncBbLPU9sWC/preview

OF,

View Synthesis vs 3D Reconstructlon

View Synthesis 3D Reconstruction

Input: 3D Model and

L o Input: Multiple images
viewing direction

from different

positions
Output: Image

Output: 3D model

AR,

Image Source: Neitra 3D Pro



3D Representation (RECAP!)

Mesh

Image Source: Antonie Toisoul, 3D Data Representations



Voxel

Stores
- Occupancy
- Density
- Color
- Opacity

Pros
- Simplicity
- Uniform Resolution

Cons
-  Memory
- Resolution
- Scalability



OF,

Volume Rendering - Ray Marching

M Image Credits: Prof. Shubham Tulsiani, CMU - Learning for 3D Vision
Kajiya, J.T., Herzen, B.P.V.: Ray tracing volume densities. Computer Graphics (SIGGRAPH) (1984)



OF,

Volume Rendering - Ray Marching

Radiance
(predicted color)

C(r) = /ttf T(t)o(x(t))c(r(t), d)dt, where T(t) — exp(— /tt a(r(s))ds)

o(x) = Volume Density, ¢ = Color, T = Transmittance
t = Distance along the ray, d = Direction of ray

Image Credits: Prof. Shubham Tulsiani, CMU - Learning for 3D Vision
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, & Ren Ng. (2020). NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis.



OF,

Computational Volume Rendering - Ray Marching

T

C(r) = /ttf T(t)o(x(t))c(r(t), d)dt , where T(t) = eXp(— /tt a(r(s))ds>

0; = tit1 — b

N i—1

C(r) = g T;(1 — exp(—0;0;))c;, where T; = exp | — E 0;0;
1=1 g=1

Image Credits: Prof. Shubham Tulsiani, CMU - Learning for 3D Vision

M Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, & Ren Ng. (2020). NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis.



OF,

Computational Volume Rendering - Ray Marching

N i—1
C(r) = Z T;(1 — exp(—0;9;))c; , where T; = exp | — Z 7503
i=1 j=1
0; = tiy1 — &
Algorithm

- Sample points (uniform/non-uniform) along the ray
- Compute C at each point/segment

- Sum up contributions across all segments

M Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, & Ren Ng. (2020). NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis.



OF,

Image Rendering

Sampled ray points

Algorithm
- Shoot a ray through
every pixel
-  Compute radiance

Image pixel
(color)

Camera

S./

\M Image Source: David Novotny, pytorch3d tutorial



Drawbacks

Memory usage
Computational Cost
Resolution Limitation




QUESTIONS?



OF,

VN

Neural Radiance Fields (NeRFs)

5D Input
Position + Direction

(x.,2,6,4) >
r}

Output Volume Rendering
Color + Density Rendering Loss

— (RG'BT?') —\ . i - /-\ ,

i /t, ,:,s / " W-ct 5
D g, /{{ayQ /T‘._g't. j
(a) (b) () (d)

F = Multi Layer Perceptron
Maps 5D coordinate to volume density and directional emitted color

5 numbers in, 4 numbers out
(x,y,2,8,6) — F6 — (R,G,B,0)

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, & Ren Ng. (2020). NeRF: Representing Scenes as

Neural Radiance Fields for View Synthesis.



NeRF Network Architecture

Skip Connection

v(x)/
60

Predict Density

- o
Predict Color
w::)—>256—>256-—->256 —» 256 —» 256 —>» 256 —» 256 —» 256 » 256 —™» 128 )'RE/
+
v(d)
24
Activation Function = RelL U \ Append Viewing
Direction

Image Source: Neural Radiance Fields (NeRFs): A Technical Exploration by Gaudenz Boesch



View Dependence

ANo View Dependence

Ground Truth

NOTICE!

M Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, & Ren Ng. (2020). NeRF: Representing Scenes as

Neural Radiance Fields for View Synthesis.



Optimization Techniques

1. Modelling High Frequency - Positional Encoding
2. Hierarchical Volume Sampling

No Positional Encoding

M Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, & Ren Ng. (2020). NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis.



OF,

Modellng ngh Frequency

% % S

Ground Truth No Positional Encoding

Neural Networks are biased towards learning low frequency functions.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, & Ren Ng. (2020). NeRF: Representing Scenes

as Neural Radiance Fields for View Synthesis
Rahaman, N., Baratin, A., Arpit, D., Dr" axler, F., Lin, M., Hamprecht, F.A., Bengio, Y., Courville, A.C.: On the spectral bias of neural networks.
In: ICML (2018)



OF,

Posmonal Encoding

Ground Truth No Positional Encoding

\&F%Béﬁ?gng/l[gﬁlc%dmg
Map input into higher dimensional input.

v(p) = (sin(207rp), cos(207rp), cee sin(2L_17rp), COS(QL_l’/Tp) )
This function y(-) is applied separately to each of the input variables.

M Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, & Ren Ng. (2020). NeRF: Representing Scenes
as Neural Radiance Fields for View Synthesis.



OF,

Hierarchical Volume Sampling

Algorithm

Perform uniform sampling (coarse sampling)
Calculate PDF of each point

- Perform importance sampling using the PDF (fine sampling)

PDF
0.1

0.08

0.06

0.04

0.02

# Samples

Q

Samples

Image Source: NeRF Studio



OF,

NeRF Implementation Detalls

Output variable

Underfit
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What is the expected behaviour of a well trained MLP in general?

VN

Image Source: https://thecorrelation.in/overfitting-and-underfitting/



OF,

NeRF Implementation Detalls

Underfit Optimal Overfit

% & ¢ .
o o © o @ " 8- 2
B . . "' . B "l . \‘. _Q :‘~ 5‘. '.
© ® L0900 ® © ® o0 © ‘o © T @
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o . O| » Ol ¢ YES
Predictor variable Predictor variable Predictor variable

One Scene, One MLP
IM NO GENERALIZATION

Image Source: https://thecorrelation.in/overfitting-and-underfitting/



OF,

NeRF Implementation Detalls

Dataset
- RGB Images, corresponding camera pose and intrinsics along with scene bounds.

M Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, & Ren Ng. (2020). NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis.



OF,

NeRF Implementation Detalls

Dataset

- RGB Images, corresponding camera pose and intrinsics along with scene bounds.
Batch

- Sample camera rays (batch size = 4096) from set of all pixels

M Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, & Ren Ng. (2020). NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis.



OF,

NeRF Implementation Detalls

Dataset

- RGB Images, corresponding camera pose and intrinsics along with scene bounds.
Batch

- Sample camera rays (batch size = 4096) from set of all pixels
Algorithm

- Sample Nc (=64) coarse points.

- Perform ray marching. Use MLP to compute color and density at each point.
- Compute PDF and sample Nf (=128) fine points. Perform ray marching again.
- Compute loss and optimize (Optimizer = Adam).

N i—1
C(r) = ZT,(l — exp(—0;6;))c; , where T; = exp (— Z ojéj)

i=1 j=1

C. = Radiance Calculated using coarse points

2
‘ C, = Radiance Calculated using fine points

Colr) = C ) 2

Cy(r) — C(r)

2
L+

2

£:r;z[

M Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, & Ren Ng. (2020). NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis.



OF,

VN

NeRF++

Need: Unbounded Scene

Method: Train two NeRF models, one for foreground, one for background

(a) NeRF++ prediction (b) predicted foreground (c) predicted background

F, Gy

Kai Zhang, Gernot Riegler, Noah Snavely, & Vladlen Koltun (2020). NeRF++: Analyzing and Improving Neural Radiance Fields.
arXiv:2010.07492.



@NeRFH Sampling

(x,¥,2,8,¢) — F,— (R,G,B,0)

B={(z,y,2): Va2 +y2 + 22 =1} .
o"\x\

O

et (x,¥,2,8,9,1/r) — G, — (R,G,B,0)
@&
Background NeRF uses normalised
coordinates.
/]

N

Foreground boundary

M Kai Zhang, Gernot Riegler, Noah Snavely, & Vladlen Koltun (2020). NeRF++: Analyzing and Improving Neural Radiance Fields.
arXiv:2010.07492.



@ Try NeRF

Instant NGP - NVLabs
https://qithub.com/NVlabs/instant-ngp
NeRF Studio

https://docs.nerf.studio/



https://github.com/NVlabs/instant-ngp
https://docs.nerf.studio/
http://www.youtube.com/watch?v=DJ2hcC1orc4

OF,

VN

Let's go back to some NeRF limitations

34

We need more powerful GPUs to complete training
They take a lot of time to complete training
They are scene and view dependent

=&~ NeRF
—&— NeRF with OFO
~&— Torch-NGP
~%— Pyramid NeRF
~#— KiloNeRF
KiloNeRF without pre-tra
~—— Knowledge Distill

0 10 20 30 40 50
Training Time (hour)

Image source - https:/link.springer.com/article/10.1007/s11263-023-01829-3

RTX 4080

Image Source -

https://www.nicehash.com/blog/post/nvidia-rtx-4090-s
pecs-and-mining-hashrate



https://www.nicehash.com/blog/post/nvidia-rtx-4090-specs-and-mining-hashrate
https://www.nicehash.com/blog/post/nvidia-rtx-4090-specs-and-mining-hashrate
https://link.springer.com/article/10.1007/s11263-023-01829-3

OF,

How would you address the limitations ?



OF,

What if we remove the neural network from NeRFs ?

How do we learn the 3D information ?

Data structure for representation

How to project from 3D to 2D in an efficient way ?

What makes training (optimization) faster ?

How do we address view dependent effects and colors?



3D Gaussian Splatting
L AL L e e

Reconstructed View Individual Splats A close up

Viewer -https://github.com/playcanvas/supersplat



OF,

3D Gaussian Splatting

How do we learn the 3D information ? Point Clouds using SFM
What is the data structure for representation?

How to project from 3D to 2D in an efficient way ?

What makes training (optimization) faster ?

How do we address view dependent effects and colors?

VN



3D initialization using SFM

Correspondence Search Incremental Reconstruction Reconstruction
-..[ - Initialization =
1

1
Matching Image Registration Outlier Filtering

Geometric Verification Triangulation Bundle Adjustment

COLMAP’s incremental Structure-from-Motion pipeline.

Source : https://colmap.github.io/tutorial.html#structure-from-motion




OF,

Structure from Motion



https://docs.google.com/file/d/1y6Ilk_484fa1IAbp0piZKop4o1O0w6aN/preview

OF,

3D Gaussian Splatting

How do we learn the 3D information ? Point Clouds using SFM
What is the data structure for representation?
How to project from 3D to 2D in an efficient way ? Anisotropic Gaussians

What makes training (optimization) faster ?
How do we address view dependent effects and colors?

VN



Understanding 3D Gaussians

« Anisotropic(Elliptical) gaussians are closed for

affine transformations. -

« Asingle elliptical gaussian splat can cover a large
distance, thus influencing the set of pixels it or ‘
covers

Parameters:

. Mean u given by (x,y,2)

° Covarlance Matrlx E Ihrafig:?/tic\;:zarrcc?s:iatascience.com/a—comprehensive—overview—of—gaussian—splatting—e
OpaC|ty a 7d570081362

o Color from spherical harmonics (and rgb
interchangeably)



OF,

3D -> 2D Gaussian projection.

e From the 2001 EWA Splatting paper, we can project
to the image space as follows:
X =JWZWTJT
W - viewing transformation
e EWA paper also shows that upon removing the third
row and column of ¥’ , we should get a 2x2
covariance matrix with the same properties and
structure

e Since covariances only have physical meaning
when they are positive and semi definitie :
2=RSSTRT

Image Source -

https://www.researchgate.net/figure/llustration-of-forward-splatting-using-EW

M A-Zwicker-et-al-2001_fig1_333717475


https://www.researchgate.net/figure/llustration-of-forward-splatting-using-EWA-Zwicker-et-al-2001_fig1_333717475
https://www.researchgate.net/figure/llustration-of-forward-splatting-using-EWA-Zwicker-et-al-2001_fig1_333717475

A more detailed overview of the Math in the
previous slide

Alpha Compositing

The RGB value of each pixel is computed by a blending the gaussians from front-to-back. The rgb values of each pixel can be computed
with:

N
Cu,v) = Z a;ciw;
i=1

a = Oig,-(u, v)

Where ¢; and o; are the color and opacity of the i gaussian and g:(u,v) is the probabilty of the the i'" gaussian at the pixel coordinates u, v.

M Source - https://aithub.com/joeyan/gaussian_splatting/blob/main/MATH.md



https://github.com/joeyan/gaussian_splatting/blob/main/MATH.md

Why 3D anisotropic gaussians ? (Part 1)

Differentiable
volumetric
representation

J

Unstructured
and explicit to
allow fast
rendering

J




OF,

Why 3D anisotropic gaussians ? (Part 2)

Shrunken
Gaussians,

Original

M Image Source - 3D Gaussian Splatting for Real-Time Radiance Field Rendering



OF,

3D Gaussian Splatting

Point Clouds using SFM

. Lo Anisotropic Gaussians
o What makes training (optimization) faster ?  Tjle Rasterizer



OF,

3D Gaussian Splatting

e How do we learn the 3D information ? Point Clouds using SFM
e What is the data structure for representation?

e How to project from 3D to 2D in an efficient way ? Anisotropic Gaussians
e What makes training (optimization) faster ? Tile Rasterizer

e How do we address view dependent effects and colors?

VN



Differentiable Tile Rasterizer

(a)  Image Space 3D Gaussians
’ Splatting o
@9
(b) — 2D Gaussians
Tilel Tile2 Depth

Depth
Tile3 O Tile4 Depth

Chen, Guikun, and Wenguan Wang. “A Survey on 3D Gaussian Splatting.” arXiv preprint
arXiv:2401.03890 (2024).




Qiew Frustum Culling

e Gaussians are culled against the view
frustum and each independent tile, only
retaining 99% confidence rendering task

e Guard bands surrounding each tile is
used to reject gaussians at extreme
positions.

Image Source - claude.ai



Differentiable Tile Rasterizer

(a)  Image Space 3D Gaussians (c) (d)
— Replication — Sorted 2D Gaussians — ) Cf Ca
Tilel c
. Splatting Tilel : Depth Tilel : Depth &l

4_ . . .
‘ Tile2 : Depth Tilel : Depth

(b) 2D Gaussians

Tilel Tile2
Tile3 O Tile4

Parallel Rendering

Tilel : Depth Tile2 : Depth

A Ci=djc1 +ajea(l—af)
Tile2 : Depth

Ca=akc1 + abea(1 — o)

Tile3 : Depth Tile3 : Depth

Tile4 : Depth Tile3 : Depth C3=04c1 + afea(l — of)

I |
I |
I |
[ Tie2 : Depth |
I |
I |
I |

Tile3 © Depth Tile4 : Depth Ca=cljcr + aljea(1 — o)

1
a;z = Qp X exp( = 5(517, = H%)TE;;l (33’ = H;)), X represents the position of a pixel on
the screen , all represents the learned
] y opacity and C represents the color at
C=> cnap, J[] (1-0f), each pixel and cll represents the learnt
e =1 color
M Chen, Guikun, and Wenguan Wang. “A Survey on 3D Gaussian Splatting.” arXiv preprint

arXiv:2401.03890 (2024).



Lets Splat ?



https://medium.com/@soyoungpark.psy/lets-crack-3d-gaussian-splatting-in-5mins-5777a7b735eb

OF,

Adaptive Density Control

L N

Optimization
Continues

Under-
Reconstruction

L X

Optimization
Continues

Over-
Reconstruction

Image Source - 3D Gaussian Splatting for Real-Time Radiance Field Rendering



@ Overall Optimization Algorithm

Algorithm 1 Optimization and Densification
w, h: width and height of the training images

M « SfM Points > Positions
S,C, A « InitAttributes() > Covariances, Colors, Opacities
i—0 > Iteration Count
while not converged do
V,I « SampleTrainingView() > Camera V and Image
I <« Rasterize(M, S, C, A, V) > Alg. 2
L « Loss(LI) > Loss
M, S, C, A — Adam(VL) > Backprop & Step
if IsRefinementlteration(i) then
for all Gaussians (4, 2, ¢, a) in (M, S, C, A) do Algorithm Source - 3D Gaussian Splatting for Real-Time
if @ < € or IsTooLarge(y, X) then » Pruning Radiance Field Rendering
RemoveGaussian()
end if
if V,L > 7 then > Densification
if ||S|| > 75 then > Over-reconstruction
SplitGaussian(y, 2, ¢, @)
else > Under-reconstruction
CloneGaussian(y, 3, ¢, )
end if
end if
end for
end if
i—i+1

M end while



@ GPU Rasterizer

VN

Algorithm 2 GPU software rasterization of 3D Gaussians
w, h: width and height of the image to rasterize

M, S: Gaussian means and covariances in world space

C, A: Gaussian colors and opacities

V: view configuration of current camera

function RASTERIZE(w, h, M, S, C, A, V)
CullGaussian(p, V)
M’,S" « ScreenspaceGaussians(M, S, V)
T « CreateTiles(w, h)
L, K « DuplicateWithKeys(M’, T)
SortByKeys(K, L)
R « IdentifyTileRanges(T, K)

I—0 > Init Canvas

for all Tiles t in I do
for all Pixels i in t do
r « GetTileRange(R, t)
I[i] « BlendInOrder(i, L, r, K, M’,S’, C, A)
end for
end for
return
end function

> Frustum Culling
> Transform

> Indices and Keys
> Globally Sort

Algorithm Source - 3D Gaussian Splatting for Real-Time Radiance
Field Rendering



OF,

3D Gaussian Splatting

e How do we learn the 3D information ? Point Clouds using SFM
e What is the data structure for representation?

e How to project from 3D to 2D in an efficient way ? Anisotropic Gaussians
e \What makes training (optimization) faster ? Tile Rasterizer

e How do we address view dependent effects and colors? Spherical Harmonics

VN



View Dependent Color

Spherical harmonics =0

L=0 fo

£10
8
) -5
5
0 - \

R

05

Image Source :https://www.physicsforums.com/threads/what-do-the-color-maps-in-spherical-harmonics-represent.805216/

VN



How is SH calculated by the 3Dgs code ?

SPHERICAL HARMONIC LIGHTING

22
Equation 10. m=-2 m=-1 m=0 m=1 m=2
Cartesian version
of the first few 1
real SH functions. /=) o pli=
2\ 7
I=1 13y 13z J_\ﬁi
2\ rmr 2\rwr 2\rwr
jog | L[S LSy 1 [522-x-y7 1 ISz 115y
2\ 7 #? 2\ 7 #? 4\ r’ 2V 7 #? 2Nz 2
where

r=yx*+y*+2* (nb.usuallyr=1)

Source :Spherical Harmonic Lighting: The Gritty Details

The source code for
computing color from SH can
be found_here and the general
data structure for SH seems
to be arrays after a brief
overview of the code.


https://3dvar.com/Green2003Spherical.pdf
https://github.com/graphdeco-inria/diff-gaussian-rasterization/blob/59f5f77e3ddbac3ed9db93ec2cfe99ed6c5d121d/cuda_rasterizer/auxiliary.h#L1-L71

@ _Spherical Harmonics Comparisons

Oth Degree(Band) 1st Degree(Band)

Images generated using 0 band SH should have uniform light
representation in all direction , as the number of SH bands
increase , the ability to handle different lighting from different
directions increases. The image on the right should be a bit
M sharper and more representative of the actual image. g Gonerated seing superet



OF,

3D Gaussian Splatting

How do we learn the 3D information ?  Point Clouds using SFM

Data structure for representation

How to project from 3D to 2D in an efficient way ?  Anisotropic Gaussians
What makes training (optimization) faster ?  Tjje Rasterizer

How do we address view dependent effects and colors? Spherical Harmonics



OF,

3D Gaussian Splatting

e How do we learn the 3D information ? Point Clouds using SFM
e What is the data structure for representation?

e How to project from 3D to 2D in an efficient way ? Anisotropic Gaussians
e \What makes training (optimization) faster ? Tile Rasterizer

e How do we address view dependent effects and colors? Spherical Harmonics

VN



Overall Pipeline

SfM Points

Initialization

Camera

~&

3D Gaussians

/7 ™\

Projection

Adaptive
Density Control

N

Differentiable
Tile Rasterizer

el
Image

— Operation Flow

—+ Gradient Flow

Image Source - 3D Gaussian Splatting for Real-Time Radiance Field Rendering




OF,

Optimization Methodologies

e Makes use of stochastic gradient
descent for optimization
e Sigmoid activation function to
constrain a between [0,1) and obtain
smooth gradients
e Loss is defined by - L=1-1)L1+ALpssim



How does 3DGS compare against NeRFs?

® 3DGS is significantly faster than ...
NeRFs for both training and 167.9
rendering purposes, although the e
memory it uses might be a
relatively high as show in the
table.

FPS Train



Limitations of Gaussian Splatting

® Sparse Point Cloud Dependency
® Static nature

® Floaters and other inherited artifacts



@ Progress and Developments in Gaussian
Splatting Since the Seminal 2022 Paper

® Using sparse images

® Memory efficiency

® Photorealism(Raytracing)

® 3DGS with structured information
® Dynamic Scenes

®

Moving away from colmap
and many more ....



OF,

Where do | introduce NeRF and
Gaussian Splatting tin Robotics?

How is NeRF and
used for manipulation tasks?

: ‘/ :2 i) N
e ‘ i o, i o =
M Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2021). Nerf: Representing scenes as ne

ural radiance fields for
view synthesis. Communications of the ACM, 65(1), 99-106.



Simulations & Scene Understanding

e NeRF’s and Gaussian Splats are able to get a better grasp of the scene’s 3D
information.

e Recent advancements in gaussian splatting have enabled semantic
segmentation of individual objects in the 3D scene.

e The ability to retain structure hidden within the input information
distinguishes both NeRF and Gaussian Splatting from traditional vision
input processing techniques.

e Akey real world problem that is being tackled right now with both NeRF and
Gaussian Splatting is overcoming the Sim2Real gap.



@ NeRF in Robotics:

NeRF in Robotics

T

Fig. 1. A taxonomy of NeRF in robotics.

M Wang, G., Pan, L., Peng, S, Liu, S., Xu, C., Miao, Y., ... & Wang, H. (2024). NeRF in Robotics: A Survey. arXiv preprint arXiv:2405.01333.



@ NeRF in Robotics:

Y\

NeRF in Robotics
I
v v
Application of NeRF in Robotics Advance of NeRF in Robotics
(Section IIT) (Section V)

Fig. 1. A taxonomy of NeRF in robotics.

Wang, G., Pan, L., Peng, S, Liu, S., Xu, C., Miao, Y., ... & Wang, H. (2024). NeRF in Robotics: A Survey. arXiv preprint arXiv:2405.01333.



NeRF in Robotics:

NeRF in Robotics

[

v
Application of NeRF in Robotics
(Section IIT)
I
v
Scene Understanding
(Section III. 4)
|
v v
Reconstruction Segmentation & Editing
(Section II1. 4. 1)) (Section II1. 4. 2))
v v
Static Scene
Reconstruction Segmentation
Dynamic Scene
Reconstruction Editing

Y\

Fig. 1. A taxonomy of NeRF in robotics.

v

Advance of NeRF in Robotics
(Section V)

Wang, G., Pan, L., Peng, S, Liu, S., Xu, C., Miao, Y., ... & Wang, H. (2024). NeRF in Robotics: A Survey. arXiv preprint arXiv:2405.01333.




NeRF in Robotics:

v

Advance of NeRF in Robotics
(Section V)

NeRF in Robotics
I
v
Application of NeRF in Robotics
(Section IIT)
I
v v
Scene Understanding Scene Interaction
(Section III. A) (Section III. B)
[ I
v v v v
Reconstruction Segmentation & Editing Navigation Manipulation
(Section I1I. 4. 1)) (Section II1. 4. 2)) (Section I1I. B. 1)) | | (Section III. B. 2))
v v v v
Static Scene Localization Object Boss
Reconstruction Segmentation Estimation
Dyniamic Scene Path Planning Operation
Reconstruction Editing

Y\

Fig. 1. A taxonomy of NeRF in robotics.

Wang, G., Pan, L., Peng, S, Liu, S., Xu, C., Miao, Y., ... & Wang, H. (2024). NeRF in Robotics: A Survey. arXiv preprint arXiv:2405.01333.
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NeRF2Real is framework developed by DeepMind
to incorporate the advantages of NeRF in creating
vision processing models for robust applications



in Robotics: NeRF2Real
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Byravan, A., Humplik, J., Hasenclever, L., Brussee, A., Nori, F., Haarnoja, T., ... & Heess, N. (2023, May). Nerf2real: Sim2real transfer of vision-guided bipedal motion skills using neural radiance fields. In
2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 9362-9369). IEEE.



http://www.youtube.com/watch?v=WAeozynqAUw

@ NeRF in Robotics: NeRF2Real
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Fig. 2: Overview of our system for recreating a scene in a simulator. A. We collect a video of the scene using a generic phone. B. We
use structure-from-motion software to label a subset of the video with camera poses. C. We train a NeRF on these labeled images. D.
We render the scene from novel views using the calibrated intrinsics of the robot’s head-mounted camera. E. We use the same NeRF
to extract the scene geometry as a mesh. We coarsen the mesh and replace the floor with a flat primitive. F. We combine the simplified
mesh with a model of a robot, and any other dynamic objects, in a physics simulator. See Fig. 3 for further details on this step.
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Byravan, A., Humplik, J., Hasenclever, L., Brussee, A., Nori, F., Haarnoja, T, ... & Heess, N. (2023, May). Nerf2real: Sim2real transfer of vision-guided bipedal motion skills using neural radiance fields. In
2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 9362-9369). IEEE.
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Fig. 4. The policy’s network architecture.

Byravan, A., Humplik, J., Hasenclever, L., Brussee, A., Nori, F., Haarnoja, T., ... & Heess, N. (2023, May). Nerf2real: Sim2real transfer of vision-guided bipedal motion skills using neural radiance
fields. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 9362-9369). |IEEE.

Architecture is inspired from the paper referenced below
Mdller, T., Evans, A., Schied, C., & Keller, A. (2022). Instant neural graphics primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4), 1-15.



@ NeRF in Robotics: NeRF2Real
. T |

' Static scene Dynamic objects \| [ Combined render )
The RL - render (NeRF) render (MuJoCo) E
algorithm used 828 o S
is ‘;’, % :c'g' > > (o)
w
DMPO. a E” + 3

N 7

(Deterministic ﬂ . ;—.
Mixture Policy — - 4B - S

Optimization mmm known [Static scene mesh  Dynamic objects meshes H#( Collision engine )

— 1 . :
—— L Non geometric properties (e.g. friction) ji>__Physics engine ) |

Fig. 3: Our MuJoCo simulation is created by combining: (1) the
learnt static scene mesh (Section III-E), (2) the dynamic object
meshes and (3) the learnt static scene NeRF rendering (Section I11-
D) on which (4) the Mujoco rendering of dynamic objects (a ball
and robot’s left arm in the camera image above) are overlaid. Other
dynamic parameters (e.g. friction) are assumed known or measured.

neural radiance fields. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 9362-9369). IEEE.
RL Training algorithm used is explained in the paper below
Osa, T., Hayashi, A., Deo, P., Morihira, N., & Yoshiike, T. (2023). Offline reinforcement learning with mixture of deterministic policies. Transactions on Machine Learning

Research.

M Byravan, A., Humplik, J., Hasenclever, L., Brussee, A., Nori, F., Haarnoja, T., ... & Heess, N. (2023, May). Nerf2real: Sim2real transfer of vision-guided bipedal motion skills using
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SplatSim is a very recent development, of bringing Gaussian Splatting
of plain RGB Images to create high quality simulated renders to reduce
the sim2Real gap in manipulation.



@ Gaussian Splatting in Robotics: Splat-Sim

Qureshi, M. N., Garg, S., Yandun, F., Held, D., Kantor, G., & Silwal, A. (2024). Splatsim: Zero-shot sim2real transfer of rgb
manipulation policies using gaussian splatting. arXiv preprint arXiv:2409.10161.



https://docs.google.com/file/d/1LPXtQQp2fe52U_bRFXpPnHX2WKpQZROS/preview

@ Gaussian Splatting in Robotics: Splat-Sim
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3. Given our Splat Model, it is important to
align the Gaussian Splat with the real world
robot links. Please see the next slide to
understand this process

Qureshi, M. N., Garg, S., Yandun, F., Held, D., Kantor, G., & Silwal, A. (2024). Splatsim: Zero-shot sim2real transfer of rgb
manipulation policies using gaussian splatting. arXiv preprint arXiv:2409.10161.
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M Qureshi, M. N., Garg, S., Yandun, F., Held, D., Kantor, G., & Silwal, A. (2024). Splatsim: Zero-shot sim2real transfer of rgb

manipulation policies using gaussian splatting. arXiv preprint arXiv:2409.10161.



@ NeRF in Robotics: SplatSim

(a) End Effector KNN Ground Truth  (b) KNN on PCD from Splat End Effector

Fig. 4: We use a KNN-based classifier for segmenting links for
articulated objects like parallel jaw grippers. We train a KNN model
with the ground truth point labeling from the URDF model of the
end effector.

M Qureshi, M. N., Garg, S., Yandun, F., Held, D., Kantor, G., & Silwal, A. (2024). Splatsim: Zero-shot sim2real transfer of rgb

manipulation policies using gaussian splatting. arXiv preprint arXiv:2409.10161.
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Qureshi, M. N., Garg, S., Yandun, F., Held, D., Kantor, G., & Silwal, A. (2024). Splatsim: Zero-shot sim2real transfer of rgb manipulation policies using gaussian

splatting. arXiv preprint arXiv:2409.10161.
Diffusion Policy Paper referenced is

Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., ... & Song, S. (2023). Diffusion policy: Visuomotor policy learning via action diffusion. The

International Journal of Robotics Research, 02783649241273668.

1. The goal is to leverage expert
demonstrations for obtaining a
policy using Gaussian Splats

2. Providing defined Coordinate
Frames for the Real, Simulated
and robot enables clean
transformation matrices
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3. Given our Splat Model, it is important to
align the Gaussian Splat with the real world
robot links. Please see the next slide to
understand this process
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4. After the renders are finished, the
Robot is trained using
Reinforcement Learning, in
particular the Diffusion Policy
Algorithm is used
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