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Deformable Objects

- Linear
- Planar
- 3D objects
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3D Object

“Feature sensing and robotic grasping of objects with uncertain information: A review.”, Wang, C,—Ziﬁang, X., Zang, X., Liy, Y., Ding, G, Yin, W., & Zhao, J. Sensors, 20(13), 3707 (2020). 4

Planar Objects




Applications

Why do we even care about deformable objects?
- Healthcare

- Food Industry

- Textile

- Agriculture
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Challenges

- Self Occlusion

- Complex dynamics

- High degrees of freedom

Credits: behance.net




Human vs Robot

Timer: 00.00

Credits:@DaveHax




Human vs Robot

Timer: 00.00

’l

SautaneMmous, 2x speed

Credits: pi0

Which Sensors? Sensing which properties?
Credits:@DaveHax Actions?

"pi0: A Vision-Language-Action Flow Model for General Robot Control"”, Black, K., Brown, N., Driess, D., Esmail, A., Equi, M., Finn, C., ... & Zhilinsky, U., arXiv preprint arXiv:2410.24164 (2024). 3



https://docs.google.com/file/d/1wJngA4uxcdg2fP0DrVKiT7X_0lPS1xq1/preview

Decoding Deformable Object Manipulation

( Sensors J (Property ) ( Action )

Material Twisting

Camera

LR Tactile

HR Tactile

Force/Torque
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Elasticity Pressing

"Unfolding the literature: A review of robotic cloth manipulation."”, Longhini, Alberta, Yufei Wang, Irene Garcia-Camacho, David Blanco-Mulero, Marco Moletta, Michael Welle, Guillem Alenya et al. arXiv
preprint arXiv:2407.01361 (2024).




End-to-end Workflow

Modeling and Simulation Sensory Input and Data

"Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021) 10



End-to-end Workflow

Approaches
Adaptive Methods/ Learning
Learning with Priors

NModel anc
Represen- Data
tation

Modeling and Simulation Sensory Input and Data

"Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021) 11
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End-to-end Workflow | A
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Tasks

Approaches

Adaptive Methods/ Learning
Learning with Priors

NModel anc
Represen-
tation

Sensory Input and Data

odeling and Simulatig#
~N—

"Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021) 12




Physics-based Modeling of deformable
objects

a) Mass-spring systems b) Position-based dynamics c) Continuum mechanics
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"Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021) 13




R

Simulators

- Softgym

Softgym built on Nvidia FleX bindings

- MuloCo

- SOFA

Simulation

Open
SOFA | i — Mueco
A C h |t e Ct ure Advanced physics simulation

- PyBullet

IMI “Softgym: Benchmarking deep reinforcement learning for deformable object manipulation,” X. Lin, Y. Wang, J. Olkin, and D. Held, in Conference on Robot Learning (CoRL), 2021. 14



Simulators
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SOFA Softgym

Credits: “Benchmarking the sim-to-real gap in cloth manipulation”, Blanco-Mulero, D., Barbany, O., Alcan, G., Colomé, A., Torras, C., & Kyrki, V. IEEE Robotics and Automation Letters.(2024). 15



Traditional Methods: Before Deep Learning

- Contour Matching
- Template Matching

- Simple ML model

Lets understand this with an example work!
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@”Perception for the Manipulation of Socks”,

Ping Chuan Wang, Stephen Miller, Mario Fritz,
Trevor Darrell, Pieter Abbeel, 2011

Fig. 1. Given an initial image, we wish to recover the sock configuration.

- Single Image
- Output:
- Structure(toe, ankle, etc)

- Inside-out? max— ("
th cand BR g

- Match with candidates =N W "
- Use of LBP, MRS filter banks = I G T
- Use of SVM classifier ‘o

 —

Fig. 3. The MRS filter bank consists of 6 gaussian derivative and 2
blob filters. A maximum operations is performed over different orientation

variants in order to achieve robustness with respect to rotations. 17



@”Perception for the Manipulation of Socks”,
Ping Chuan Wang, Stephen Miller, Mario Fritz,

Trevor Darrell, Pieter Abbeel, 2011
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http://www.youtube.com/watch?v=KKUaVzf3Oqw
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After Deep Learning
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Data-Driven Models

® Advantages over Physics-based techniques:
o Greater flexibility in defining state space

20
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Data-Driven Models

® Advantages over Physics-based techniques:
o Greater flexibility in defining state space
o Learn dynamics from data (Images/3D Point clouds)
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Data-Driven Models

® Advantages over Physics-based techniques:
o Greater flexibility in defining state space
o Learn dynamics from data (Images/3D Point clouds)
o Image-based inputs allow partial observability
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Data-Driven Models

® Advantages over Physics-based techniques:
o Greater flexibility in defining state space
o Learn dynamics from data (Images/3D Point clouds)
o Image-based inputs allow partial observability

e Disadvantages:
o Struggles with domain shifts (e.g., lighting, camera position)

23



R

Data-Driven Models

® Advantages over Physics-based techniques:
o Greater flexibility in defining state space
o Learn dynamics from data (Images/3D Point clouds)
o Image-based inputs allow partial observability

e Disadvantages:
o Struggles with domain shifts (e.g., lighting, camera position)

Solution?

L\

24



Particle-based Representations

e Rely on 3D Geometric representations (Particles/Meshes) — Robust to changes in Visua

conditions.

® Such representations require specific architectures — Capture local structures & Handle data
sparsity efficiently.

® PointNet++ for unordered point sets & Graph Neural Networks (GNNs) for mesh-based
representations.

Point Cloud based Mesh-grid based
Representation of cloth Representation of cloth

25



PointNet
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Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation."” Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017. 26




Graph Neural Networks
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Graph Representation
of Problem

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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Initial Representation
of each node

27



@ Graph Neural Networks

(HE/ NN .

/Q\G

\

o

Graph Representation Initial Representation
of Problem of each node

@ © Cloth mesh nodes
@ Ball mesh nodes
— Mesh-space edges
— World-space edges
Connectivity radius
(Example for one ball mesh node)

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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@ Graph Neural Networks

M NREN

\

(N NN

\

(NN NN

(NN NN

(NN NN
(M EN NN

(RN

\

Initial Representation
of each node

Task Specific

(NN )
S AENM AN

WA Stuff + Loss

9

Output Representations
of each Node

(NN NN
(RN )

U NN

IMI MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications 29
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@ Neural Message Passing

G\

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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Neural Message Passing @

a8 EEERE B
n
=1

Q Current
Node State

o 'EEEEEN

HEER BB

Current Neighbor
States

N

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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Neural Message Passing @

EmEEEE B
t—1
Current

Q ) :f(c—oa) Node State

o 'EHEENEN

m=f(0—0)
o »
fﬁf

Current Neighbor Prepare "Message”
States

08

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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Neural Message Passing

@ < -/ (0—0)
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Summarize

| Recelved
Current Neighbor Prepare "Message” Information

States

N
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n

t—1
Current

Node State

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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Neural Message Passing @
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IO Summarize

| Received
Current Neighbor Prepare "Message” Information

States

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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Neural Message Passing @
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Neural Message Passing @
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CHCN NN .
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MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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@ Graph Neural Networks: Message Passing

t=0

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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@ Graph Neural Networks: Message Passing

t=0 t=1

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications



@ Graph Neural Networks: Message Passing

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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@ Graph Neural Networks: Message Passing

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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@ Graph Neural Networks: Message Passing

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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@ GNNs: Synchronous Message Passing (All-to-All)

M MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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@ GNNs: Synchronous Message Passing (All-to-All)

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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Graph Neural Networks: Output

5 EER BR B

* node selection
D * node classification
<‘}>, N * graph classification
S
RSP
S .
e

https://github.com/microsoft/tf-gnn-samples/

MSR Cambridge, Al Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications
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Perception

The perceptual capabilities of robots encompass a variety of skills:

* State estimation
* Segmentation

* Tracking

* Recognition

* Classification




R

Perception

The perceptual capabilities of robots encompass a variety of skills:

* State estimation
Segmentation
Tracking
Recognition
Classification

How do we get these data?

50



Properties Perception

( Sensors J ( Property ) ( Action )

Camera Shape Lifting

LR Tactile Size Dragging

HR Tactile Color Pulling

Force/Torque Material Twisting

Spectrometer Construction Flinging
Stiffness Sliding

Elasticity Pressing

Weight

Garcia-Camacho |, Borr'as J, Calli B, Norton A, Alenya” G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866—73 51




Properties Perception

( Sensors ) ( Property J ( Action ] ‘ Passive Perception ' ' Interactive Perception '
Camera Shape Lifting . Shane

LR Tactile Dragging

HR Tactile Color Elastl(:lty
Force/Torque Material Twisting
» — Construction . , > ]
 pe— LR Tactile B Materia .

’ Sliding

Auditory Spectrometer s Material Construction

Elasticity Pressing

Dragging

Camera Weight
\

Flinging

HR Tactile G Construction s Pressing

Force/Torque Material
Twisting

Construction

Elasticity
o

Auditory Sliding

Garcia-Camacho |, Borr'as J, Calli B, Norton A, Alenya” G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866—73 52




R

Representation and State Estimation

State estimation of a deformable object x can be seen as
An optimization problem based on observations o and object representation M( - )

arg mxin”o — M(x) "

x*

x € ObjectStates

M Garcia-Camacho |, Borr'as J, Calli B, Norton A, Alenya” G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866-73 53
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Representation and State Estimation

State estimation of a deformable object x can be seen as
An optimization problem based on observations o and object representation M( - )

x" argmxin”o — M(x) “

x € ObjectStates

The estimation problem may be formulated as

0 = argmeinzt:”ot—Mt(J?t)"
Xt+1 = ObjectDynamics(Xy, f;, 0)

where X is the predicted state that depends on object parameters
such as material properties 8 and applied forces f

M Garcia-Camacho |, Borr'as J, Calli B, Norton A, Alenya” G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866-73 54



Deformable Object Perception Tasks

O¢

Garcia-Camacho |, Borr'as J, Calli B, Norton A, Alenya” G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866—73 55
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Deformable Object Perception Tasks

O¢

X ELX

t

1
Té ¢V &

sy = ObjectDynamics(x;) t

v

M Garcia-Camacho |, Borr'as J, Calli B, Norton A, Alenya” G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866—73 56



Deformable Object Perception Tasks

O¢

X ELX .

t

1
Té ¢V &

sy = ObjectDynamics(x;) t

Object category?
Object status?
Graspable points?

v

M Garcia-Camacho |, Borr'as J, Calli B, Norton A, Alenya” G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866—73 57



Manipulation




@ Problem Definition

intermediate points

target point /
P,

Task: Fold the sleeve into blue target ‘
position

Use a robotic manipulator to grasp KH
arget positiop/” starting position P

the sleeve at P_and move to target =P 9 postion £

point P,

starting grasp point

Li, Y., Yue, Y., Xu, D., Grinspun, E., & Allen, P. K. (2015). Folding deformable objects using predictive simulation and trajectory optimization. 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 6000-6006. doi:10.1109/IR0S.2015.7354231



@ Mathematical Formulation
intermediate points

target point /
Goal: To find P,

a) external force F__ (acting on / O
the cloth)

ext

b) motion of the grasp point 7}% o

rget positio
(Pol Pll le P3)

in order to achieve the target
position of sleeve

starting grasp point

(4 points assumed for the sake of simplicity)

Li, Y., Yue, Y., Xu, D., Grinspun, E., & Allen, P. K. (2015). Folding deformable objects using predictive simulation and trajectory optimization. 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 6000-6006. doi:10.1109/IR0S.2015.7354231 60



@ How can we solve this?

61



Recap

Manipulation

} Tasks

\ _/

~
F __--—-—--—-—-- —_—

~-----------------/

pproaches
hptive Methods/ Learning
FEarning with Priors

Model anc
Represen-
tation

Modeling and Simulation Sensory Input and Data

"Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021)



@ How can we solve this?

1) Analytical Method

63



@ 1) Shooting in action space

Assumption: Dynamic model of the cloth is known

/SN
Forward Dynamics
T = Zor = f(Zo, Uo:T—1)
\“ -
I e
/f*
R
N\ { e
e f/") \,,
[ _J )
\
) } "\,
2 .
'Robot Plant \t=0 t=1 =2

M "Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021)
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@ 1) Shooting in action space

Assumption: Dynamic model of the cloth is known

/S INS S

Step 1) sample an action

7 N

t raj e CtO ry uO T _1 | \ Forward Dynamics
| I T = Zo.T = f(Xo, U0 7—1)
° ° I R \.‘,
(random/heuristic) | | D e
| I f - Y { ¥ J e
| 1 Yy T
| ' \
, - B
/ [ i
| ' i s /
l l \' . 'l‘\
| Shooting Control : ‘ //,/ :’“\\) "D
. Un:.7-1
\\ /’ t=0 t=1 t=2

Up:1—1
M "Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021) 65



@ 1) Shooting in action space @(

Assumption: Dynamic model of the cloth is known b~
7T AT arget positiop/” starting position P,

Step 1) Sample an aCthn optimal action sequence

¢ I R

trajectory %o.r-1 A N (i
(random/heuristic) ’—' | T
| |
‘ , L | w »
3 | ! | N\ / 4
. | \
Step 2) Update actions | i" - \.,,
. l . ' \ Sl /
according to evaluated costs I )N N
| Shooting Control | /,/ { \§ f\ B )
AN I u()..T_ i l ! - (/j Uo: 7T —1(T) |
Robot Plant \ | / t =0 t=1 =2 wsss f
, ,. o s O , -

Current State

L vuju():T—l (T)

optimization cost function
"Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021)




Assumption: Dynamic model of the cloth is known

Step 1) sample an action

trajectory Uo:7-1
(random/heuristic)

Step 2) Update actions
according to evaluated costs

Step 3) Resample after partial
execution (receding horizon)

@ 1) Shooting in action space

optimal action sequence

a

Execute %o.r—1 |

’__-__-__

/ ."', .’_,\._/./f g "Y

Robot Plant

L0

!

s 4

Shooting Control

\ T TN .. - —) /
Current State

U T-—1

P;auvwm )
/—arget positiop/” starting position P,

i/ Trajectory \

Forward Dynamics

T = Zo.T = f(Xo, Wo:T—1)

optimization

cost function (tedious/difficult to design!)

M "Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021)



@ 2) Search trajectories in object state space

Assumption: Dynamic model of the cloth is known

Robot Plant

M "Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021)



@ 2) Search trajectories in object state space

Step 1) find a low cost path 7 = zo.r — s ~
. Path/Trajectory on \
on the state manifold

State Manifold 7™ = Tg.1 |
i = () = | =2 waa

Robot Plant

’_-_______—

cost function

M "Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021)



@ 2) Search trajectories in object state space

Step 1) find a low cost path 7= zo.r — P e
] Current State X Path/Trajectory on \
on the state manifold

State Manifold ™ = Xo.7 l

Robot Plant

Step 2) generate actions u; A v = (@ @)
cause tra nSitiOnS at eaCh t Inverse D,\,"na.lgfcs

cost function

M "Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021)



@ 2) Search trajectories in object state space

Step 1) find a low cost path 7=zor——— g — e ~
. b, B Current State I Path/Trajectory on \
on the state manifold '

State Manifold 7 = ®g.71 l
e | i =2 waa

Robot Plant

Step 2) generate actions u; ‘“ ‘ A Ut —f (T4, Te11)

cause transitions at eaCh i Inverse Dynamics

PN P S N . "y
——

Issues: Ve ¢
Vast search space! ~u, 7\ t|7
Tedious to design cost function! |

\g
A
1

cost function

M "Modeling, learning, perception, and control methods for deformable object manipulation.”, Yin, Hang, Anastasia Varava, and Danica Kragic, Science Robotics 6.54 (2021)
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In both the previous methods, we made an assumption that we
already know the dynamic model

72



R

In both the previous methods, we made an assumption that we
already know the dynamic model

But in reality, it is very difficult to find the dynamic model of the
cloth due to

- high dimensionality

- nonlinear dynamics

- self collision

/3
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Can | solve this task without explicitly having a dynamic model?
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R

Can | solve this task without explicitly having a dynamic model?

Can | learn to control in an end to end manner?

75



R

Can | solve this task without explicitly having a dynamic model?
Can | learn to control in an end to end manner?

Model free learning based approaches!

76



@ Reinforcement Learning

Agent
Rt+1
S.. | Environment

state reward
S [ Rl‘

action
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@ Reinforcement Learning

manipulator

Agent
state reward
S R,
Rt+1
S.. | Environment

action

/8



@ Reinforcement Learning

manipulator

Agent
state reward A
S R,
Rt+1
S.. | Environment

cloth

action

/9



@ Reinforcement Learning

manipulator

Age nt end effector
movements

® position

State reward aCtiOn e velocity

e effort
S, | |®, 4
R d manipulation
— : primitives
Environment o grasp
e pull

O h
cloth o
e fling!

e push

30



@ Reinforcement Learning

manipulator

robot state
e joint angles Ag e nt
® gripper status

state reward
\Y R,

cloth state R
: t+1
e topological

e spherical g EnVII’Onment

cloth

L\

end effector

movements
® position

aCtion e velocity

e effort

A

manipulation

primitives

grasp
push

pull
stretch
pinch
fling!
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@ Example: Topological coordinates

T-shirt neck — Head
{ topology coordinate
5

5 Marker

T-shirt neck
A

~ .5 T-shirt sleeve

P il Body «.._ :
T-shirt sleeve —arm T-shirt neck — Body
: topology coordinate ! topology coordinate
Direct Teaching

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—-738. d0i:10.1109/Humanoids.2011.6100915
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Example: Spherical

Twardon, L., & Ritter, H. (2018). Learning to Put On a Knit Cap in a Head-Centric Policy Space. IEEE Robotics and Automation Letters, 3(2), 764—771. doi:10.1109/LRA.2018.2792153
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@ Objective

“learn an action policy that maximizes cumulative reward G, over
time”

Gi=Ri1+Ripo+ Ryyg+ - = Z ’)’th+k+1
k=0

|

discount factor (O<y<1)

“immediate rewards have more importance than future rewards”

34



@

RL can be computationally expensive and time consuming!

REINFORCEMENT 500M steps in
LEARHMG . Training

credits: x.com/Sentdex
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R

But can | get the data from simulators and use my learned method
in real world?
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R

But can | get the data from simulators and use my learned method
in real world?

sim2real
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Imperial College
London

Sim-to-Real Reinforcement Learning
for Detormable Object Manipulation

Jan Matas, Stephen James, Andrew J. Davidson
Department of Computing
Imperial College London

B < ) = i A
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Sim-to-Real Reinforcement Learning for
Contributions Deformable Object Manipulation

Jan Matas Stephen James Andrew J. Davison
Department of Computing Department of Computing Department of Computing

FO r d EfO r m a b I e O bJ e CtS , Imperial College London Imperial College London Imperial College London

jm6214Q@imperial.ac.uk sljl2@imperial.ac.uk a.davison@imperial.ac.uk

- | earn manl p U I d t 10N p O I ICIES Abstract: We have seen much recent progress in rigid object manipulation, but in-

. . teraction with deformable objects has notably lagged behind. Due to the large con-

t h rou g h acom bl N at 10N Of SOTA figuration space of deformable objects, solutions using traditional modelling ap-
proaches require significant engineering work. Perhaps then, bypassing the need

. for explicit modelling and instead learning the control in an end-to-end manner

D R I_ d IgO Il t h MS serves as a better approach? Despite the growing interest in the use of end-to-end
robot learning approaches, only a small amount of work has focused on their ap-

plicability to deformable object manipulation. Moreover, due to the large amount

of data needed to learn these end-to-end solutions, an emerging trend is to learn

control policies in simulation and then transfer them over to the real world. To-

- | earn p O I IclesS INn SIMu I d t IONS t h d t date, no work has explored whether it 1s possible to learn and transfer deformable

object policies. We believe that if sim-to-real methods are to be employed fur-
can b e t ran Sfe rre d to reag I WO rl d ther, then 1t should be possible to learn to interact with a wide variety of objects,
and not only rigid objects. In this work, we use a combination of state-of-the-art
. °y ® ° o deep reinforcement learning algorithms to solve the problem of manipulating de-
wi th ou t d d d |t |ONd I t ralinin g formable objects (specifically cloth). We evaluate our approach on three tasks —
folding a towel up to a mark, folding a face towel diagonally, and draping a piece
of cloth over a hanger. Our agents are fully trained in simulation with domain
randomisation, and then successfully deployed in the real world without having

seen any real deformable objects.

M Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—738. do0i:10.1109/Humanoids.2011.6100915 89



@ Tasks

Fold until the tape

Hang towel on hanger

Diagonal cloth fold

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—738. d0i:10.1109/Humanoids.2011.6100915
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Network Architecture

RGB In
(84x84x3)

All with 3x3 kernel, 32 filters, stride 2

Conv

Conv > Conv

FC FC Action
Conv > > 256 [ 7] 256 ﬂanh@

Joint angles
Gripper pos

Full state

FC FC
—>
256 269 M Task target
Inear ’
- Cloth corners
Inea 12
FC FC FC FC .
> 256 [ 2| 256 [ 2| 256 | 2| 256 [ 2 Min
—>

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—738. do0i:10.1109/Humanoids.2011.6100915
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Network Architecture

RGB In
(84x84x3)

All with 3x3 kernel, 32 filters, stride 2

Conv

inputs

Conv —»{ Conv

Joint angles
Gripper pos

FC

FC Action
> e ﬂanh@

Full state

—>
Conv > 256
FC FC
256 269 M Task target
Inear ’
- Cloth corners
Inea 12
> FC FC - FC - FC > Min

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—738. do0i:10.1109/Humanoids.2011.6100915
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RGB In
(84x84x3)

Network Architecture

Actor

All with 3x3 kernel, 32 filters, stride 2

Conv

inputs

Conv »{ Conv

—>» Conv

Gripper os

FC
256

FC
269

FC
256

— |inear

—linea

Full state

FC . Action
256 |f'&" 4

Task farget

Cloth dbrners
1 )

Critic

M Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—738. do0i:10.1109/Humanoids.2011.6100915 93
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Network Architecture

RGB In
(84x84x3)

Actor <&—— updates the policy

All with 3x3 kernel, 32 filters, stride 2

Conv

—>» Conv

inputs

—>» Conv

Gripper os

—>» Conv

Full state

FC
256

FC
269

FC
256

— |inear

—linea

Task farget

Cloth @®rners
1P

FC . Action
o56 [f1@" 4

I —

Critic

Min

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—738. do0i:10.1109/Humanoids.2011.6100915

auxiliary
outputs
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Network Architecture

RGB In
(84x84x3)

Actor <&—— updates the policy

All with 3x3 kernel, 32 filters, stride 2

Conv

inputs

Conv »{ Conv

—>» Conv

Gripper os

Full state

FC
256

FC
269

FC
256

— |inear

—linea

evaluates the actor

policy

Task farget

Cloth @®rners
1P

FC . Action
o56 [fa" 4

I —

Critic

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—738. d0i:10.1109/Humanoids.2011.6100915

auxiliary
outputs
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@ Domain Randomization

' - " = *& ' A - ' m)\ = ‘

A

randomized attributes:

table textures

cloth and arm colours

light position

camera position and orientation,

cloth size and position,

hanger size and position,

initial arm position and size of arm base

M Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—738. d0i:10.1109/Humanoids.2011.6100915 96



. Agent Action

Robot state

sim

Diagonal Folding Hanging Tape

=

real

Policy trained in simulation
transfers to real world without
further training

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—738. d0i:10.1109/Humanoids.2011.6100915 97
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Results

Success rates (Sim)

: : Diagonal folding 90%
Simulations Hanging =
Tape 867

Hanging task PRI KRGIng thek Tape folding task
Vicinity  100% Not(j;?ffl’ - 222? Grasp 90%
Real WOrld Grasp 76.6% P == d <0.15m 90%
Drape over  70% s d<0.lm 76.6%
. pe OVEL x d < 0.1m 40% == '
ull success 46.6% 4 < 0.05m 20% d<005m 43%

vicinity: gripper being from 5 cm from the cloth

drape over: cloth touching top part of the hanger

full success: cloth does not fall after released

not crumpled: adjacent corners are more than 15 cms from each other
d: distance between the diagonal (folded) corners (lower the better)

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—738. d0i:10.1109/Humanoids.2011.6100915
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Failure Modes

Common failure modes are

Grasp above/bellow
the towel

Crumpling the towel Weak Grasp

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733—738. d0i:10.1109/Humanoids.2011.6100915
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@ Open Problems

1) High Fidelity Simulation
2) Sim2Real gap
3) Robust Perception in Dynamic environments

4) Multi stage manipulation
5) Dataset and Benchmark standardization




[2] PokeFlex

[1] Liu Z, Luo P, Qiu S, Wang X, Tang X. 2016. Deepfashion: Powering robust clothes recognition and retrieval with rich annotations. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1096—104. Piscataway, NJ: IEEE

[2] Obrist, J., Zamora, M., Zheng, H., Zarate, J., Katzschmann, R. K., & Coros, S. (2024). PokeFlex: Towards a Real-World Dataset of Deformable Objects for Robotic Manipulation. arXiv preprint arXiv:2409.17124.

[3] Zhang, Z., Chu, X., Yunxi, T., & Au, K. W. S. (2024). DOFS: A Real-world 3D Deformable Object Dataset with Full Spatial Information for Dynamics Model Learning. CoRL Workshop on Learning Robot Fine and Dexterous Manipulation: Perception and Contrc
Retrieved from https://openreview.net/forum?id=QADznDIGM4 101




Thank youl!
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Next Lecture:

Multisensory and Multimodal
Learning + Manipulation
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