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Objects

Rigid Objects (Credits: YCB Objects and Models)
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Objects

Rigid Objects (Credits: YCB Objects and Models)
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Credits: Dune 2021 Credits: GettyImages Credits: PartNet-Mobility dataset 



Deformable Objects

- Linear
- Planar
- 3D objects

All Image Credits: iStock
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3D Object

“Feature sensing and robotic grasping of objects with uncertain information: A review.”, Wang, C., Zhang, X., Zang, X., Liu, Y., Ding, G., Yin, W., & Zhao, J. Sensors, 20(13), 3707 (2020).

Linear Object

Planar Objects



Applications

Why do we even care about deformable objects?
- Healthcare
- Food Industry
- Textile
- Agriculture
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Challenges

- Self Occlusion

- Complex dynamics

- High degrees of freedom
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Credits: behance.net



Human vs Robot
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Credits:@DaveHax



Human vs Robot

"pi0: A Vision-Language-Action Flow Model for General Robot Control", Black, K., Brown, N., Driess, D., Esmail, A., Equi, M., Finn, C., ... & Zhilinsky, U., arXiv preprint arXiv:2410.24164 (2024).

Credits:@DaveHax

Credits: pi0

Which Sensors? Sensing which properties? 
Actions? 
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https://docs.google.com/file/d/1wJngA4uxcdg2fP0DrVKiT7X_0lPS1xq1/preview


Decoding Deformable Object Manipulation

"Unfolding the literature: A review of robotic cloth manipulation.", Longhini, Alberta, Yufei Wang, Irene Garcia-Camacho, David Blanco-Mulero, Marco Moletta, Michael Welle, Guillem Alenyà et al. arXiv 
preprint arXiv:2407.01361 (2024).



End-to-end Workflow

"Modeling, learning, perception, and control methods for deformable object manipulation.", Yin, Hang, Anastasia Varava, and Danica Kragic,  Science Robotics 6.54 (2021) 10
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End-to-end Workflow

"Modeling, learning, perception, and control methods for deformable object manipulation.", Yin, Hang, Anastasia Varava, and Danica Kragic,  Science Robotics 6.54 (2021) 12



Physics-based Modeling of deformable 
objects 

a) Mass-spring systems

"Modeling, learning, perception, and control methods for deformable object manipulation.", Yin, Hang, Anastasia Varava, and Danica Kragic,  Science Robotics 6.54 (2021) 13

b) Position-based dynamics c) Continuum mechanics



Simulators

- Softgym

- MuJoCo

- SOFA

- PyBullet

“Softgym: Benchmarking deep reinforcement learning for deformable object manipulation,” X. Lin, Y. Wang, J. Olkin, and D. Held, in Conference on Robot Learning (CoRL), 2021. 14

Softgym built on Nvidia FleX bindings



Simulators

Real-world Demonstration

Credits: “Benchmarking the sim-to-real gap in cloth manipulation”, Blanco-Mulero, D., Barbany, O., Alcan, G., Colomé, A., Torras, C., & Kyrki, V.  IEEE Robotics and Automation Letters.(2024). 15

Real-world Demonstration

Bullet

SOFA

MuJoCo

Softgym



Traditional Methods: Before Deep Learning

- Contour Matching

Ref 16

- Template Matching

- Simple ML models

Lets understand this with an example work!



“Perception for the Manipulation of Socks”,
Ping Chuan Wang, Stephen Miller, Mario Fritz, 
Trevor Darrell, Pieter Abbeel, 2011
- Input: 

- Single Image

- Output: 

- Structure(toe, ankle, etc)

- Inside-out?

- Match with candidates

- Use of LBP, MR8 filter banks

- Use of SVM classifier
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“Perception for the Manipulation of Socks”,
Ping Chuan Wang, Stephen Miller, Mario Fritz, 
Trevor Darrell, Pieter Abbeel, 2011

18Project web page at: http://rll.berkeley.edu/2011 IROS socks  

http://www.youtube.com/watch?v=KKUaVzf3Oqw


After Deep Learning
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Data-Driven Models

● Advantages over Physics-based techniques:
○ Greater flexibility in defining state space
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Data-Driven Models

● Advantages over Physics-based techniques:
○ Greater flexibility in defining state space
○ Learn dynamics from data (Images/3D Point clouds)
○ Image-based inputs allow partial observability

● Disadvantages:
○ Struggles with domain shifts (e.g., lighting, camera position)
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Data-Driven Models

● Advantages over Physics-based techniques:
○ Greater flexibility in defining state space
○ Learn dynamics from data (Images/3D Point clouds)
○ Image-based inputs allow partial observability

● Disadvantages:
○ Struggles with domain shifts (e.g., lighting, camera position)

Solution?

24



Particle-based Representations

● Rely on 3D Geometric representations (Particles/Meshes) → Robust to changes in Visual 
conditions.

● Such representations require specific architectures → Capture local structures & Handle data 
sparsity efficiently.

● PointNet++ for unordered point sets & Graph Neural Networks (GNNs) for mesh-based 
representations.

Point Cloud based 
Representation of cloth

Mesh-grid based 
Representation of cloth
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PointNet

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE 
conference on computer vision and pattern recognition. 2017. 26



MSR Cambridge, AI Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications 27
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MSR Cambridge, AI Residency Advanced Lecture Series, An Introduction to Graph Neural Networks: Models and Applications 48



Perception

The perceptual capabilities of robots encompass a variety of skills:

• State estimation
• Segmentation
• Tracking
• Recognition
• Classification
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Perception

The perceptual capabilities of robots encompass a variety of skills:

• State estimation
• Segmentation
• Tracking
• Recognition
• Classification

How do we get these data?
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 Properties Perception

51Garcia-Camacho I, Borr`as J, Calli B, Norton A, Alenya` G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866–73
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52Garcia-Camacho I, Borr`as J, Calli B, Norton A, Alenya` G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866–73



Representation and State Estimation

State estimation of a deformable object x can be seen as 
An optimization problem based on observations o and object representation M( ⋅ )

Garcia-Camacho I, Borr`as J, Calli B, Norton A, Alenya` G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866–73 53



Representation and State Estimation

State estimation of a deformable object x can be seen as 
An optimization problem based on observations o and object representation M( ⋅ )

The estimation problem may be formulated as

where      is the predicted state that depends on object parameters 
such as material properties     and applied forces f

Garcia-Camacho I, Borr`as J, Calli B, Norton A, Alenya` G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866–73 54



Deformable Object Perception Tasks

55Garcia-Camacho I, Borr`as J, Calli B, Norton A, Alenya` G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866–73



Deformable Object Perception Tasks

56Garcia-Camacho I, Borr`as J, Calli B, Norton A, Alenya` G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866–73



Deformable Object Perception Tasks

57Garcia-Camacho I, Borr`as J, Calli B, Norton A, Alenya` G. 2022. Household cloth object set: Fostering benchmarking in deformable object manipulation. IEEE Robotics Autom. Lett. 7(3):5866–73
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Manipulation



Problem Definition

Task: Fold the sleeve into blue target 
position

Use a robotic manipulator to grasp 
the sleeve at P

o
 and move to target 

point P
3
 

starting grasp point

target point

intermediate points

Li, Y., Yue, Y., Xu, D., Grinspun, E., & Allen, P. K. (2015). Folding deformable objects using predictive simulation and trajectory optimization. 2015 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), 6000–6006. doi:10.1109/IROS.2015.7354231
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Mathematical Formulation

Goal: To find
a) external force F

ext
 (acting on 

the cloth)
OR 

b) motion of the grasp point
(P

0
, P

1
, P

2
, P

3
) 

in order to achieve the target 
position of sleeve

starting grasp point

target point

intermediate points

F
ext

(4 points assumed for the sake of simplicity)

Li, Y., Yue, Y., Xu, D., Grinspun, E., & Allen, P. K. (2015). Folding deformable objects using predictive simulation and trajectory optimization. 2015 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), 6000–6006. doi:10.1109/IROS.2015.7354231
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How can we solve this?

1) Analytical Method
2) Learning based Method (Reinforcement Learning)
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Recap

"Modeling, learning, perception, and control methods for deformable object manipulation.", Yin, Hang, Anastasia Varava, and Danica Kragic,  Science Robotics 6.54 (2021)
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How can we solve this?

1) Analytical Method
2) Learning based Method (Reinforcement Learning)
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1) Shooting in action space

state of the (robot+cloth) system

Assumption: Dynamic model of the cloth is known

"Modeling, learning, perception, and control methods for deformable object manipulation.", Yin, Hang, Anastasia Varava, and Danica Kragic,  Science Robotics 6.54 (2021)
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1) Shooting in action space

state of the (robot+cloth) system

Assumption: Dynamic model of the cloth is known

Step 1) sample an action 
trajectory 
(random/heuristic)

"Modeling, learning, perception, and control methods for deformable object manipulation.", Yin, Hang, Anastasia Varava, and Danica Kragic,  Science Robotics 6.54 (2021)



1) Shooting in action space

state of the (robot+cloth) system

Assumption: Dynamic model of the cloth is known

Step 1) sample an action 
trajectory 
(random/heuristic)

Step 2) Update actions 
according to evaluated costs

optimal action sequence

optimization cost function

"Modeling, learning, perception, and control methods for deformable object manipulation.", Yin, Hang, Anastasia Varava, and Danica Kragic,  Science Robotics 6.54 (2021)



1) Shooting in action space

state of the (robot+cloth) system

Assumption: Dynamic model of the cloth is known

Step 1) sample an action 
trajectory 
(random/heuristic)

Step 2) Update actions 
according to evaluated costs

Step 3) Resample after partial 
execution (receding horizon)

optimal action sequence

optimization cost function (tedious/difficult to design!)

"Modeling, learning, perception, and control methods for deformable object manipulation.", Yin, Hang, Anastasia Varava, and Danica Kragic,  Science Robotics 6.54 (2021)



2) Search trajectories in object state space

Step 1) find a low cost path

Step 2) generate actions that 
cause transition at each t

Issues:
a) Transition model?
b) Dyanamics ignored!
c) Vast search space!

(sample efficiency)

Assumption: Dynamic model of the cloth is known

"Modeling, learning, perception, and control methods for deformable object manipulation.", Yin, Hang, Anastasia Varava, and Danica Kragic,  Science Robotics 6.54 (2021)



2) Search trajectories in object state space

Step 1) find a low cost path 
on the state manifold

Step 2) generate actions that 
cause transition at each t

Issues:
a) Transition model?
b) Dyanamics ignored!
c) Vast search space!

(sample efficiency)

cost function

"Modeling, learning, perception, and control methods for deformable object manipulation.", Yin, Hang, Anastasia Varava, and Danica Kragic,  Science Robotics 6.54 (2021)



2) Search trajectories in object state space

Step 1) find a low cost path 
on the state manifold

Step 2) generate actions   th 
cause transitions at each t

Issues:
a) Transition model?
b) Dyanamics ignored!
c) Vast search space!

(sample efficiency)

cost function
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2) Search trajectories in object state space

Step 1) find a low cost path 
on the state manifold

Step 2) generate actions   th 
cause transitions at each t

Issues:
Vast search space!
Tedious to design cost function!

cost function

"Modeling, learning, perception, and control methods for deformable object manipulation.", Yin, Hang, Anastasia Varava, and Danica Kragic,  Science Robotics 6.54 (2021)



72

In both the previous methods, we made an assumption that we 
already know the dynamic model
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In both the previous methods, we made an assumption that we 
already know the dynamic model

But in reality, it is very difficult to find the dynamic model of the 
cloth due to

- high dimensionality 
- nonlinear dynamics
- self collision

.

.

.
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Can I solve this task without explicitly having a dynamic model?
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Can I solve this task without explicitly having a dynamic model?

Can I learn to control in an end to end manner?
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Can I solve this task without explicitly having a dynamic model?

Can I learn to control in an end to end manner?

Model free learning based approaches!



Reinforcement Learning
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manipulator

end effector 
movements

● position
● velocity
● effort

manipulation 
primitives
● grasp
● push
● pull
● stretch
● pinch
● fling!

sparse and delayed! :(

cloth

?

tricky to design! :(

domain adaptation! :(



Reinforcement Learning
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Reinforcement Learning
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Reinforcement Learning
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manipulator

end effector 
movements

● position
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manipulation 
primitives
● grasp
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Reinforcement Learning
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manipulator

end effector 
movements

● position
● velocity
● effort

manipulation 
primitives
● grasp
● push
● pull
● stretch
● pinch
● fling!

sparse and delayed! :(

cloth

tricky to design! :(

domain adaptation! :(

robot state
● joint angles
● gripper status

cloth state
● topological
● spherical
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Example: Topological coordinates

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915
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Example: Spherical coordinates

Twardon, L., & Ritter, H. (2018). Learning to Put On a Knit Cap in a Head-Centric Policy Space. IEEE Robotics and Automation Letters, 3(2), 764–771. doi:10.1109/LRA.2018.2792153
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Objective

“learn an action policy that maximizes cumulative reward G
t 
over 

time”

discount factor (0<γ<1)

“immediate rewards have more importance than future rewards”



RL can be computationally expensive and time consuming!
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credits: x.com/Sentdex

Training
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But can I get the data from simulators and use my learned method 
in real world?

sim2real
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But can I get the data from simulators and use my learned method 
in real world?

sim2real



88
Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915
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Contributions

For deformable objects, 

- learn manipulation policies 
through a combination of SOTA 
DRL algorithms

- learn policies in simulations that 
can be transferred to real world 
without additional training

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915
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Tasks

Fold until the tape

Hang towel on hanger

Diagonal cloth fold

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915
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Network Architecture

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915
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inputs

Network Architecture

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915
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inputs

Actor

Critic

Network Architecture

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915
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inputs

Actor

Critic

Network Architecture
updates the policy

auxiliary 
outputs

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915



95

inputs

Actor

Critic

Network Architecture
updates the policy

evaluates the actor 
policy

auxiliary 
outputs

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915



Domain Randomization
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randomized attributes:
● table textures
● cloth and arm colours
● light position 
● camera position and orientation,
● cloth size and position, 
● hanger size and position, 
● initial arm position and size of arm base

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915
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sim

real

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915



98

Results

Simulations

Real world

vicinity: gripper being from 5 cm from the cloth
drape over: cloth touching top part of the hanger
 full success: cloth does not fall after released
not crumpled: adjacent corners are more than 15 cms from each other
d: distance between the diagonal (folded) corners (lower the better)   

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915
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Failure Modes

Tamei, T., Matsubara, T., Rai, A., & Shibata, T. (2011). Reinforcement learning of clothing assistance with a dual-arm robot. 2011 11th IEEE-RAS International Conference on Humanoid Robots, 733–738. doi:10.1109/Humanoids.2011.6100915



1) High Fidelity Simulation
2) Sim2Real gap 
3) Robust Perception in Dynamic environments
4) Multi stage manipulation
5) Dataset and Benchmark standardization

Open Problems
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Datasets
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[1] Liu Z, Luo P, Qiu S, Wang X, Tang X. 2016. Deepfashion: Powering robust clothes recognition and retrieval with rich annotations. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1096–104. Piscataway, NJ: IEEE
[2] Obrist, J., Zamora, M., Zheng, H., Zarate, J., Katzschmann, R. K., & Coros, S. (2024). PokeFlex: Towards a Real-World Dataset of Deformable Objects for Robotic Manipulation. arXiv preprint arXiv:2409.17124.
[3] Zhang, Z., Chu, X., Yunxi, T., & Au, K. W. S. (2024). DOFS: A Real-world 3D Deformable Object Dataset with Full Spatial Information for Dynamics Model Learning. CoRL Workshop on Learning Robot Fine and Dexterous Manipulation: Perception and Control. 
Retrieved from https://openreview.net/forum?id=QADznDlGM4

[1] Cloth3D

[2] PokeFlex

[3] DOFS
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Thank you! 
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Next Lecture:
Student Lecture 5
Multisensory and Multimodal 
Learning + Manipulation
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