Lecture 22 **Mobile Robotics - VII -**SLAM

CSCI 5551 - Spring 2025

from Cyrill Stachniss

Course logistics

- Quiz 11 will be posted tomorrow and will due on Wed at noon.
- Final project proposal slides are due today 11:59 pm CT.
- Project 7:
 - Sessions are going well.
 - If you are late to the sessions, you will not receive full points.
- No TA OHs between 04/07 and 04/23.
 - They will be available on demand.
 - Karthik's OH will be available to discuss final projects.
- mark your calendars

Final Poster Session: 05/05/2025 - Monday - 12:30pm - 2:30pm, Shepherd Labs 164 -

Final (Open) Project timeline

16	17	18	19	
23	24	25	26	
Guest lec				
30	1	2	3	

Poster for printing due

Final video due

Final (Open) Project timeline

- Proposal Slides: (template is provided)
 - 1-4 Slides

 - Where does your project stand not the 3-axes (robots, objects, tasks)?
 - Backup plan
- In-class proposal presentation (<8mins):
 - Teams will get feedback from the class
- Final video:
 - Describing the project idea and the outcome.
- Poster presentation: (template will be provided)
 - Presenting the project idea and the outcome to audience.

Title, Motivation, Input - Output, Evaluation, Deliverables, Timeline, Who is doing what?

Final Project: 15%

- Project proposal slides + presentation: 3%
- Final project video: 6% ۰
- Poster presentation (evaluation by judges): 6% ۰

Have you started working on your final projects? At this point, we expect you've settled on an idea and begun making progress.

Frontier-based Exploration:

Frontier-based exploration is the process of repeatedly detecting frontiers and moving towards them, until there are no more frontiers and therefore no more unknown regions.

What are frontiers? Frontier cells define the border between known and unknown space.

.

CSCI 5551 - Spring 2025

Single Robot Exploration

Frontiers between free space and unknown areas are potential target locations Going to frontiers will gain information

Select the target that minimizes a cost function (e.g. travel time / distance /...)

Coordinated Exploration

[Burgard et al. 00], [Simmons et al. 00]

CSCI 5551 - Spring 2025

The SLAM Problem

The SLAM Problem

A robot is exploring an unknown, static environment.

Given:

- The robot's controls
- Observations of nearby features **Estimate:**
- Map of features
- Path of the robot

CSCI 5551 - Spring 2025

SLAM Applications

CSCI 5551 - Spring 2025

Mapping with Perfect Odometry

CSCI 5551 - Spring 2025

from Cyrill Stachniss

Mapping with Raw Odometry

CSCI 5551 - Spring 2025

Illustration of SLAM

With only dead reckoning, vehicle pose uncertainty grows without bound

CSCI 5551 - Spring 2025

Courtesy J. Leonard

CSCI 5551 - Spring 2025

With only dead reckoning, vehicle pose uncertainty grows without bound

Courtesy J. Leonard

With only dead reckoning, vehicle pose uncertainty grows without bound

CSCI 5551 - Spring 2025

Courtesy J. Leonard

With only dead reckoning, vehicle pose uncertainty grows without bound

CSCI 5551 - Spring 2025

Courtesy J. Leonard

With only dead reckoning, vehicle pose uncertainty grows without bound

CSCI 5551 - Spring 2025

Courtesy J. Leonard

With only dead reckoning, vehicle pose uncertainty grows without bound

CSCI 5551 - Spring 2025

Repeat, with Measurements of Landmarks

First position: two features observed

CSCI 5551 - Spring 2025

Courtesy J. Leonard

Second position: two new features observed

CSCI 5551 - Spring 2025

Courtesy J. Leonard

Re-observation of first two features results in improved estimates for vehicle and feature

CSCI 5551 - Spring 2025

Courtesy J. Leonard

Third position: two additional features added to map

CSCI 5551 - Spring 2025

Courtesy J. Leonard

CSCI 5551 - Spring 2025

Courtesy J. Leonard

Process continues as the vehicle moves through the environment

CSCI 5551 - Spring 2025

SLAM Using Landmarks

Courtesy J. Leonard

CSCI 5551 - Spring 2025

Test Environment (Point Landmarks)

Courtesy J. Leonard

CSCI 5551 - Spring 2025

View from Vehicle

Courtesy J. Leonard

CSCI 5551 - Spring 2025

SLAM Using Landmarks

- 1. Move
- 2. Sense
- 3. Associate measurements with known features
- 4. Update state estimates for robot and previously mapped features
- 5. Find new features from unassociated measurements
- 6. Initialize new features
- 7. Repeat

MIT Indoor Track

CSCI 5551 - Spring 2025

Comparison with Ground Truth 50

CSCI 5551 - Spring 2025

Simultaneous Localization and Mapping (SLAM)

Building a map and locating the robot in the map at the same time Chicken-and-egg problem

Definition of the SLAM Problem

Given

- The robot's controls $u_{1:T} = \{u_1, u_2, u_3, \dots, u_T\}$
- Observations

Wanted

- Map of the environment \mathcal{M}
- Path of the robot

 $z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$

 $x_{0:T} = \{x_0, x_1, x_2, \dots, x_T\}$

CSCI 5551 - Spring 2025

Three Main Paradigms

Kalman filter

Graph-based Filter

CSCI 5551 - Spring 2025

EKF SLAM

- Application of the EKF to SLAM
- Estimate robot's pose and locations of landmarks in the environment
- State space (for the 2D plane) is

 $x_t = (x, y, \theta , m_{1,x}, m_{1,y}, \dots, m_{n,x}, m_{n,y})^T$ robot's pose landmark 1 landmark n

Assumption: known correspondences and ??

EKF SLAM: State Representation

- Gaussian
- Belief is represented by

Map with n landmarks: (3+2n)-dimensional

$\sigma_{xm_{1,x}}$	$\sigma_{xm_{1,y}}$	• • •	$\sigma_{xm_{n,x}}$	$\sigma_{xm_{n,y}}$	
$\sigma_{ym_{1,x}}$	$\sigma_{ym_{1,y}}$	• • •	$\sigma_{m_{n,x}}$	$\sigma_{m_{n,y}}$	
$\sigma_{ heta m_{1,x}}$	$\sigma_{ heta m_{1,y}}$	• • •	$\sigma_{ heta m_{n,x}}$	$\sigma_{ heta m_{n,y}}$	
$m_{1,x}m_{1,x}$	$\sigma_{m_{1,x}m_{1,y}}$	• • •	$\sigma_{m_{1,x}m_{n,x}}$	$\sigma_{m_{1,x}m_{n,y}}$	i I
$m_{1,y}m_{1,x}$	$\sigma_{m_{1,y}m_{1,y}}$		$\sigma_{m_{1,y}m_{n,x}}$	$\sigma_{m_{1,y}m_{n,y}}$	
• •	• • •	••••	• • •	• • •	
$n_{n,x}m_{1,x}$	$\sigma_{m_{n,x}m_{1,y}}$	• • •	$\sigma_{m_{n,x}m_{n,x}}$	$\sigma_{m_{n,x}m_{n,y}}$	
$m_{n,y}m_{1,x}$	$\sigma_{m_{n,y}m_{1,y}}$	• • •	$\sigma_{m_{n,y}m_{n,x}}$	$\sigma_{m_{n,y}m_{n,y}}$	/
	Σ				

EKF SLAM: State Representation

More compactly

CSCI 5551 - Spring 2025

EKF SLAM: State Representation

• Even more compactly (note: $x_R ightarrow x$)

CSCI 5551 - Spring 2025

EKF SLAM: Filter Cycle

- 1. State prediction
- 2. Measurement prediction
- 3. Measurement
- 4. Data association
- 5. Update

CSCI 5551 - Spring 2025

EKF SLAM: State Prediction

CSCI 5551 - Spring 2025

EKF SLAM: Measurement Prediction

CSCI 5551 - Spring 2025

EKF SLAM: Obtained Measurement

CSCI 5551 - Spring 2025

EKF SLAM: Data Association and Difference Between h(x) and z

CSCI 5551 - Spring 2025

EKF SLAM: Update Step

CSCI 5551 - Spring 2025

EKF SLAM Correlations

Blue path = true path Red path = estimated path Black path = odometry

Single hypothesis data association

Courtesy: M. Montemerlo

Approximate the SLAM posterior with a high-dimensional Gaussian [Smith & Cheesman, 1986] ...

Data Association in SLAM

- observations and landmarks is unknown catastrophic consequences
- In the real world, the mapping between Picking wrong data associations can have
 - EKF SLAM is brittle in this regard
- Pose error correlates data associations

Loop-Closing

- mapped area
- Data association under
 - high ambiguity
 - possible environment symmetries
- Uncertainties collapse after a loop-closure (whether the closure was correct or not)

Loop-closing means recognizing an already

Online SLAM Example

CSCI 5551 - Spring 2025

Before the Loop-Closure

After the Loop-Closure

CSCI 5551 - Spring 2025

Example: Victoria Park Dataset

Courtesy: E. Nebot

CSCI 5551 - Spring 2025

Example: Victoria Park Dataset

Courtesy: E. Nebot

CSCI 5551 - Spring 2025

Victoria Park: Data Acquisition

Courtesy: E. Nebot

CSCI 5551 - Spring 2025

Victoria Park: EKF Estimate

Courtesy: E. Nebot

CSCI 5551 - Spring 2025

Victoria Park: EKF Estimate

CSCI 5551 - Spring 2025

Victoria Park: Landmarks

Courtesy: E. Nebot

CSCI 5551 - Spring 2025

Andrew Davison: MonoSLAM

CSCI 5551 - Spring 2025

EKF SLAM Summary

- Quadratic in the number of landmarks: $O(n^2)$
- Convergence results for the linear case. Can diverge if nonlinearities are large!
- Have been applied successfully in largescale environments.
- Approximations reduce the computational complexity.

EKF Algorithm

- **1. Extended_Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- Prediction: 2.

$$\mathbf{3.} \qquad \overline{\mu}_t = g(u_t, \mu_{t-1})$$

$$\mathbf{4.} \qquad \overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$$

- 5. **Correction:**
- $6. \quad K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + Q)$ 7. $\mu_t = \overline{\mu}_t + K_t(z_t - h(\overline{\mu}_t))$

$$\mathbf{8.} \qquad \boldsymbol{\Sigma}_t = (I - K_t H_t) \boldsymbol{\Sigma}_t$$

Return μ_t, Σ_t 9.

H

$$\longleftarrow \qquad \mu_t = A_t \mu_{t-1} + B_t u_t$$
$$\leftarrow \qquad \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

· ____

$$Q_{t})^{-1} \longleftarrow K_{t} = \sum_{t} C_{t}^{T} (C_{t} \Sigma_{t} C_{t}^{T} + Q_{t})^{-1}$$

$$\longleftarrow \mu_{t} = \overline{\mu_{t}} + K_{t} (z_{t} - C_{t} \overline{\mu_{t}})$$

$$\longleftarrow \Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma_{t}}$$

$$H_{t} = \frac{\partial h(\overline{\mu_{t}})}{\partial x_{t}} \qquad G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}}$$

Literature

EKF SLAM

- "Probabilistic Robotics", Chapter 10
- Smith, Self, & Cheeseman: "Estimating
- Dissanayake et al.: "A Solution to the (SLAM) Problem"
- "SLAM Part 2" tutorials

Uncertain Spatial Relationships in Robotics"

Simultaneous Localization and Map Building

Durrant-Whyte & Bailey: "SLAM Part 1" and

Online vs Full SLAM

Online SLAM problem

 $p(x_{t}, m | z_{1:t}, u_{1:t})$

Estimate map m and current position x, Estimate map *m* and driven path $x_{1:t}$

Full SLAM problem

 $p(x_{1:t}, m | z_{1:t}, u_{1:t})$

CSCI 5551 - Spring 2025

from Cyrill Stachniss

RGBD Mapping

di. Air https://www.youtube.com/watch?v=5o3ABX7xYJU

CSCI 5551 - Spring 2025

Active Object Modeling: Joint Tracking and Modeling

Robotic In-Hand 3D Object Modeling, UW Robotics and State Estimation Lab Michael Krainin, Peter Henry, Xiaofeng Ren, Dieter Fox, and Brian Curless

Thats the end of the course lectures!

- Representations
- 1. Transformations
- 2. Rotations & Quaternions
- **Manipulation**
- 1. Forward Kinematics
- 2. Inverse Kinematics

Planning

1. Path Planning

2. Bugs

planners

- 3. Configuration space
- 4. Sampling based
- 5. Potential Fields
- 6. Collision Detection

Motion Control

Mobile Robotics

- 1. Probabilistic Robotics
- 2. Sensor and Motion models
- 3. Kalman Filter, Particle Filters
- 4. Localization
- 5. Mapping
- 6. SLAM

Final Project Proposals and Guest Lectures

04/16	Open Ended Final Project Pitche
04/21	Open Ended Final Project Pitche
04/23	Open Ended Final Project Pitche
04/28	Guest Lecture - Adam Imdieke (F
04/30	Guest Lecture - Xun Tu (PhD stu
05/05	Poster Day

- es es
- Groups 1-5 will present on 04/16
- Groups 6-10 will present on 04/21
- Groups 11-15 will present on 04/23
- PhD student)
- ident)

Department of Computer Science & Engineering

l am... 🗸 About 🗸 Undergraduate 🗸 Graduate 🗸 Research 🗸 People 🗸 Connect 🗸 Community & Engagement 🗸

Home > Upcoming events > CRAY Colloquium: Is Data All You Need?: Large Robot Action Models and Good Old Fashioned Engineering

CRAY Colloquium: Is Data All You Need?: Large Robot Action Models and Good Old Fashioned Engineering

The computer science colloquium takes place on Mondays from 11:15 a.m. -12:15 p.m. This week's speaker, **Ken Goldberg** (University of California, Berkeley), will be giving a talk titled "**Is Data All You Need?: Large Robot Action Models and Good Old Fashioned Engineering**".

Abstract

Enthusiasm has been skyrocketing for humanoids based on recent advances in "end-to-end" large robot action models. Initial results are promising, and several collaborative efforts are underway to collect the needed demonstration data. But is data really all you need?

Although end-to-end Large Vision, Language, Action (VLA) Models have potential to generalize and reliably solve all problems in robotics, initial results have been mixed. It seems likely that the size of the VLA state space and dearth of available demonstration data, combined with challenges in getting models to generalize beyond the training distribution and the inherent challenges in interpreting and debugging large models, will make it difficult for pure end-toend systems to provide the kind of robot performance that investors expect in the near future.

Start date Monday, April 21, 2025, 11:15 a.m.

End date Monday, A

Location Keller Hall 3-180

Share

Give to the CS&E department

Monday, April 21, 2025, 12:15 p.m.

SRTS

- Please take a moment to fill the Student Rating of Teaching
 - If the QR code does not work.
 - Please search for "SRT" in your email and fill the one for CSCI5551.
- Please encourage your classmates and teammates to finish the rating.
 - If we get more than 95% response rate, I will get everyone in the class 1 quiz point.

CSCI 5551 001 Robotics

Students

o.blueja.io/xRdARz2wb0WHoD80bJbgA

