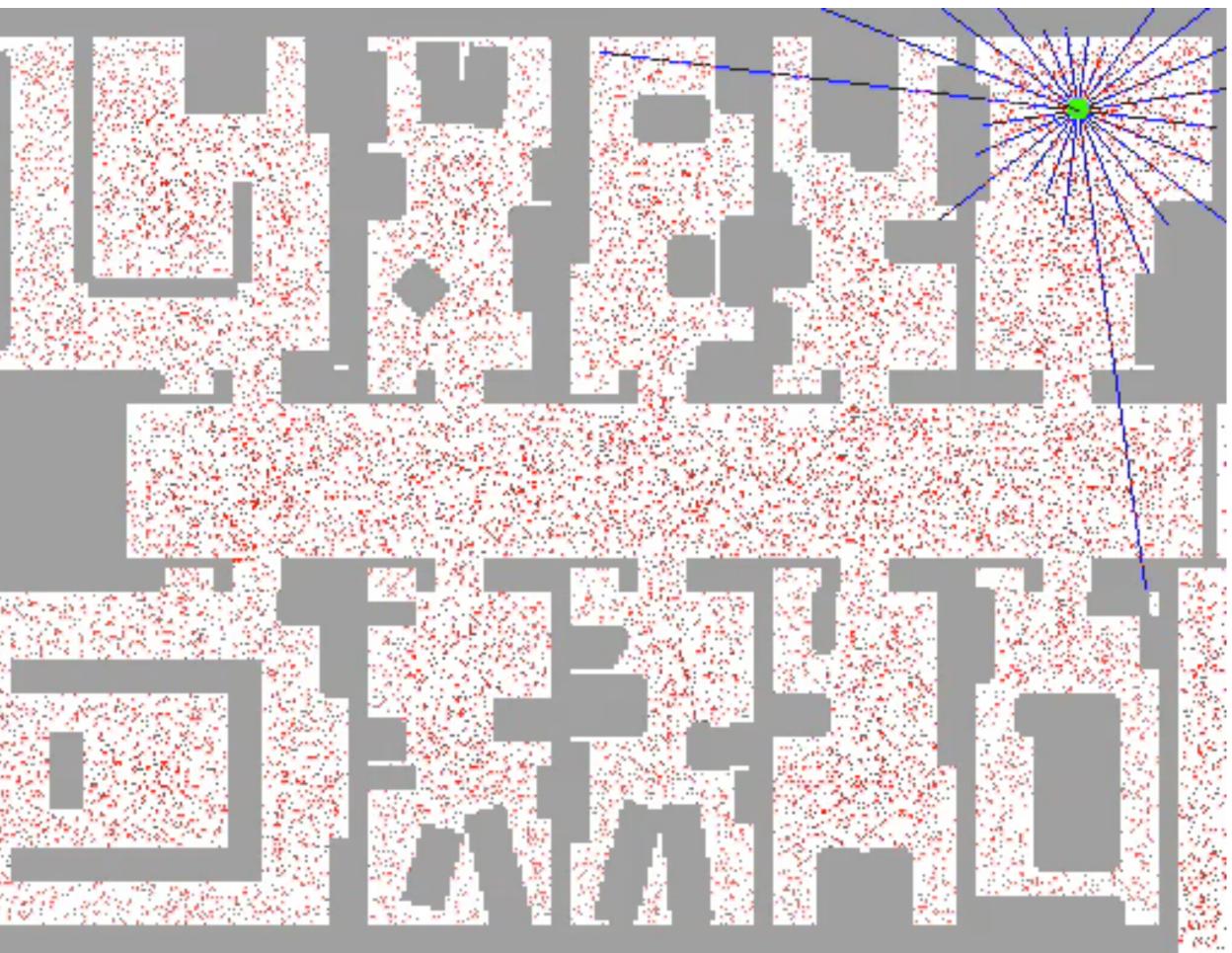
Lecture 19 **Nobile Robotics - IV -**Particle Filter



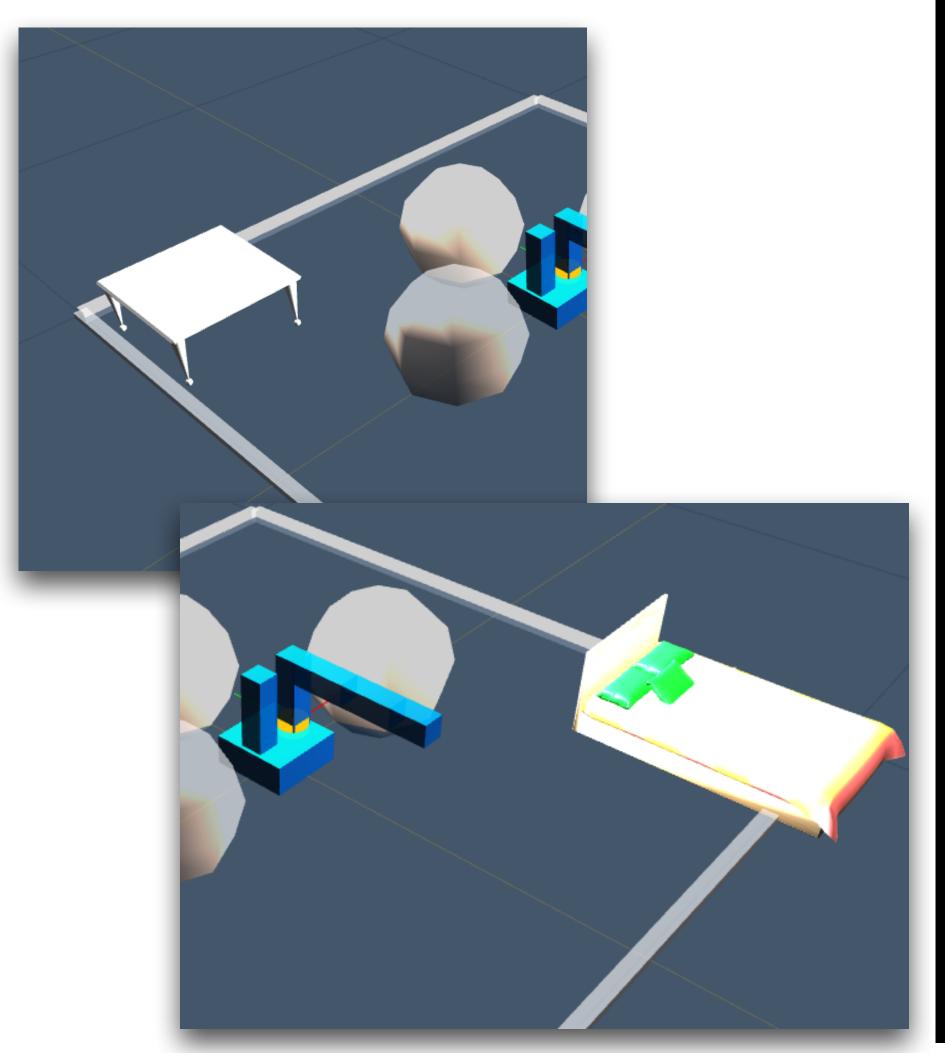
CSCI 5551 - Spring 2025

from Probabilistic Robotics

Course logistics

- Quiz 9 was posted yesterday and was due today at noon.
- Project 6 was posted on 03/24 and is due 04/02 (today)
- P1-6 Grades and quiz grades will be posted on Canvas by Monday.
- Project 7:
 - Groups are formed.
 - Scheduler will be shared with the class later today.
 - Lab sessions to be completed by 04/23.
- Final Project:
 - Proposal slides are due 04/14.
- No TA OHs between 04/07 and 04/23.
 - They will be available on demand.
 - Karthik's OH will be available to discuss final projects.
- Final Poster Session: 05/05/2025 Monday 12:30pm 2:30pm, Shepherd Labs 164 mark your calendars

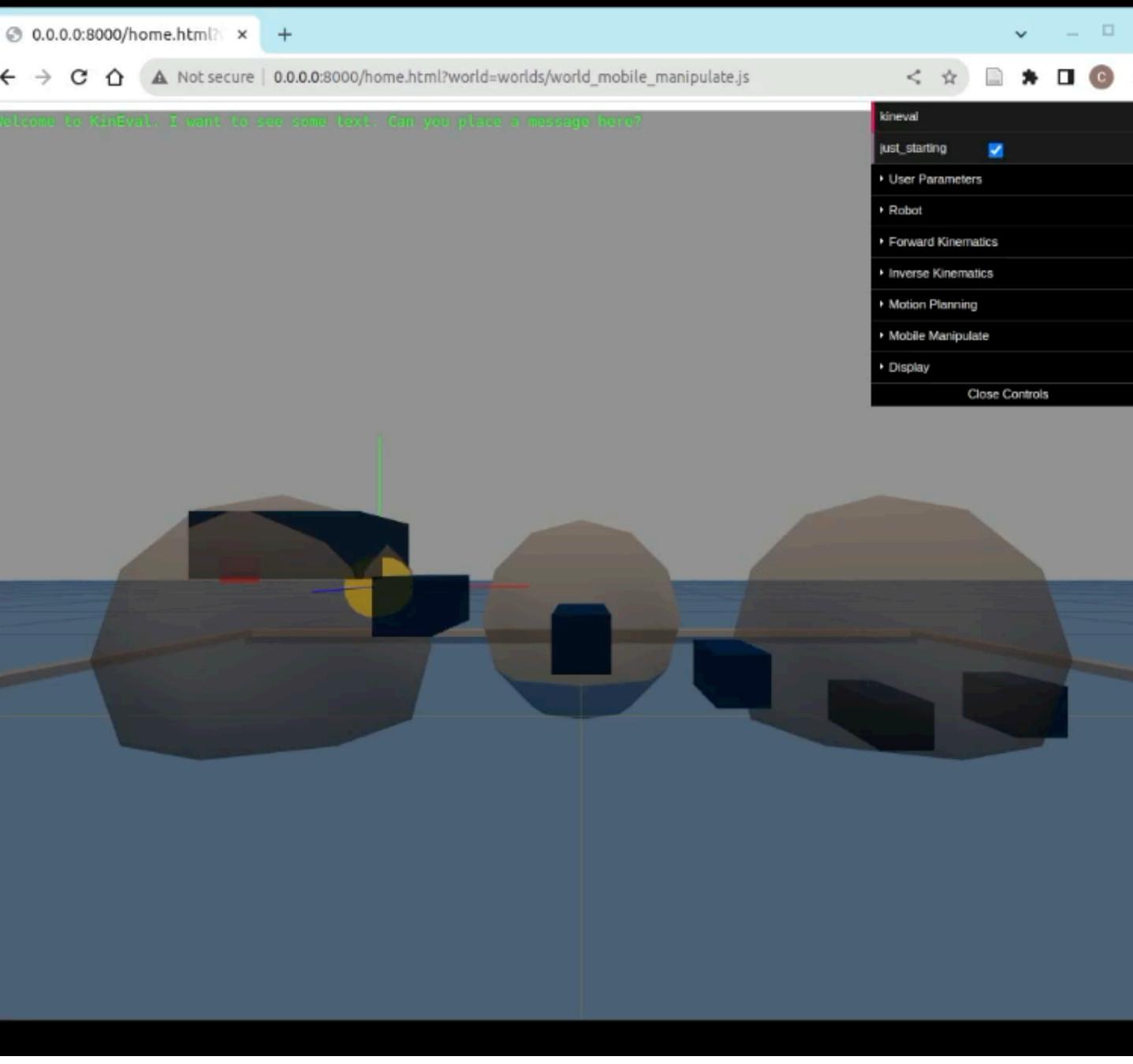
Final Project (Open ended)

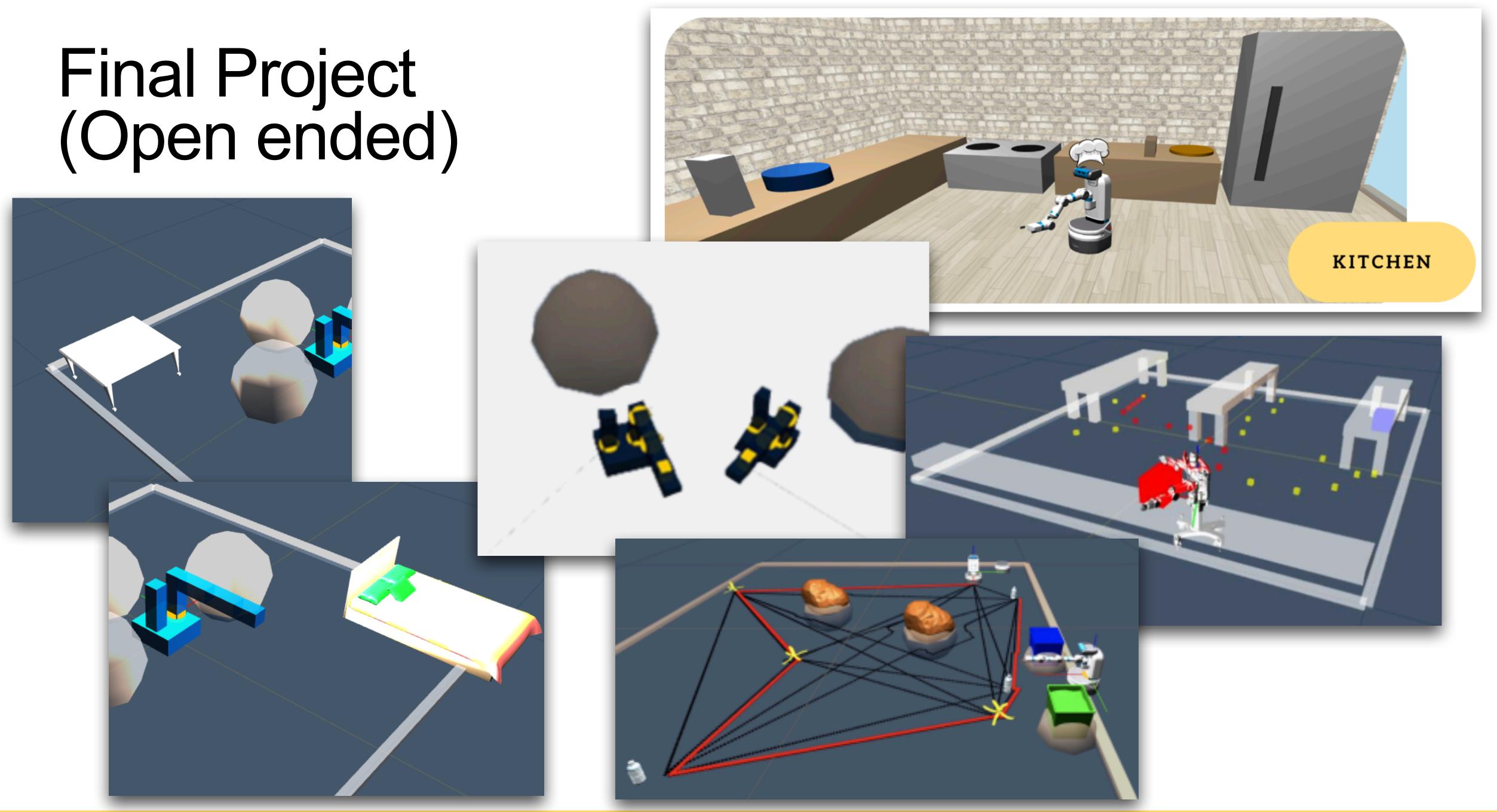


С

 \rightarrow

←





Final Project (Open ended)

Think along these axes to decide your final project!

Evaluating your implementation/system with quantitative results are VERY important!

Long horizon tasks

Tasks

Objects

Rearrangment of a set of objects

Multi-robot task execution Robots

Final Project (Open ended) For inspiration!

Yang, Zhutian, Caelan Reed Garrett, Tomás Lozano-Pérez, Leslie Kaelbling, and Dieter Fox. "Sequence-based plan feasibility prediction for efficient task and motion planning." arXiv preprint arXiv:2211.01576 (2022).

CSCI 5551 - Spring 2025

https://piginet.github.io/

Final Project (Open ended)

Think along these axes to decide your final project!

Evaluating your implementation/system with quantitative results are VERY important!

Long horizon tasks

Tasks

During the P7 sessions we will show other robotic platforms and sensors that are accessible for the Final Projects

Objects

Rearrangment of a set of objects

access to.

You may use:

- Kineval codebase
- Other sim environments (pybullet, Gazebo, DRAKE, Isaac sim)
- Turtlebot3 (provided only upon compelling proposal, only 5 are available)

Robots

• Other robots you may have

Multi-robot task execution

Continuing previous Lecture KF and EKF

Discrete Kalman Filter

linear stochastic difference equation

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

with a measurement

$$z_t = C_t x_t + \delta_t$$

Estimates the state x of a discrete-time controlled process that is governed by the

CSCI 5551 - Spring 2025

Components of a Kalman Filter

 B_t

noise.

changes the state from *t*-1 to *t*.

 $\boldsymbol{\mathcal{E}}_t$

 δ_t

state x_t to an observation z_t .

- Matrix (nxn) that describes how the state evolves from *t*-1 to *t* without controls or
- Matrix (nxl) that describes how the control u_t
- Matrix (kxn) that describes how to map the
- Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance R_t and Q_t respectively.

Kalman Filter Algorithm

- 1.
- Prediction: 2.

$$\underline{\mu}_t = A_t \mu_{t-1} + B_t u_t$$

$$\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

5. Correction:

3.

4.

6. $K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$ 7. $\mu_t = \overline{\mu}_t + K_t(z_t - C_t \overline{\mu}_t)$ 8. $\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$

Return μ_t, Σ_t 9.

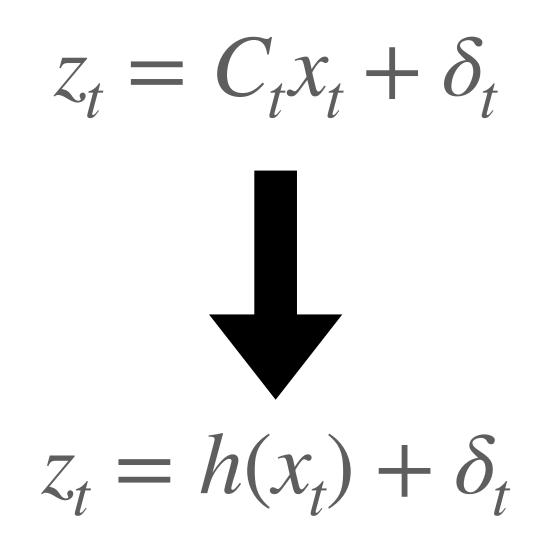
Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

CSCI 5551 - Spring 2025

Non-linear Dynamic Systems

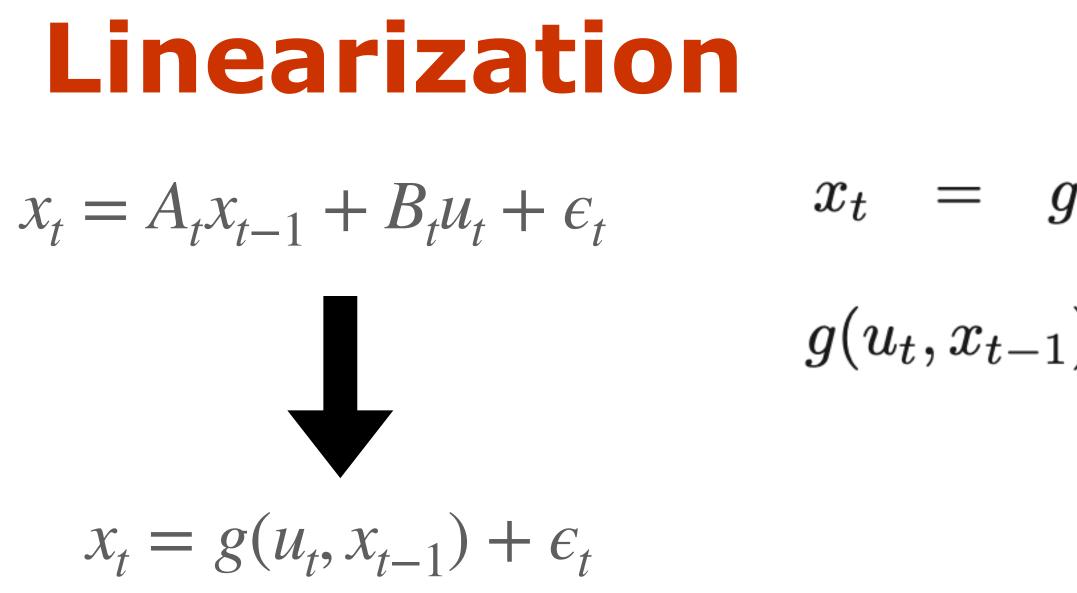
 $x_t = A_t x_{t-1} + B_t u_t + \epsilon_t$ $x_t = g(u_t, x_{t-1}) + \epsilon_t$

Most realistic problems involve nonlinear functions



CSCI 5551 - Spring 2025

Reference - Probabilistic Robotics



 $z_t = C_t x_t + \delta_t$ $z_t = h(x_t) + \delta_t$

 $z_t = h(x_t)$

 $h(x_t) \approx h(x_t)$

$$g(u_t, x_{t-1}) + \varepsilon_t$$

 $g(u_t, \mu_{t-1}) + \underbrace{g'(u_t, \mu_{t-1})}_{=: G_t} (x_{t-1} - \mu_{t-1})$
 $g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$

$$(\bar{\mu}_t) + \delta_t$$

$$= (\bar{\mu}_t) + \frac{\partial h(\bar{\mu}_t)}{\partial x_t} (x_t - \bar{\mu}_t)$$

$$= : H_t$$

CSCI 5551 - Spring 2025



EKF Algorithm

- 1.
- 2. Prediction:
- $\mathbf{3.} \quad \overline{\mu}_t = g(u_t, \mu_{t-1})$ $\mathbf{4.} \qquad \overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
- 5.

Correction:

- $6. \quad K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + Q_t)$ 7. $\mu_t = \overline{\mu}_t + K_t(z_t - h(\overline{\mu}_t))$ 8. $\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t$
- Return μ_t, Σ_t 9.

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

$$(Q_{t})^{-1} \longleftarrow K_{t} = \overline{\Sigma}_{t}C_{t}^{T}(C_{t}\overline{\Sigma}_{t}C_{t}^{T} + Q_{t})^{-1}$$

$$(Q_{t})^{-1} \longleftarrow \mu_{t} = \overline{\mu}_{t} + K_{t}(z_{t} - C_{t}\overline{\mu}_{t})$$

$$(Q_{t})^{-1} \longleftarrow \mu_{t} = \overline{\mu}_{t} + K_{t}(z_{t} - C_{t}\overline{\mu}_{t})$$

$$(Q_{t})^{-1} \longleftarrow \Sigma_{t} = (I - K_{t}C_{t})\overline{\Sigma}_{t}$$

$$H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}} \qquad G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}}$$

CSCI 5551 - Spring 2025

 ∂x_t

Localization

"Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities." [Cox '91]

• Given

- Map of the environment.
- Sequence of sensor measurements.

Wanted

Estimate of the robot's position.

Problem classes

- Position tracking
- Global localization
- Kidnapped robot problem (recovery)

CSCI 5551 - Spring 2025

EKF Summary

• Highly efficient: Polynomial in state dimensionality n:

• Not optimal! assumptions are violated!

measurement dimensionality k and $O(k^{2.376} + n^2)$

Can diverge if nonlinearities are large! Works surprisingly well even when all

Particle Filter **A Bayesian Filter Implementation**

Motivation

So far, we discussed the multi-modal beliefs A DARAS STRAND SOL HO GOL DE CONTROL

non-Gaussian distributions

Basic principle

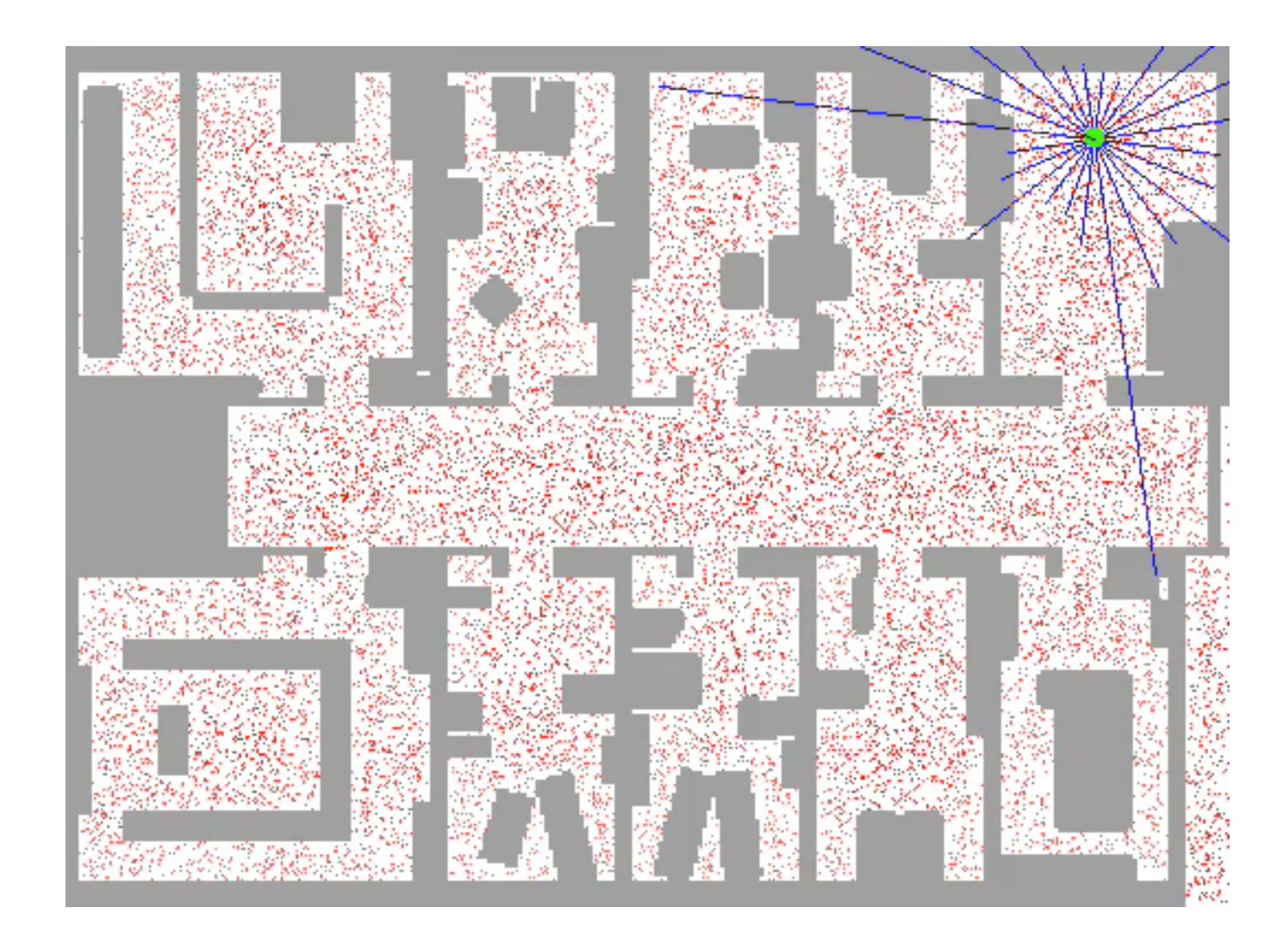
- Set of state hypotheses ("particles")
- Survival-of-the-fittest

Kalman filter: Gaussian, linearization problems,

Particle filters are a way to efficiently represent

CSCI 5551 - Spring 2025

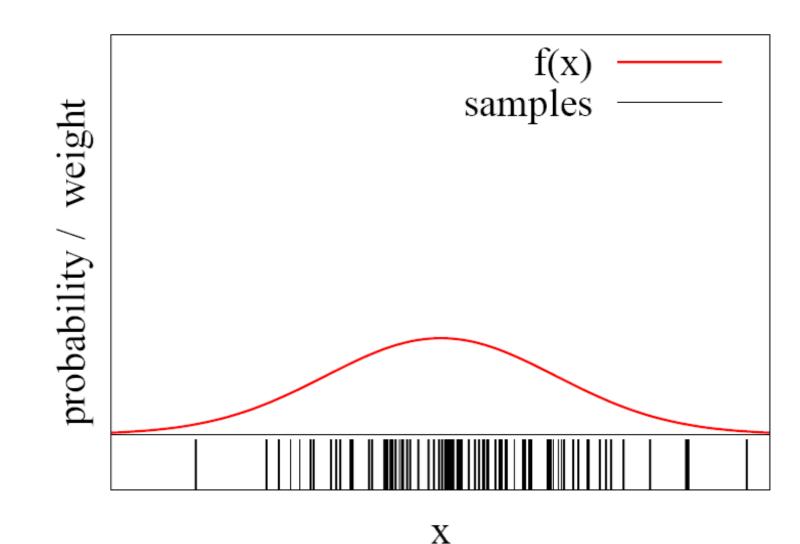
Sample-based Localization (sonar)



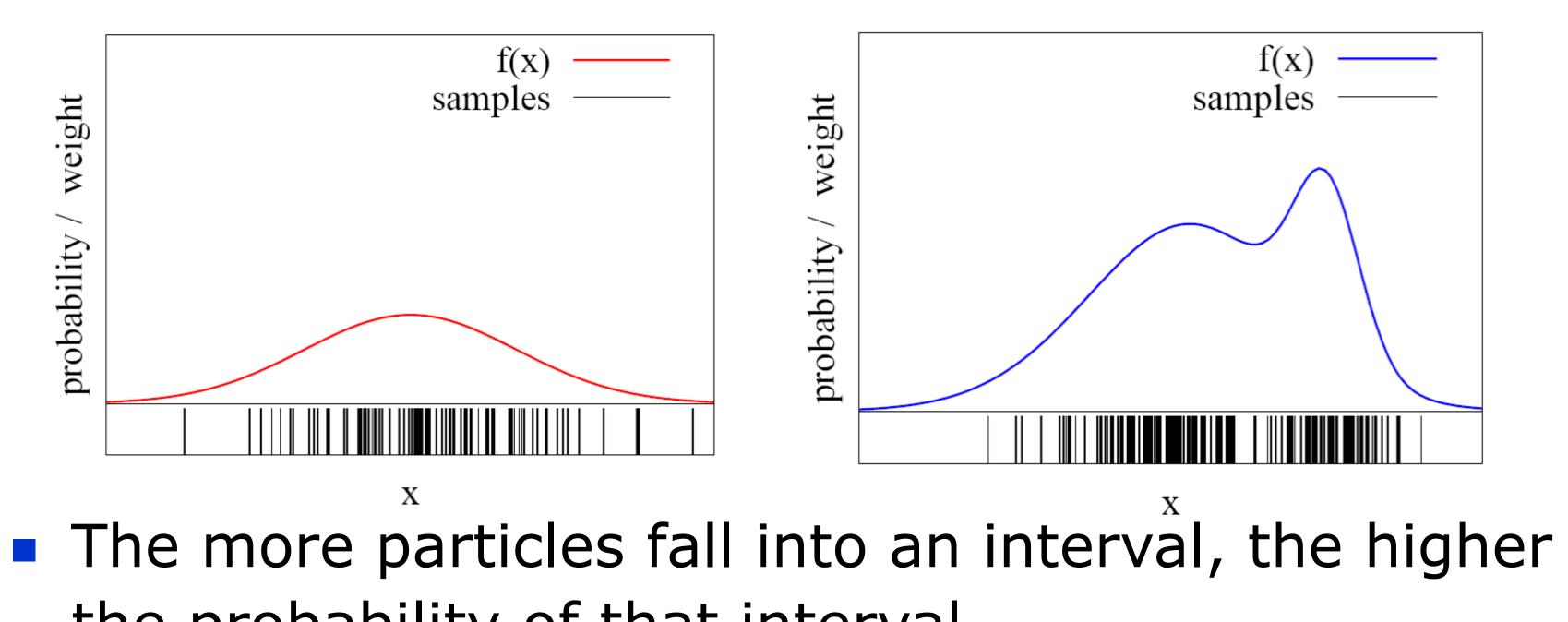
CSCI 5551 - Spring 2025

Density Approximation

Particle sets can be used to approximate densities



the probability of that interval

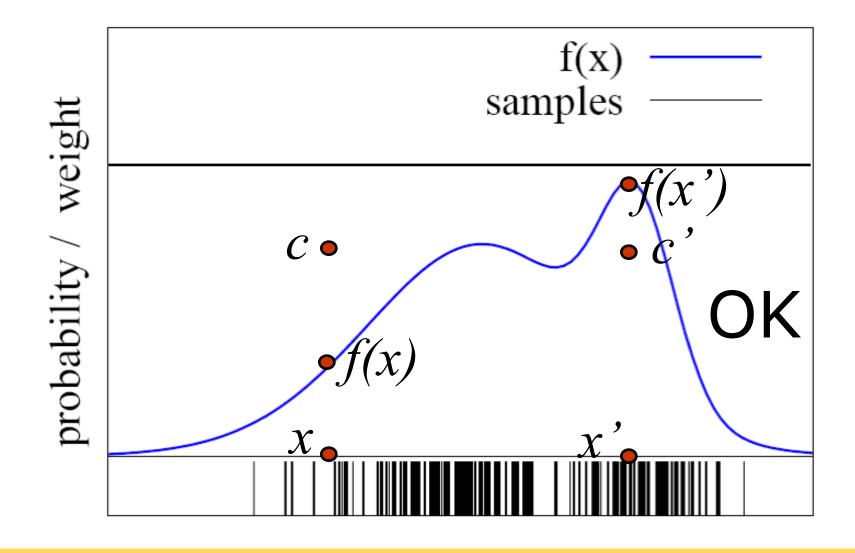


How to draw samples from a function/distribution?

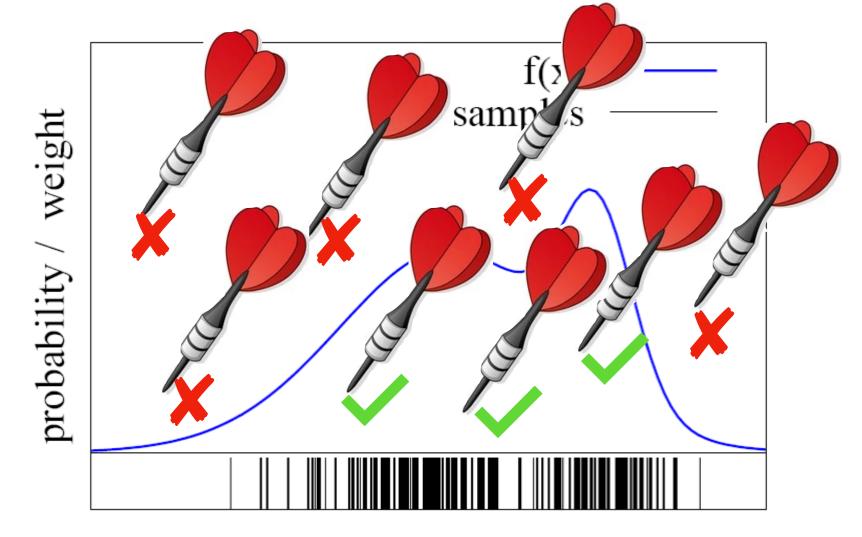
CSCI 5551 - Spring 2025

Rejection Sampling

• Let us assume that f(x) <= 1 for all x Sample x from a uniform distribution Sample c from [0,1] • if f(x) > cotherwise



keep the sample reject the sampe

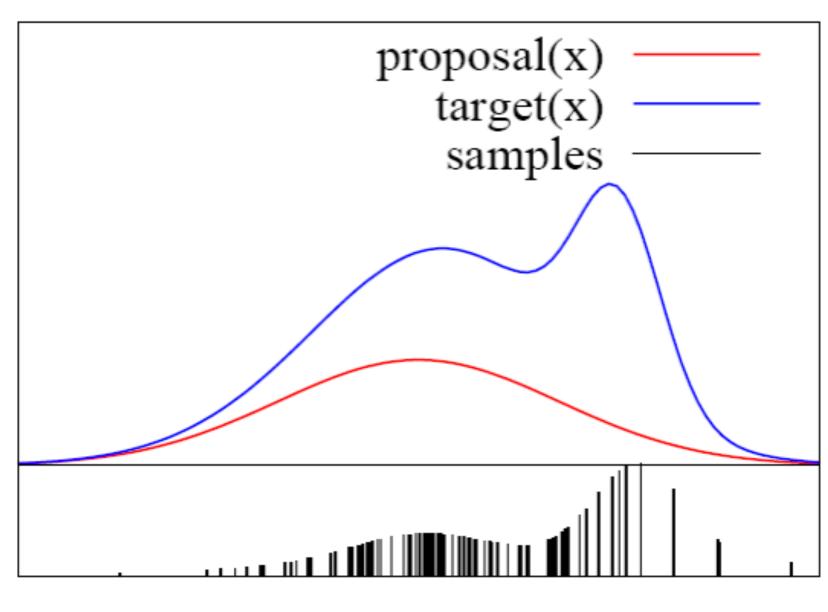


Х

CSCI 5551 - Spring 2025

Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f''
- w = f/g
- f is often called target
- g is often called proposal



Particle Filter for State estimation

- Non-parametric approach
- Recursive Bayes Filter
- Models the distribution by samples
- **Prediction:** draw from the proposal g
- Correction: weighting by the ratio of the target f and the proposal g

The more samples we use, the better is the estimate

CSCI 5551 - Spring 2025

Reference - Probabilistic Robotics

Particle Filter Algorithm

- 1. Sample the particles using the proposal distribution.
 - $x_t^{[j]} \sim \operatorname{proposal}(x_t | \dots)$
- 2. Compute the importance weights $w_t^{[j]} = \frac{\text{target}(x_t^{[j]})}{\text{proposal}(x_t^{[j]})}$
- 3. Resampling: Draw samples i with probability $w_t^{[i]}$ and repeat J times

Particle Filter Algorithm

Particle_filter(\mathcal{X}_{t-1}, u_t) 1: $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ 2: for j = 1 to J do 3: sample $x_t^{[j]} \sim$ $w_t^{[j]} = \frac{p(x_t^{[j]})}{\pi(x_t^{[j]})}$ $\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]} \rangle$ 4: 5:end for6:7: for j = 1 to J do draw $i \in 1, \ldots$ 8: add $x_t^{[i]}$ to \mathcal{X}_t 9: endfor 10:11:return \mathcal{X}_t

$$(x_t, z_t)$$
:
 (x_t)
 (x_t)
 $(y_t^{[j]}, w_t^{[j]})$
 (x_t)
 $(y_t^{[j]}, w_t^{[j]})$
 (x_t)
 (y_t)
 (y_t)

CSCI 5551 - Spring 2025

Reference - Probabilistic Robotics

Particle Filter Algorithm

$$Bel(x_{t}) = \eta p(z_{t} | x_{t}) \int p(x_{t} | x_{t-1}, u_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Importance factor for x_{t}^{i} :

draw x_{t-1}^{i} from $Bel(\mathbf{x}_{t-1})$

draw x_{t}^{i} from $p(x_{t} | x_{t-1}^{i}, u_{t-1})$

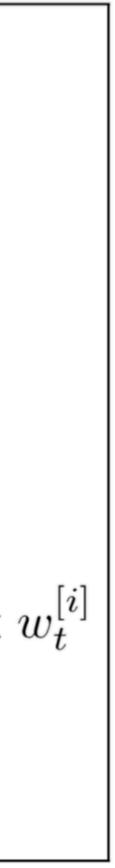
 $w_t^i = \frac{\text{target distribution}}{\text{proposal distribution}}$ $= \frac{\eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}{p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}$ $\propto p(z_t | x_t)$

Particle Filter

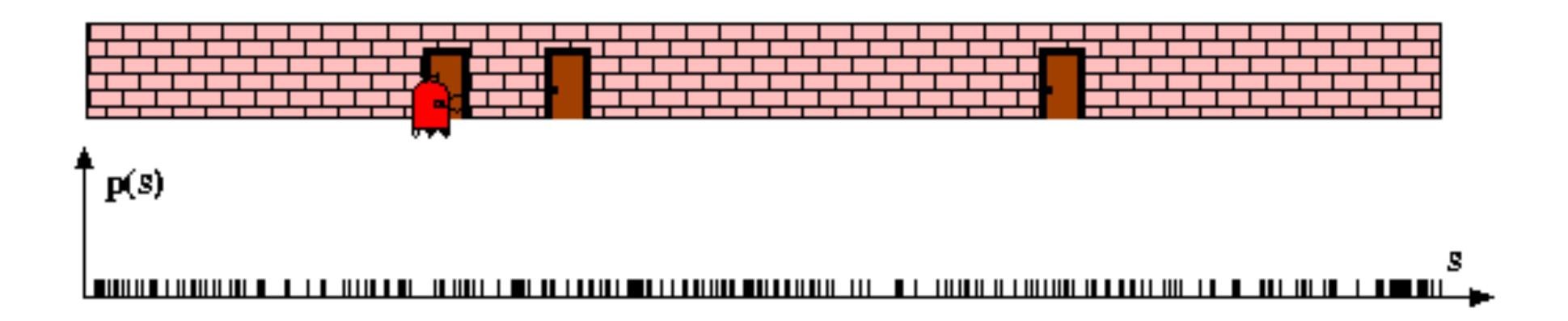
Particle_filter($\mathcal{X}_{t-1}, u_t, z_t$): $ar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ 1:for j = 1 to J do 2: sample $x_t^{[j]} \sim \pi(x_t)$ 3: $w_t^{[j]} = \frac{p(x_t^{[j]})}{\pi(x_t^{[j]})}$ 4: $\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle$ 5:6:endfor 7: for j = 1 to J do draw $i \in 1, \ldots, J$ with probability $\propto w_t^{[i]}$ 8: add $x_t^{[i]}$ to \mathcal{X}_t 9: 10:endfor return \mathcal{X}_t 11:

Particle Filter for Localization

Particle_filter($\mathcal{X}_{t-1}, u_t, z_t$): $\overline{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ 1:2: for j = 1 to J do 3: sample $x_t^{[j]} \sim p(x_t \mid u_t, x_{t-1}^{[j]})$ $w_t^{[j]} = p(\overline{z_t \mid x_t^{[j]}})$ 4: 5: $\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle$ 6: end for7: for j = 1 to J do draw $i \in 1, \ldots, J$ with probability $\propto w_{\star}^{[i]}$ 8: add $x_t^{[i]}$ to \mathcal{X}_t 9: 10:endfor return \mathcal{X}_t 11:

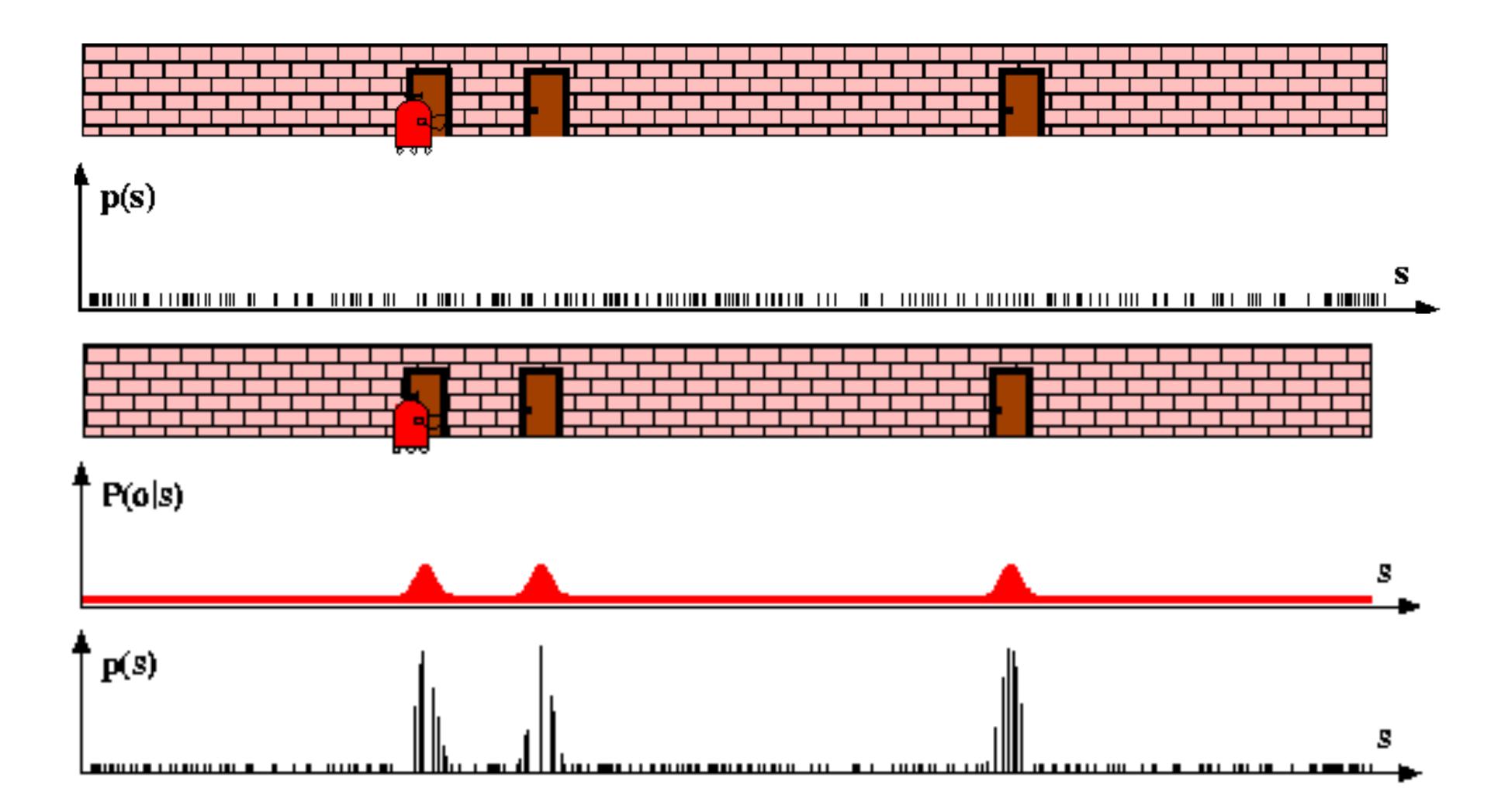


Particle Filters



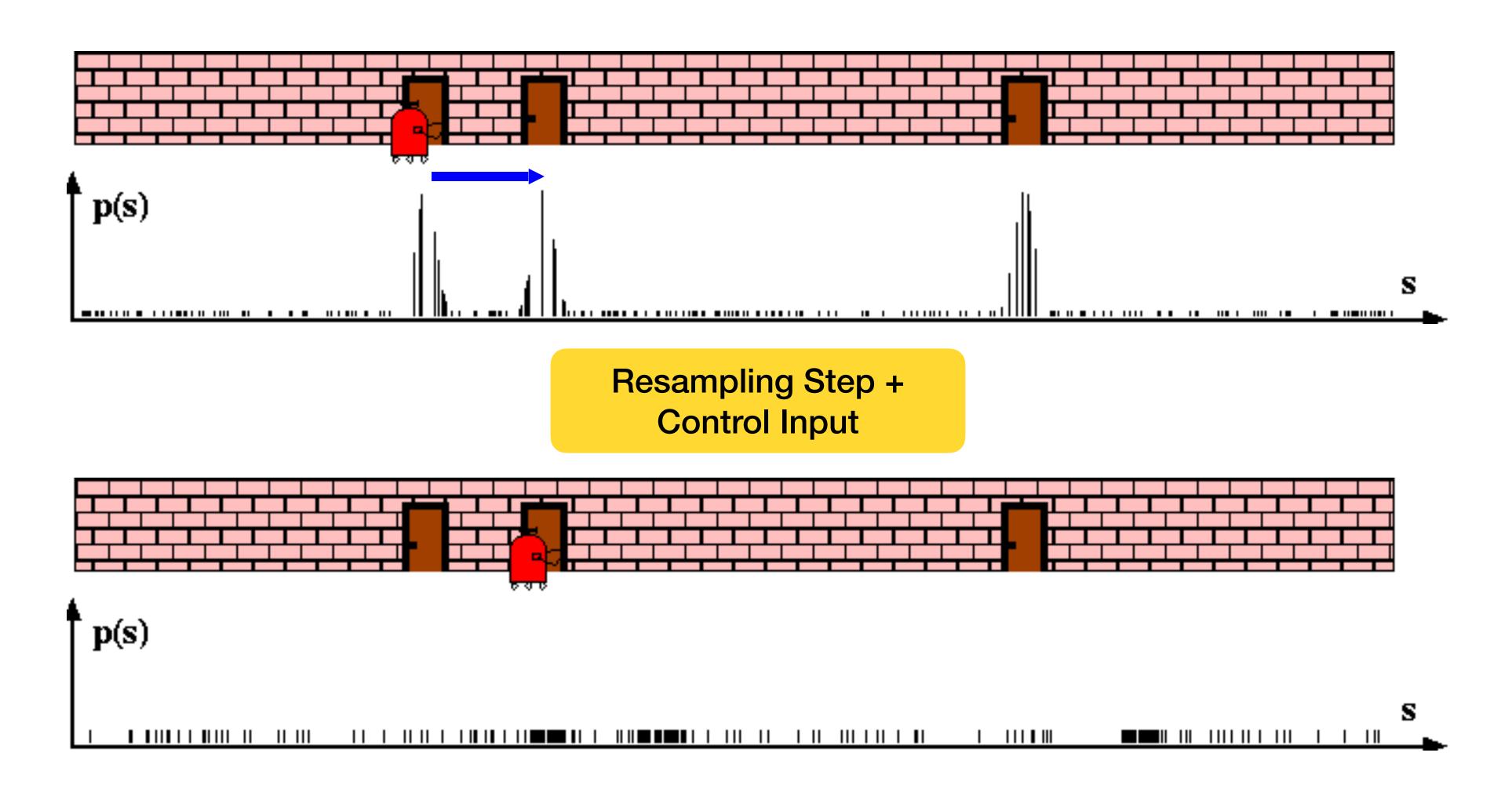
CSCI 5551 - Spring 2025

Sensor Information: Importance Sampling



CSCI 5551 - Spring 2025

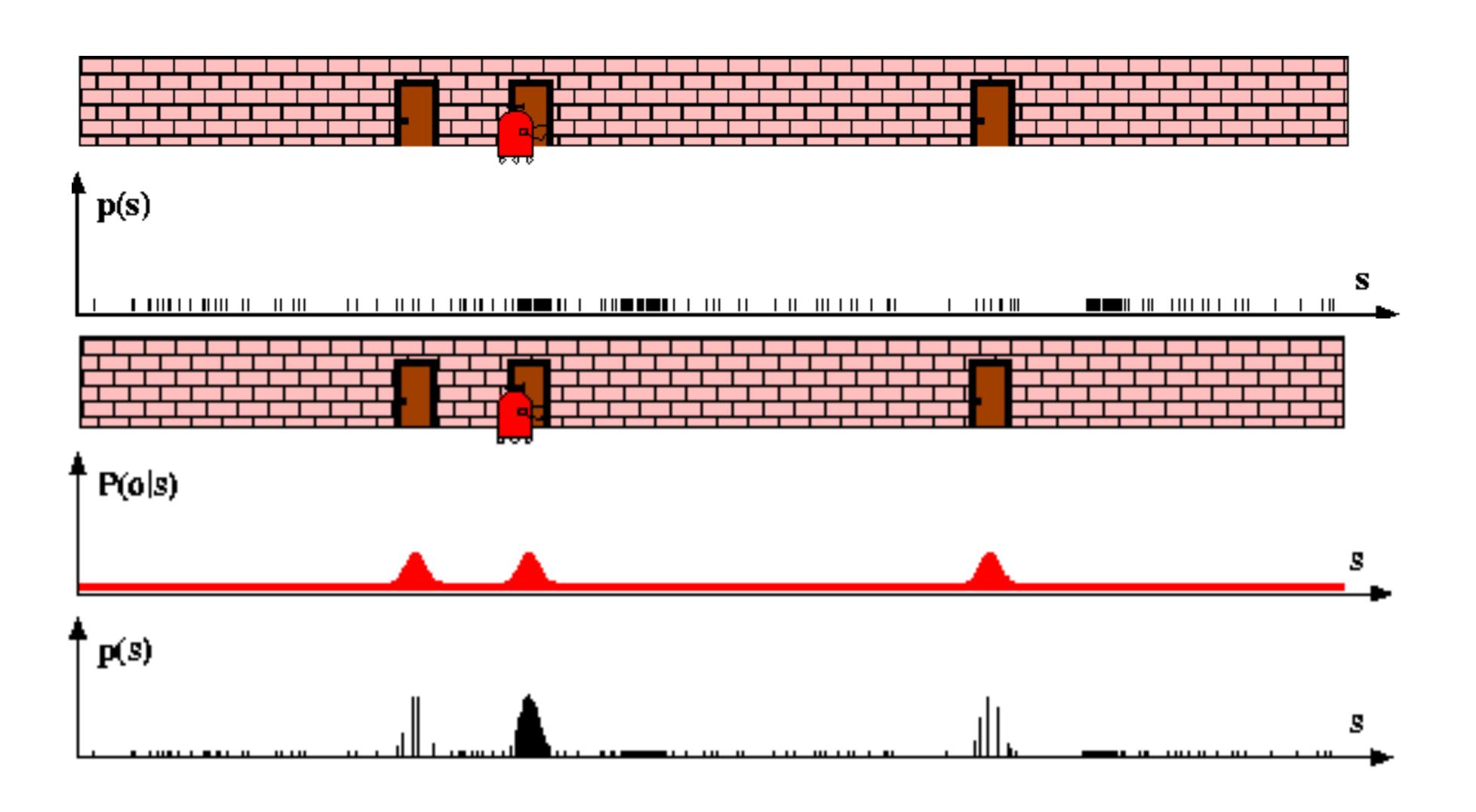
Robot Motion



CSCI 5551 - Spring 2025

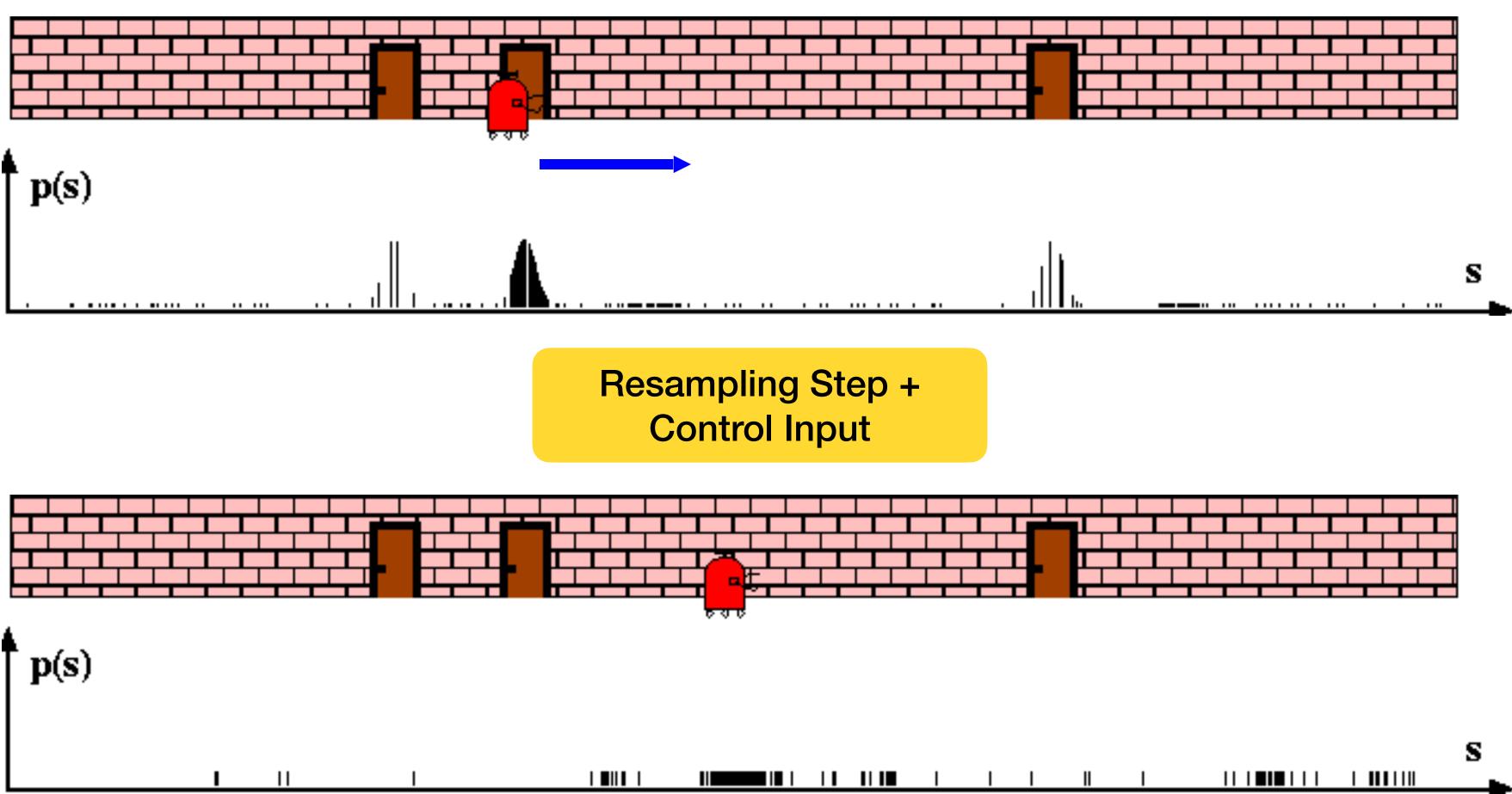
Slide borrowed from Dieter Fox

Sensor Information: Importance Sampling

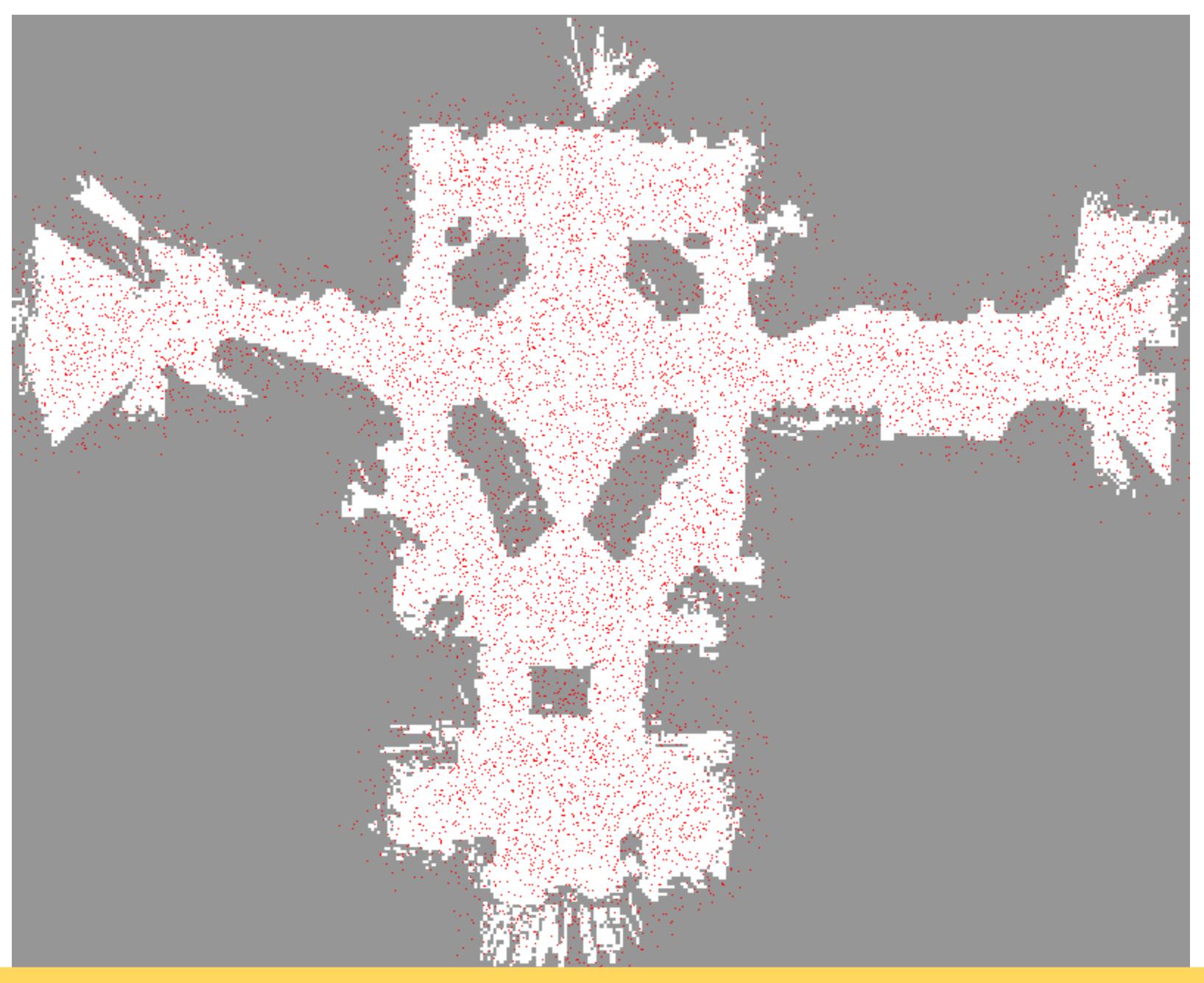


CSCI 5551 - Spring 2025

Robot Motion

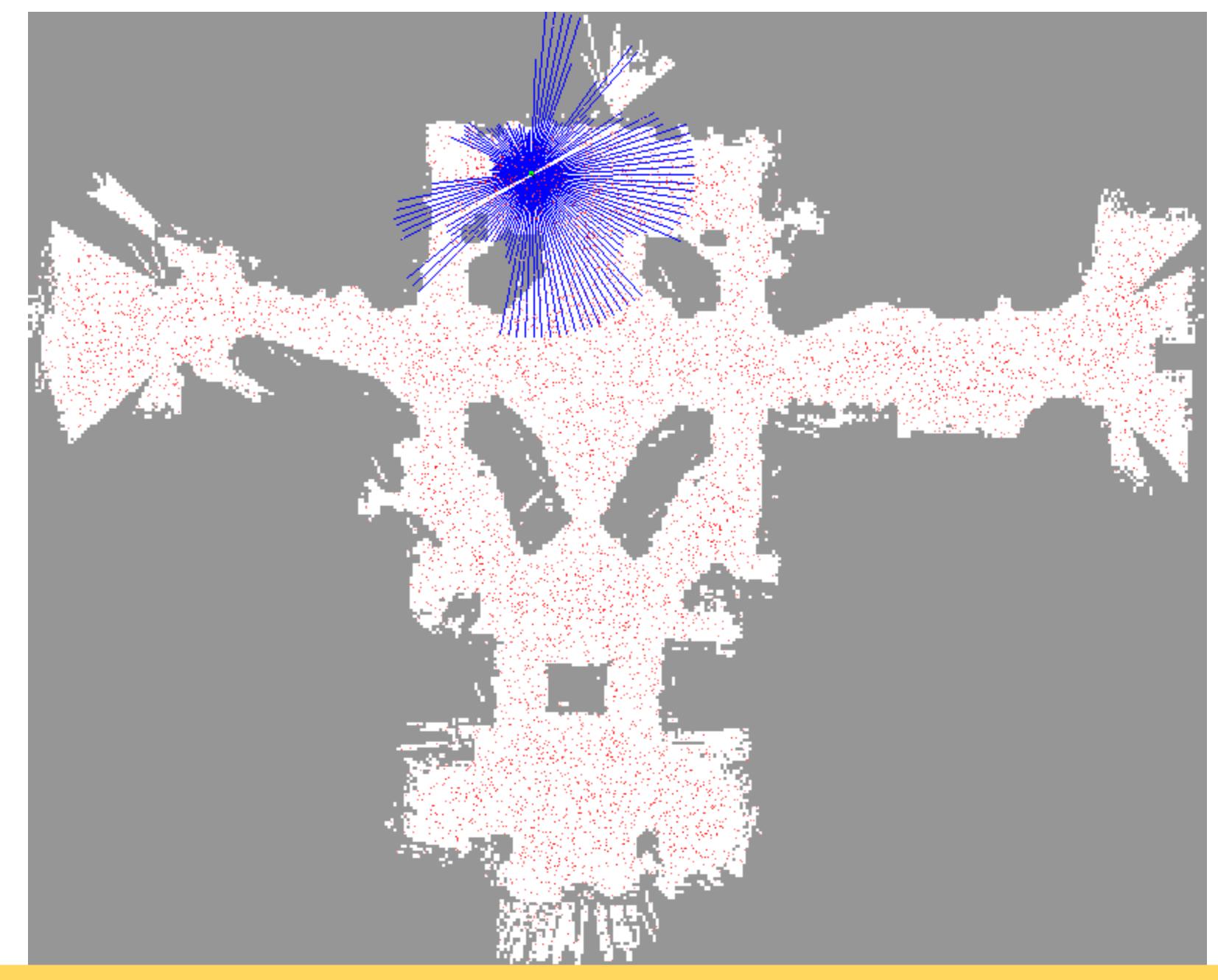


CSCI 5551 - Spring 2025



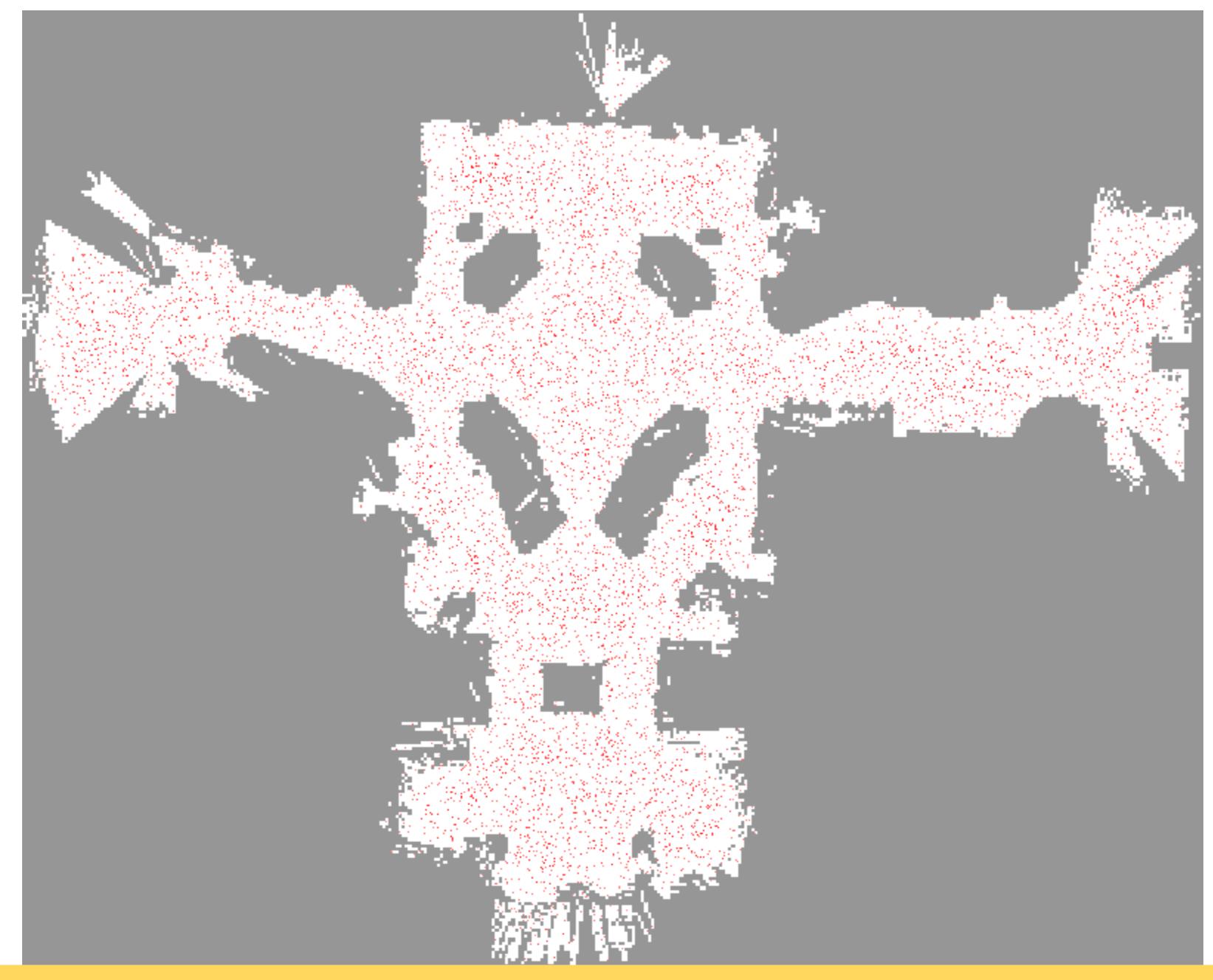
CSCI 5551 - Spring 2025

Observation Taken



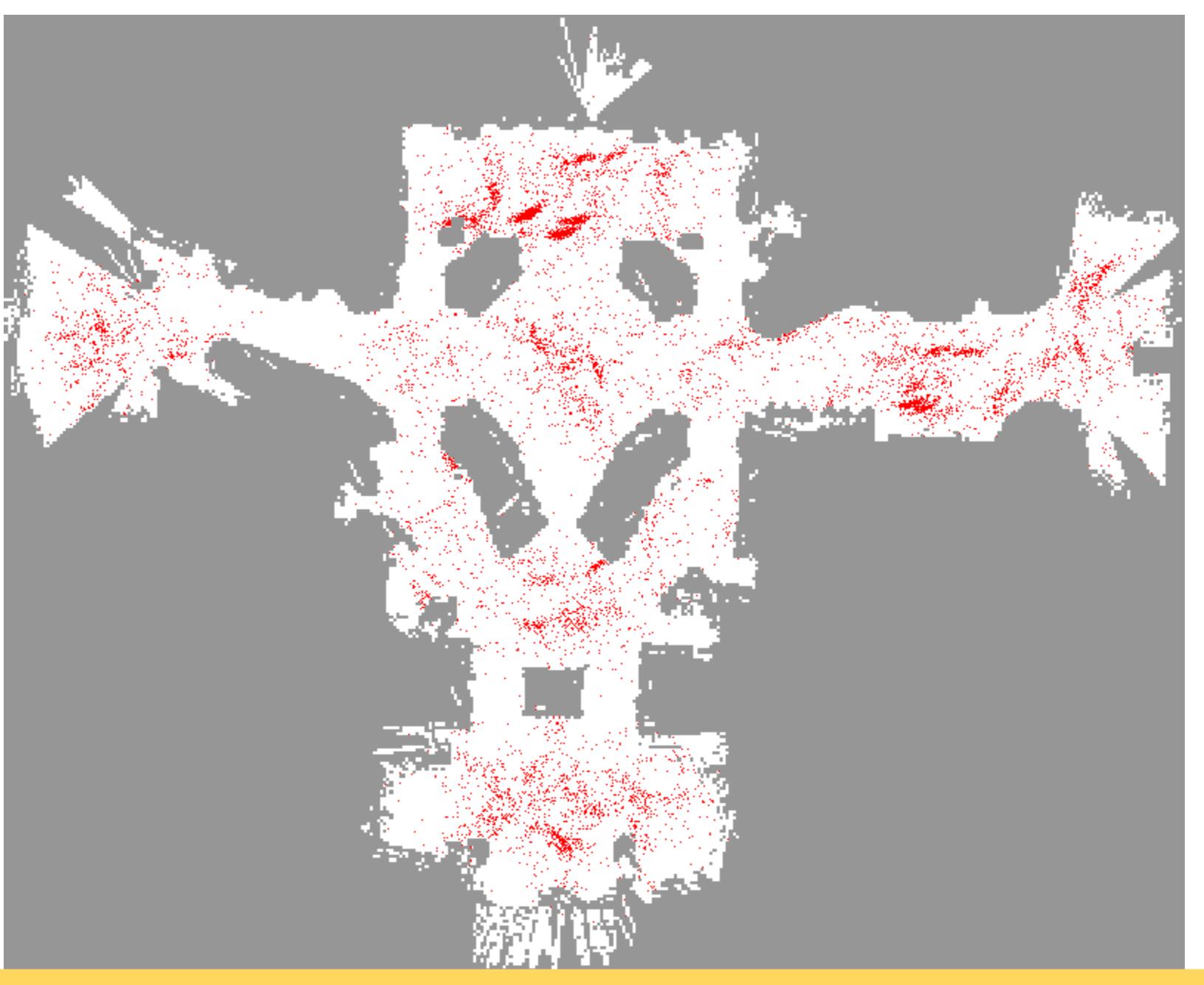
CSCI 5551 - Spring 2025

Observation Taken

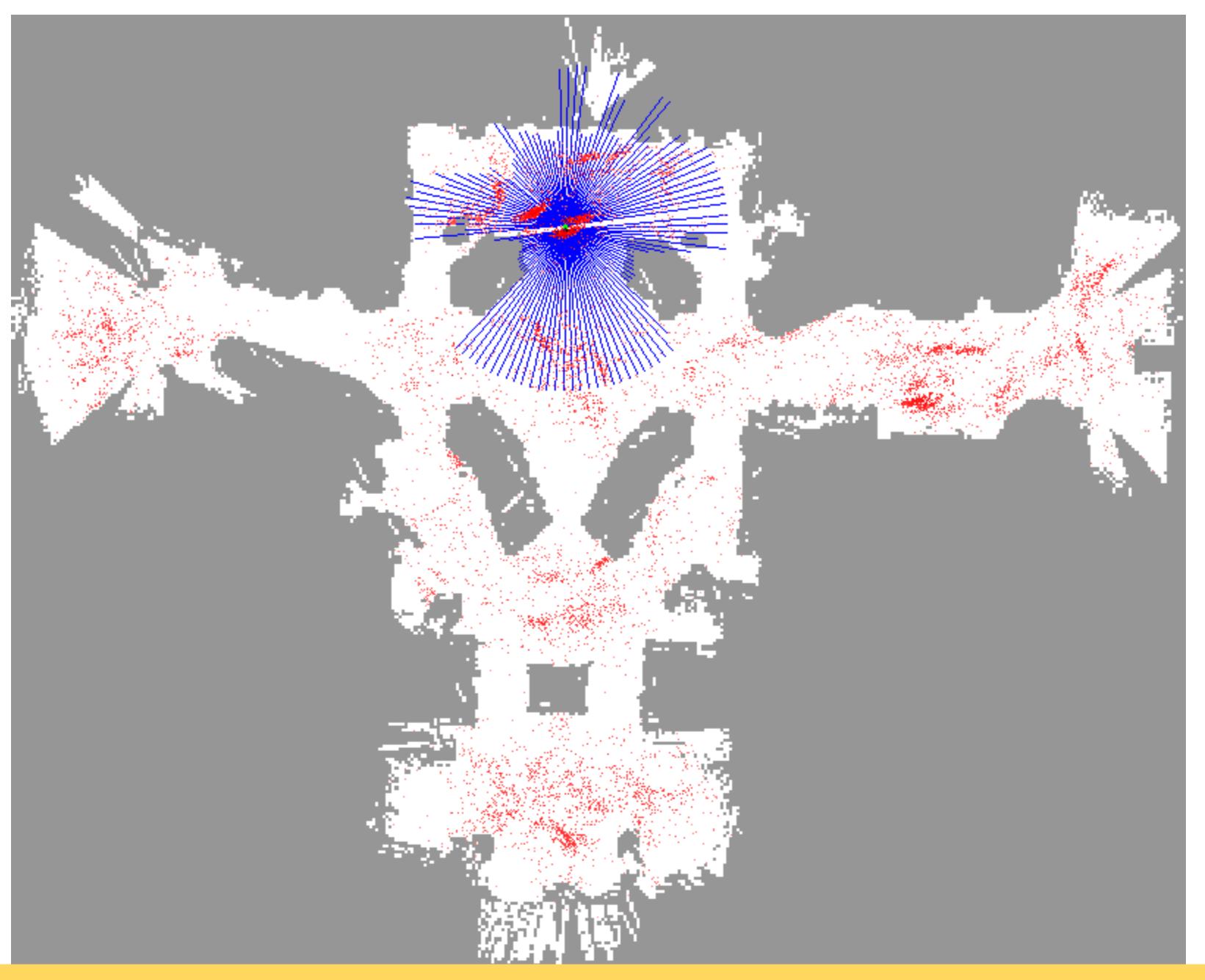


CSCI 5551 - Spring 2025

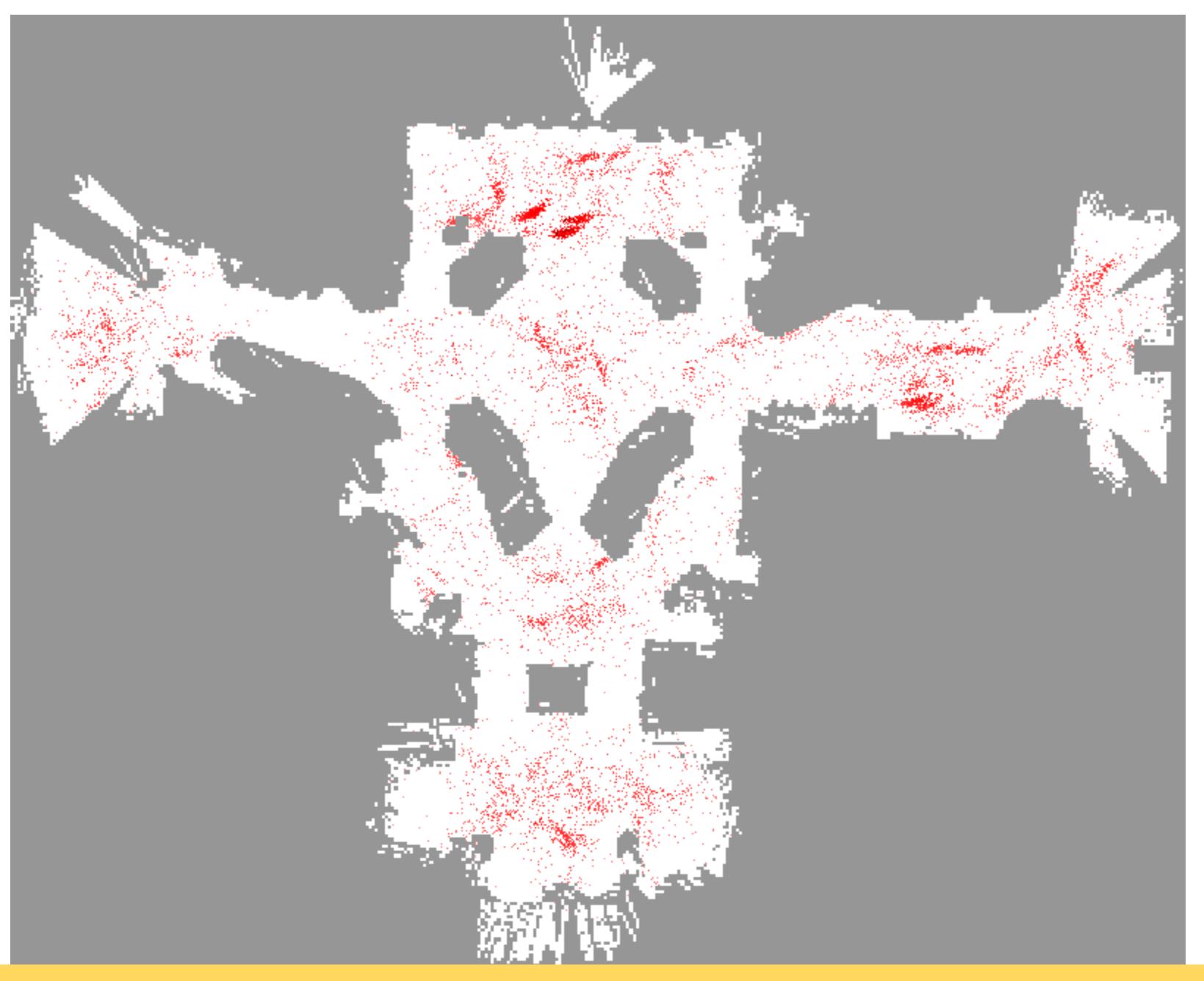
Measurement Update



CSCI 5551 - Spring 2025



CSCI 5551 - Spring 2025



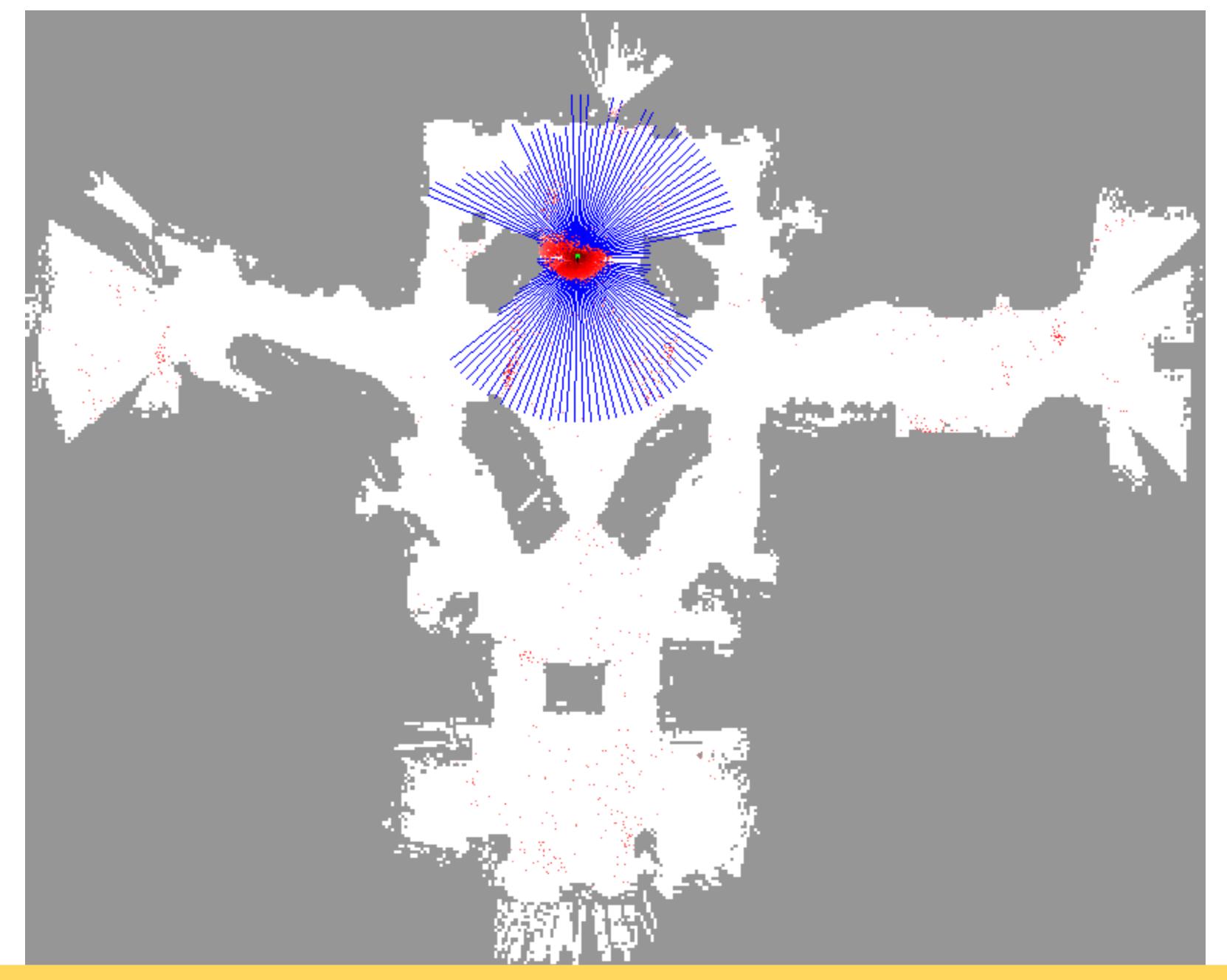
CSCI 5551 - Spring 2025

Measurement Update



CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

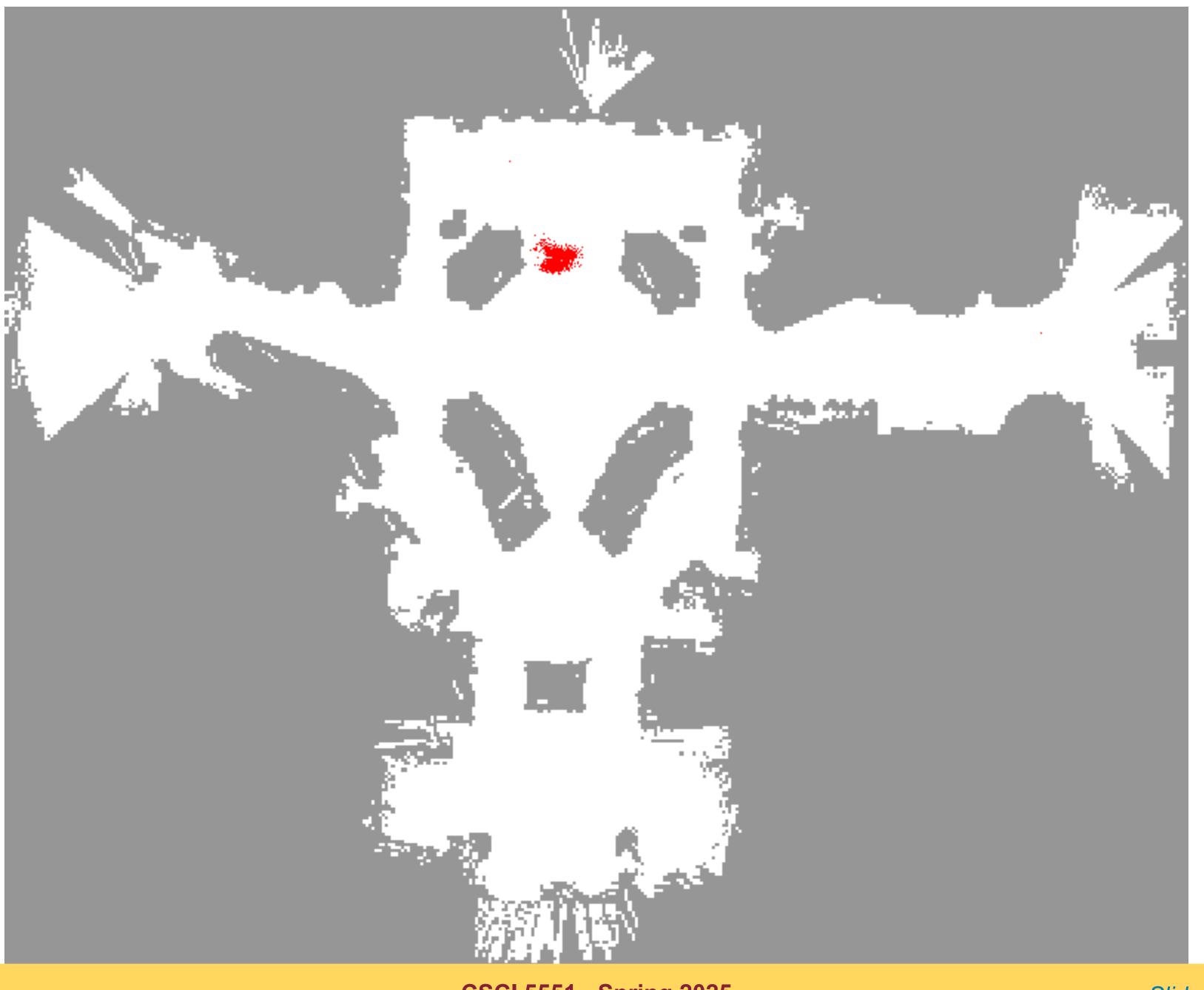


CSCI 5551 - Spring 2025



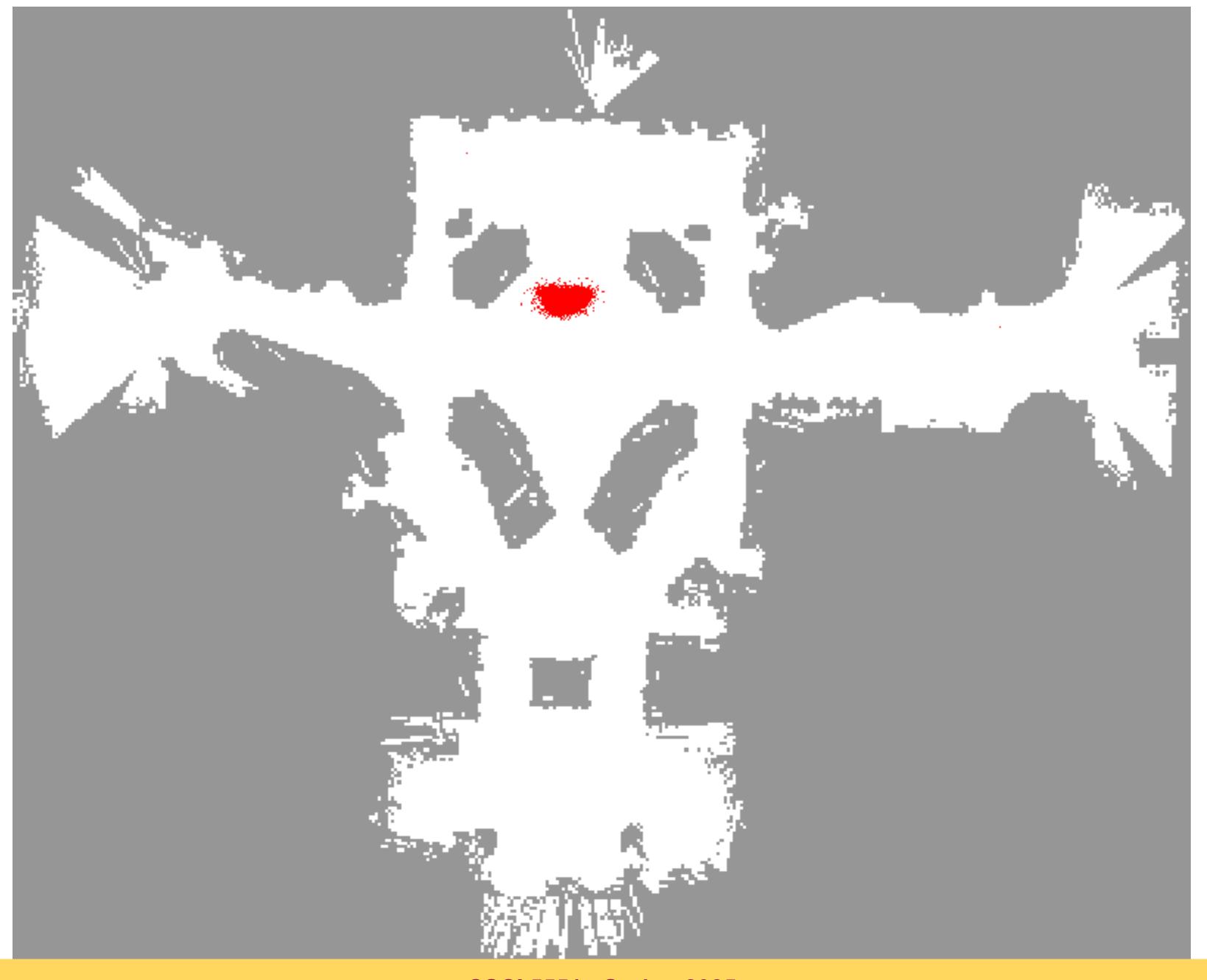
CSCI 5551 - Spring 2025

Measurement Update

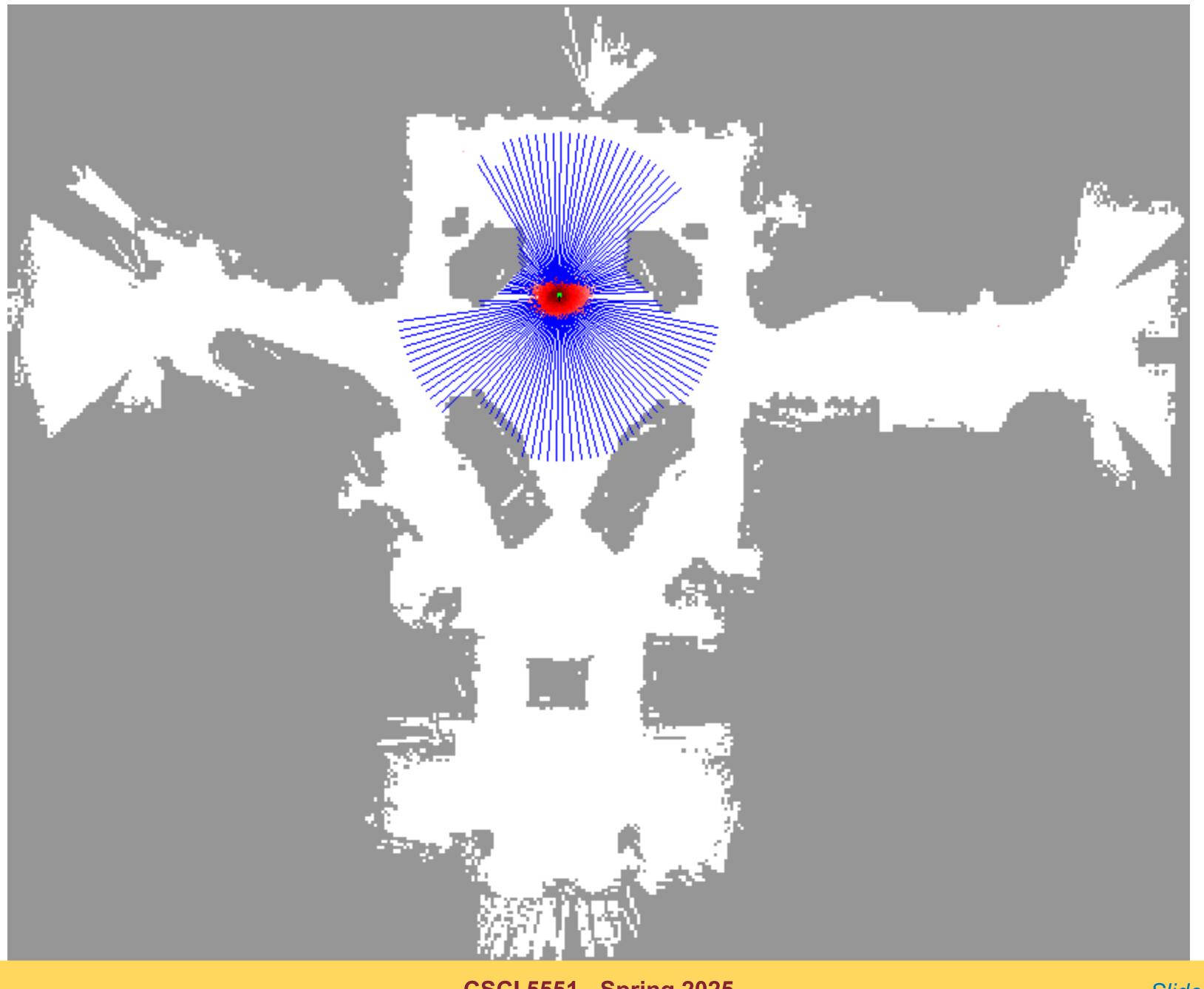


CSCI 5551 - Spring 2025

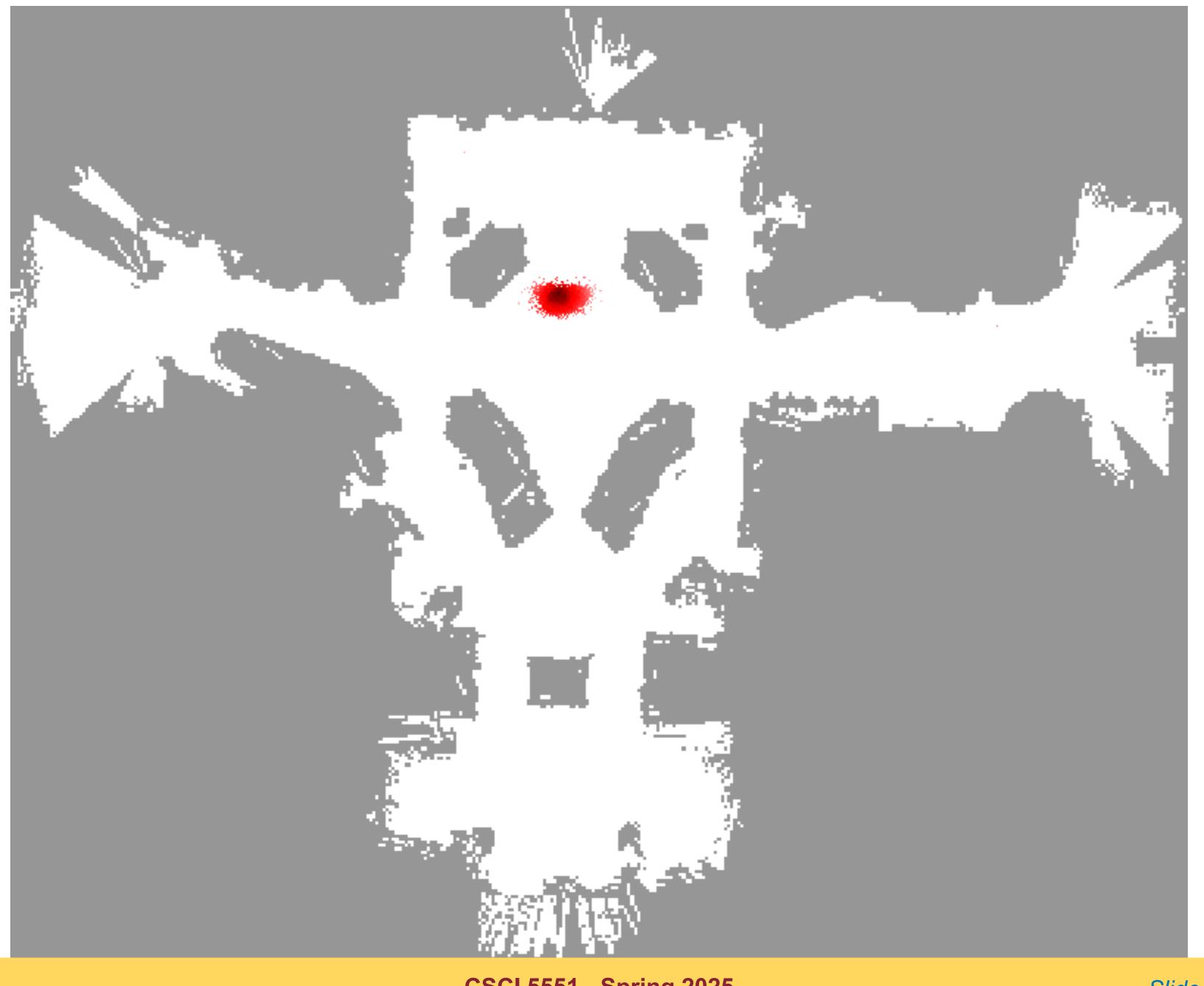
Motion Update



CSCI 5551 - Spring 2025

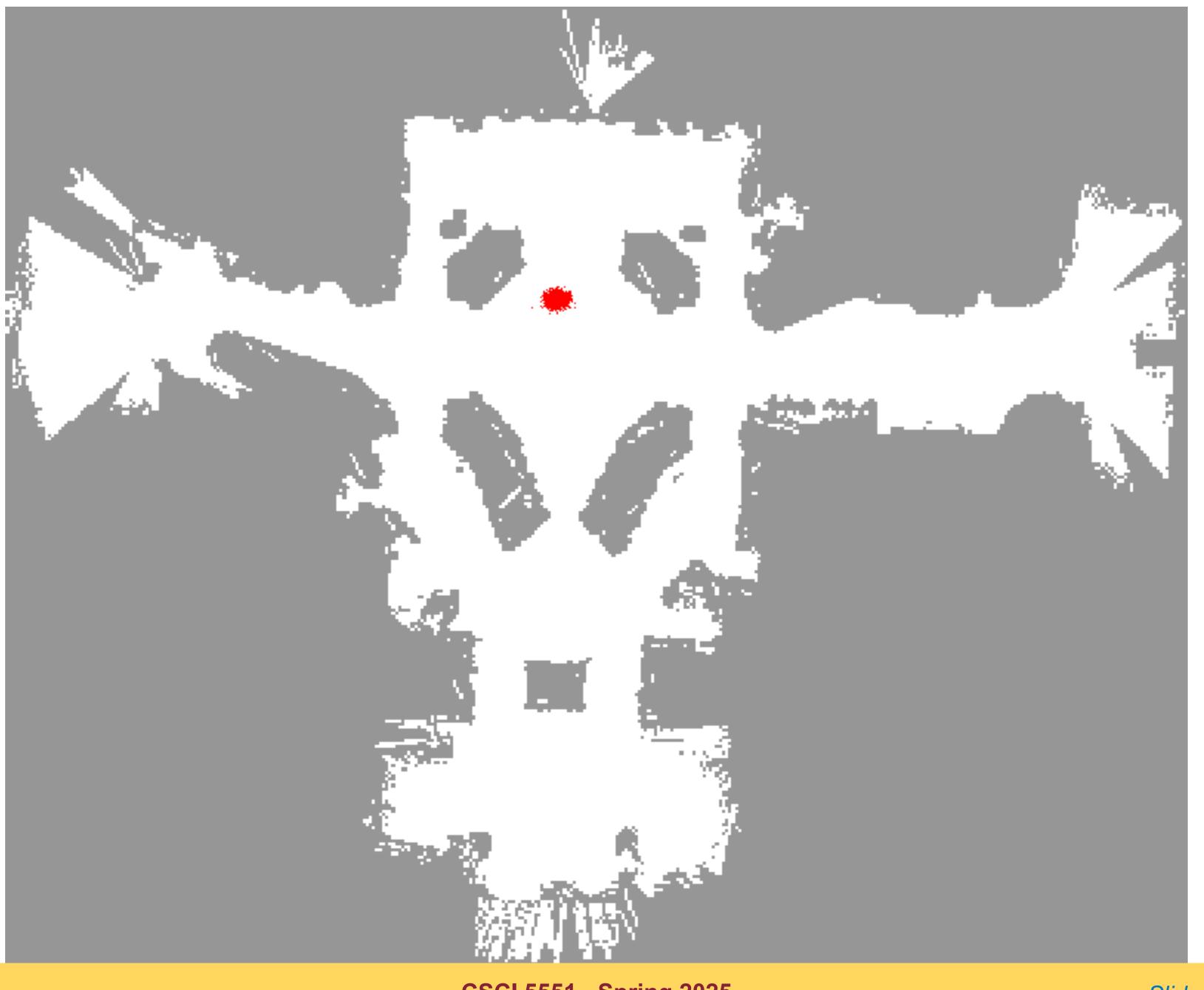


CSCI 5551 - Spring 2025



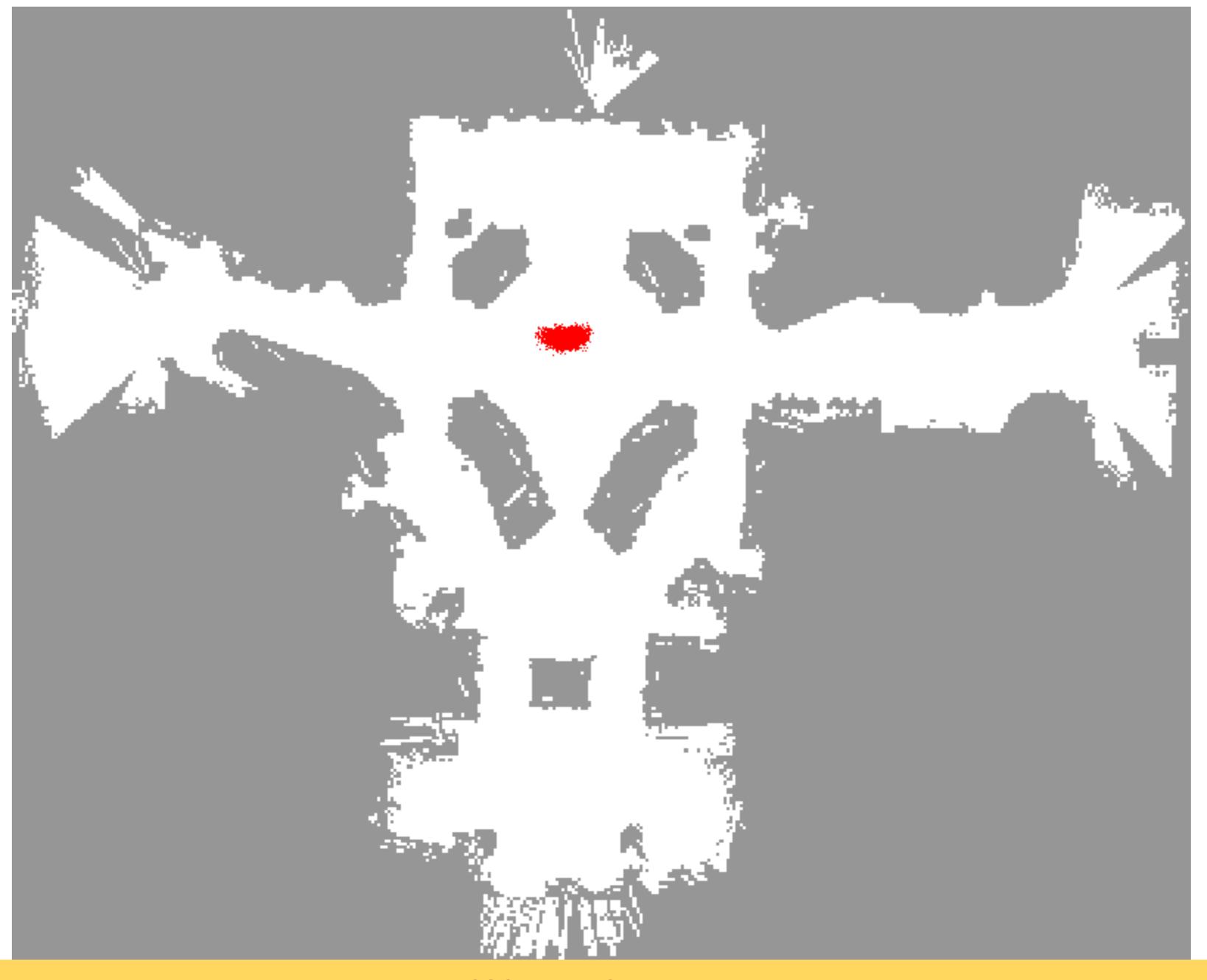
CSCI 5551 - Spring 2025

Measurement Update

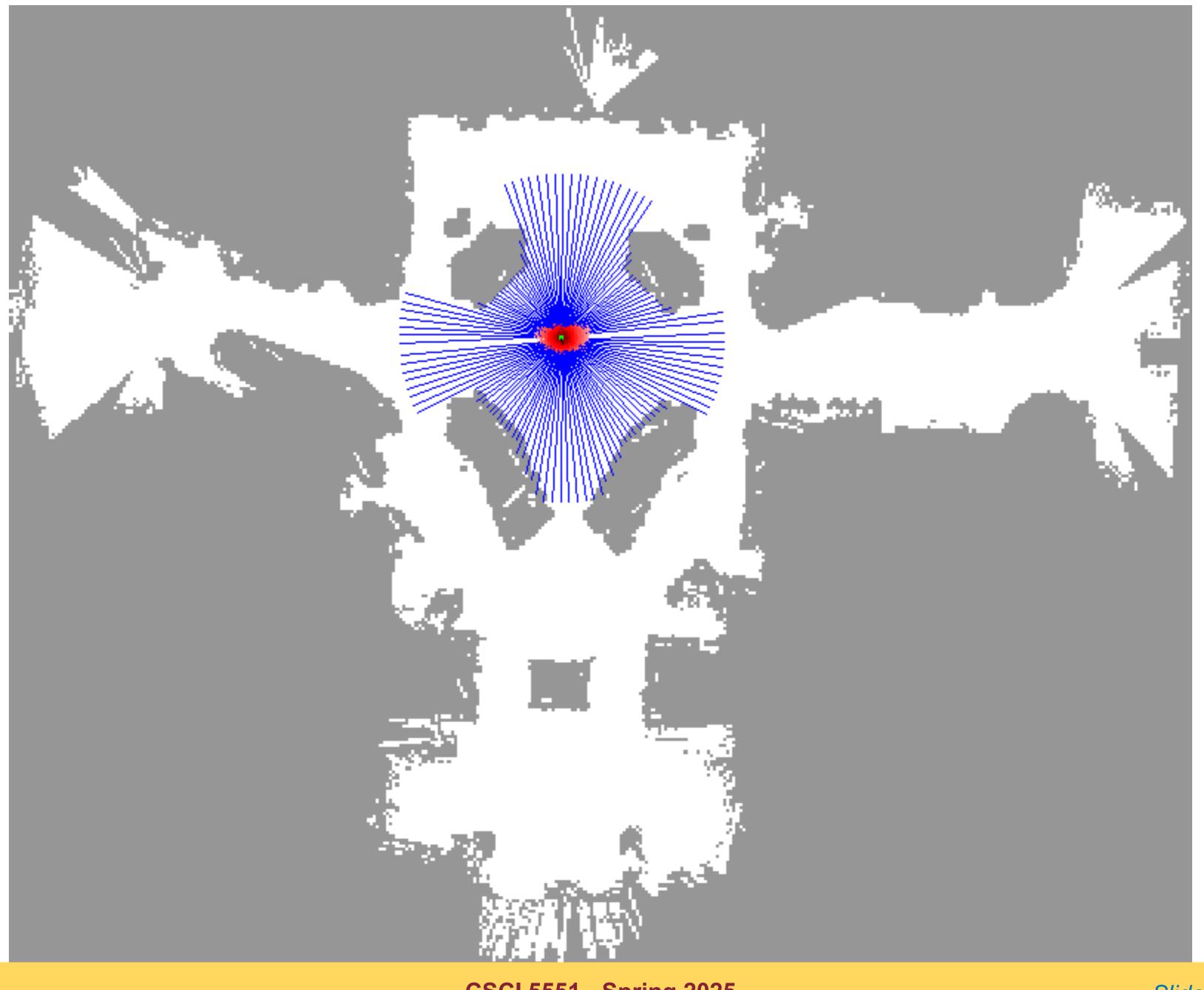


CSCI 5551 - Spring 2025

Motion Update

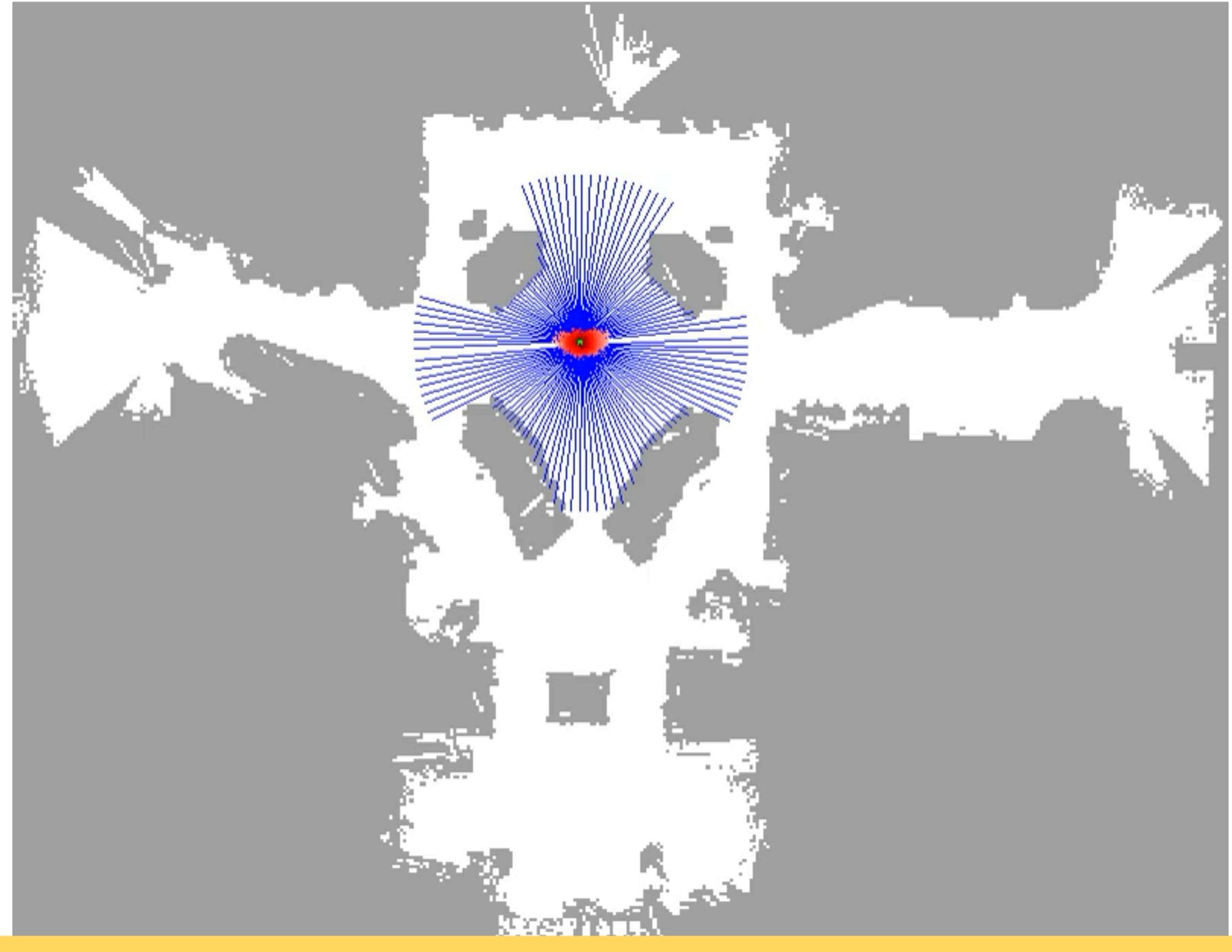


CSCI 5551 - Spring 2025



CSCI 5551 - Spring 2025

Particle Filter in Action



CSCI 5551 - Spring 2025

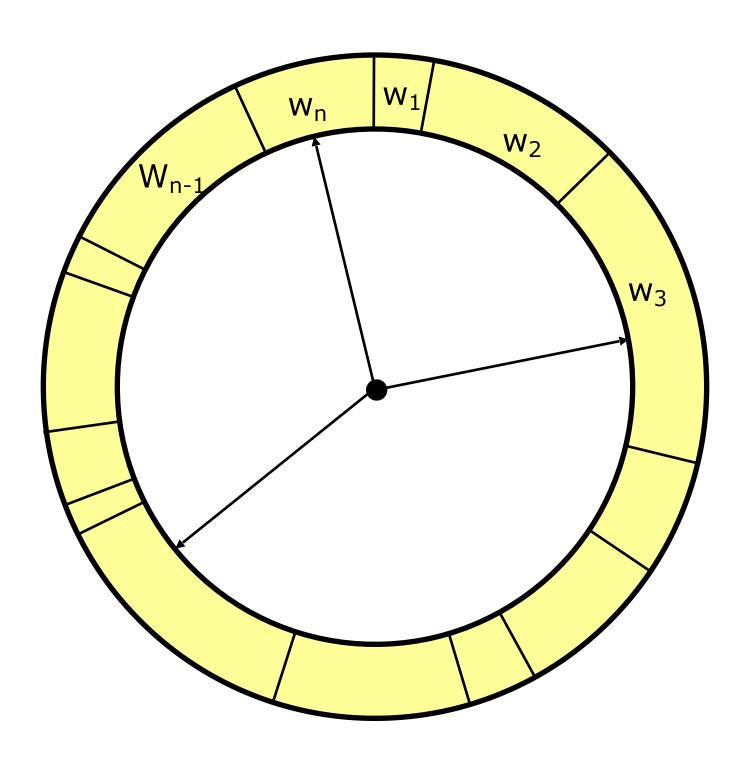
Resampling

• Given: Set S of weighted samples.

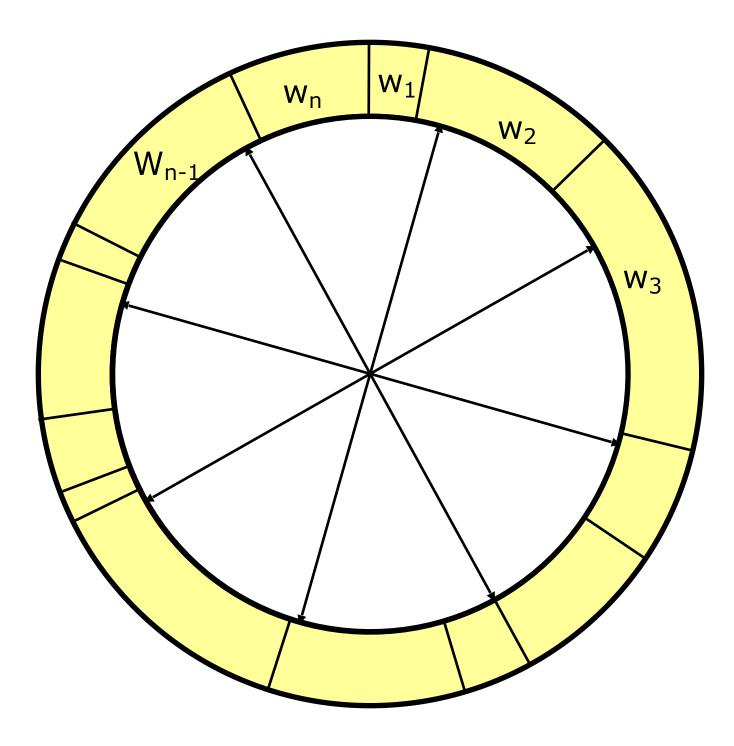
• Typically done *n* times with replacement to generate new sample set S'.

• Wanted : Random sample, where the probability of drawing x_i is given by w_i .

Resampling

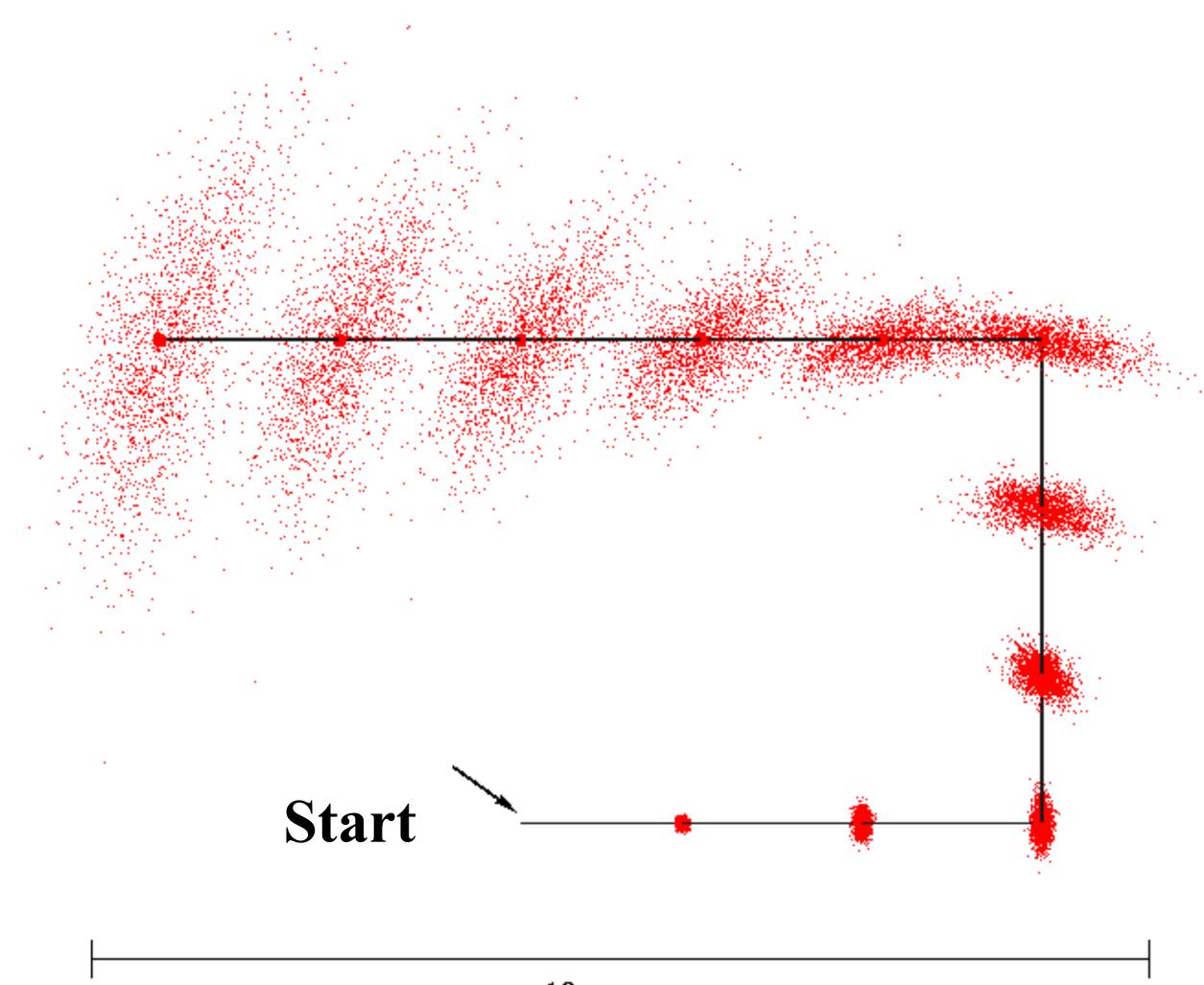


- Roulette wheel
- Binary search, n log n



- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

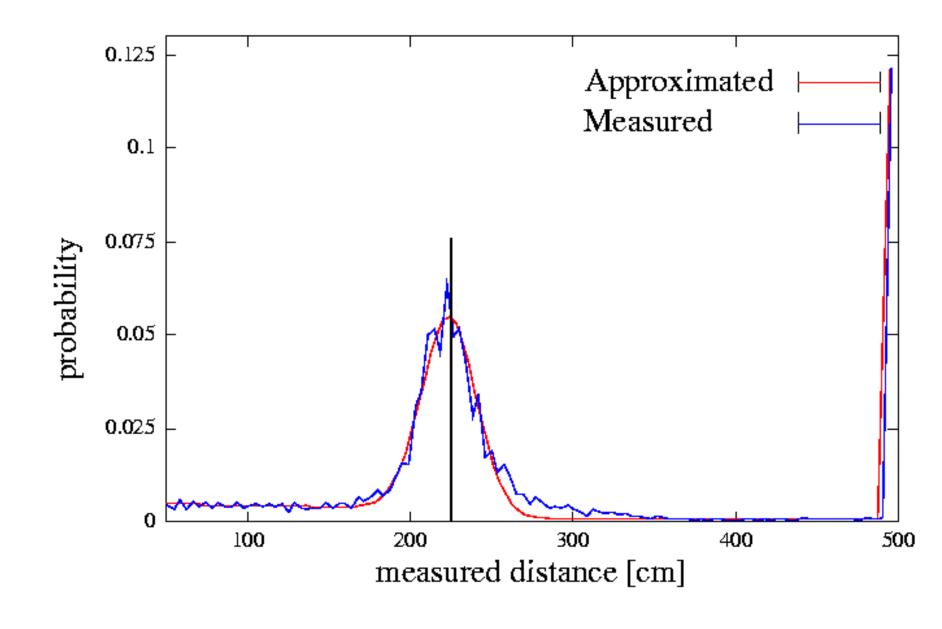
Motion Model Reminder



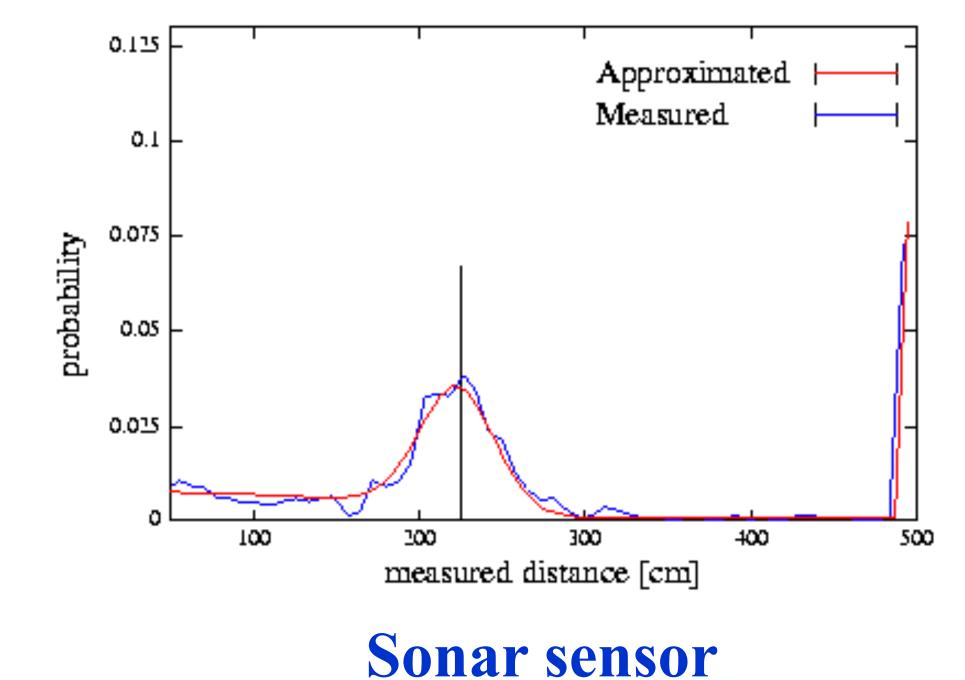
10 meters

CSCI 5551 - Spring 2025

Proximity Sensor Model Reminder

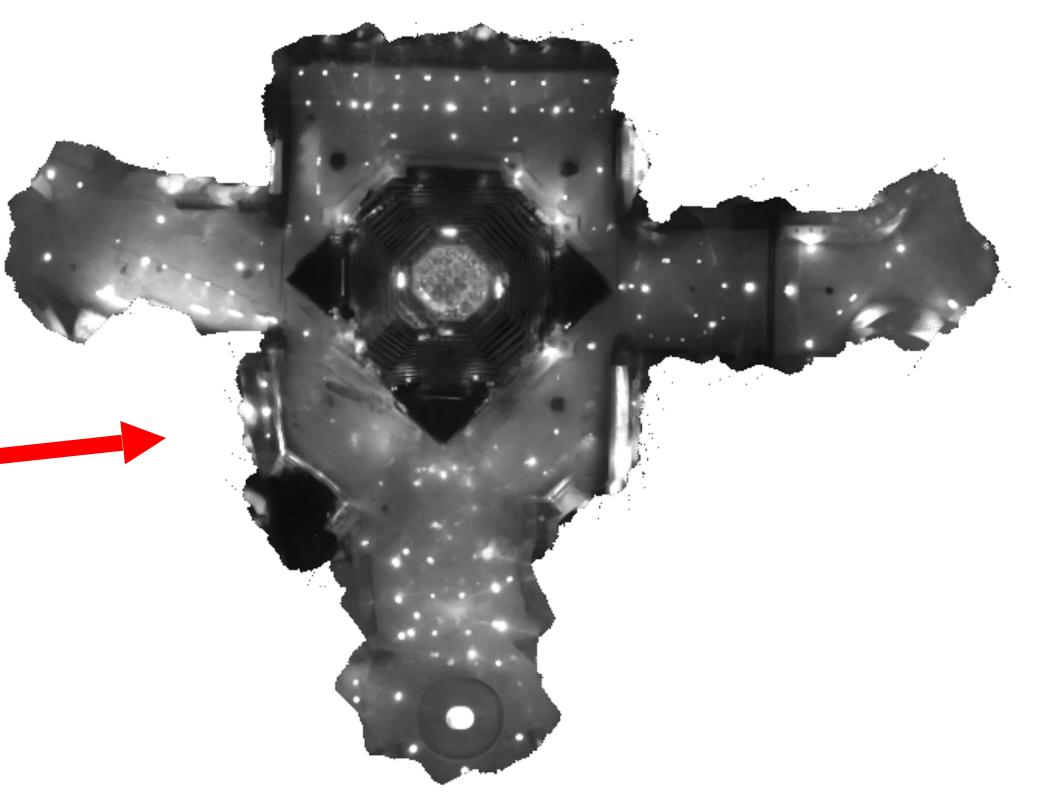


Laser sensor



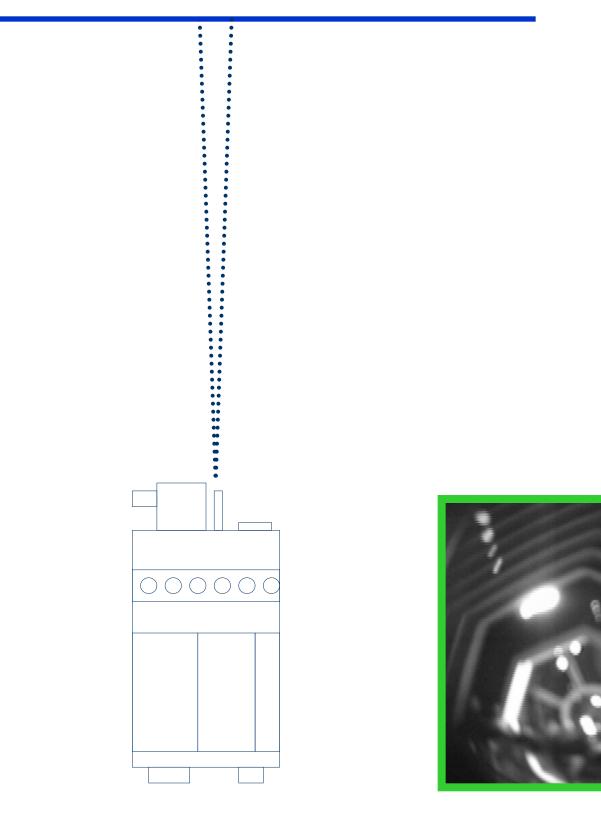
CSCI 5551 - Spring 2025

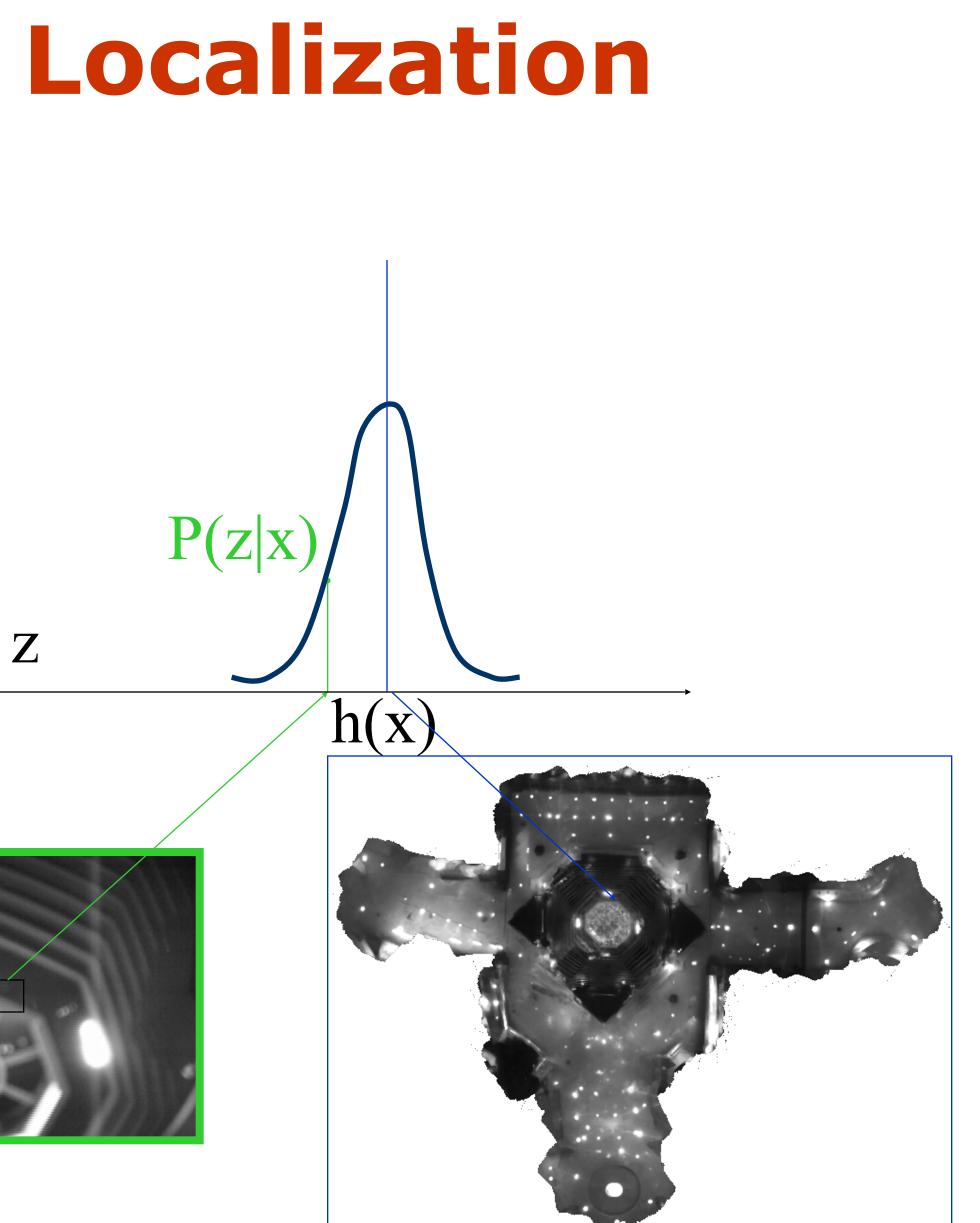
Using Ceiling Maps for Localization



CSCI 5551 - Spring 2025

Vision-based Localization



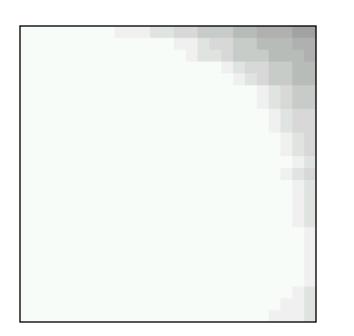


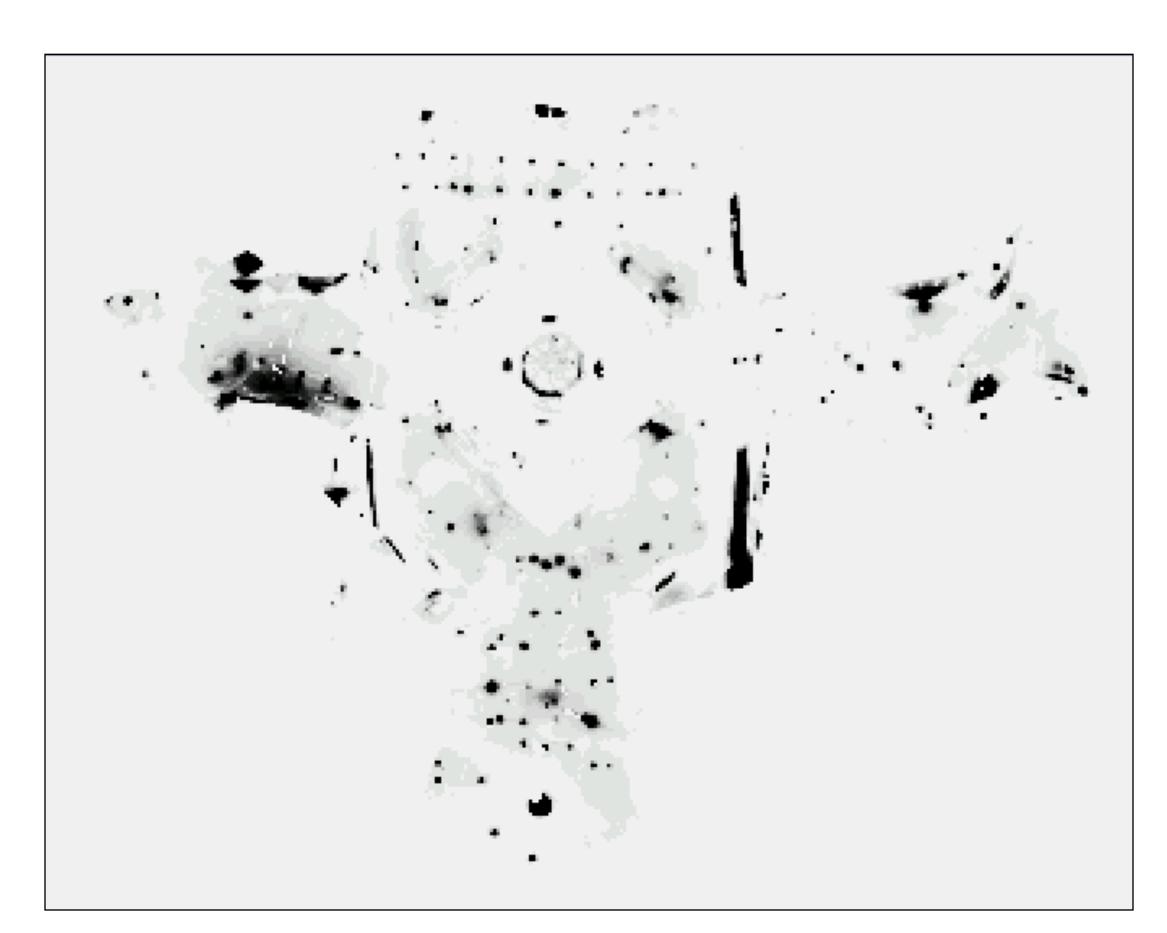
CSCI 5551 - Spring 2025

Under a Light

Measurement z:

P(z|x):



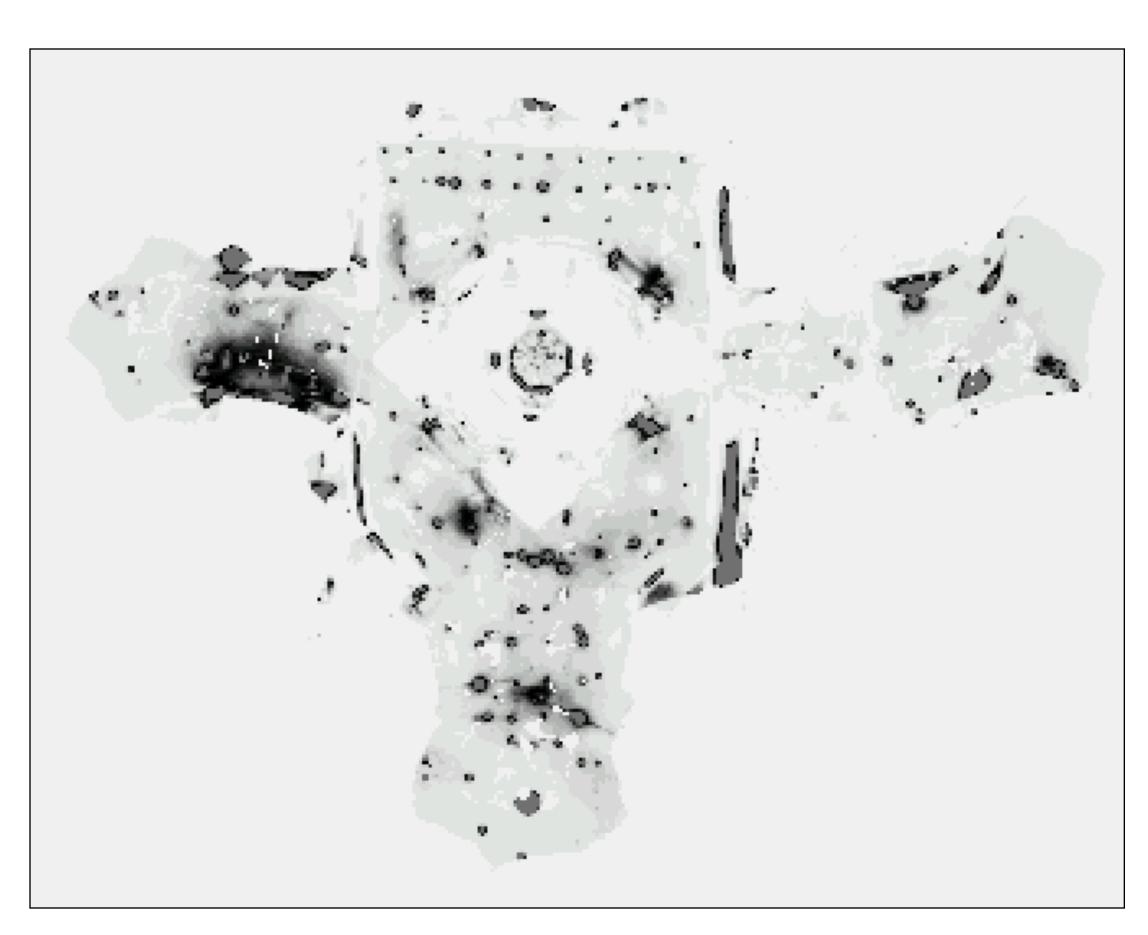


CSCI 5551 - Spring 2025

Next to a Light

Measurement z:

P(z|x):

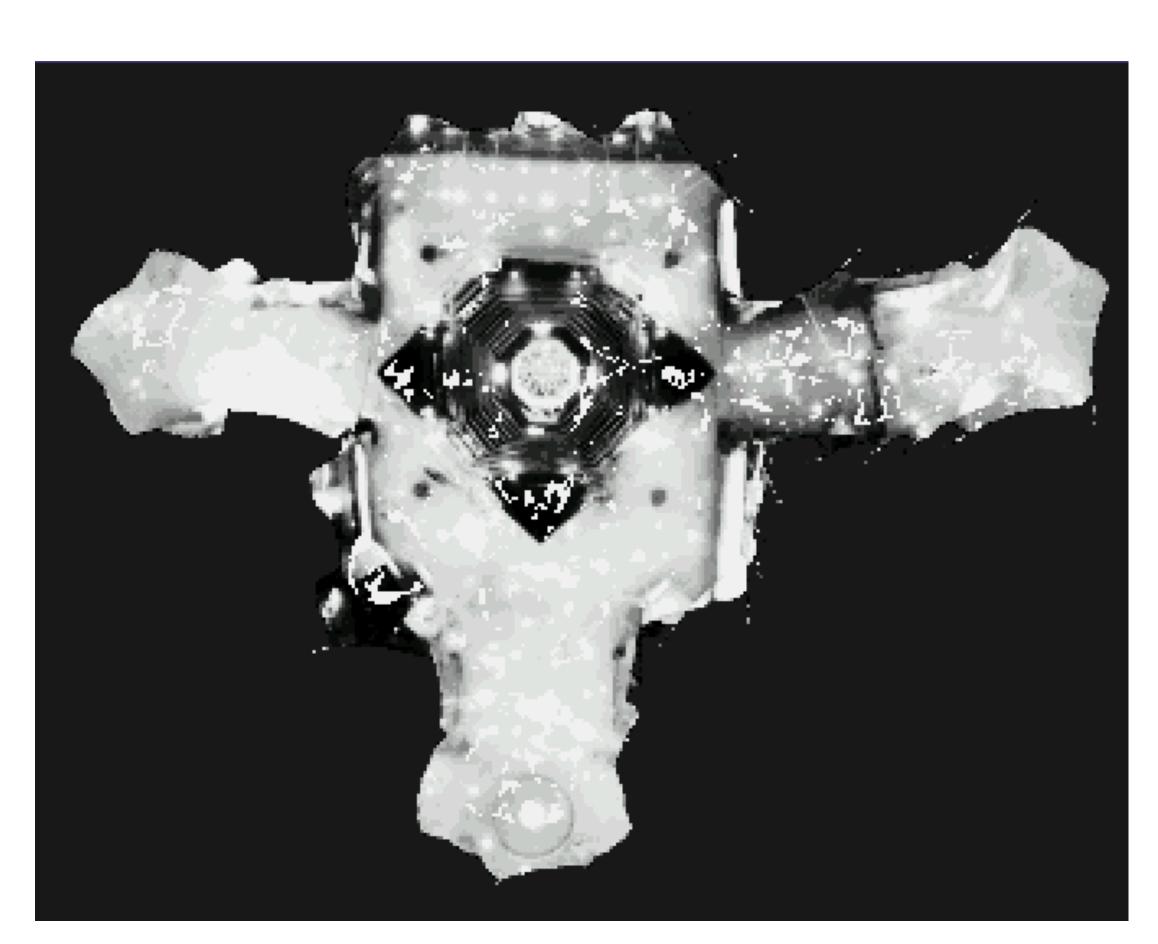


CSCI 5551 - Spring 2025

Elsewhere

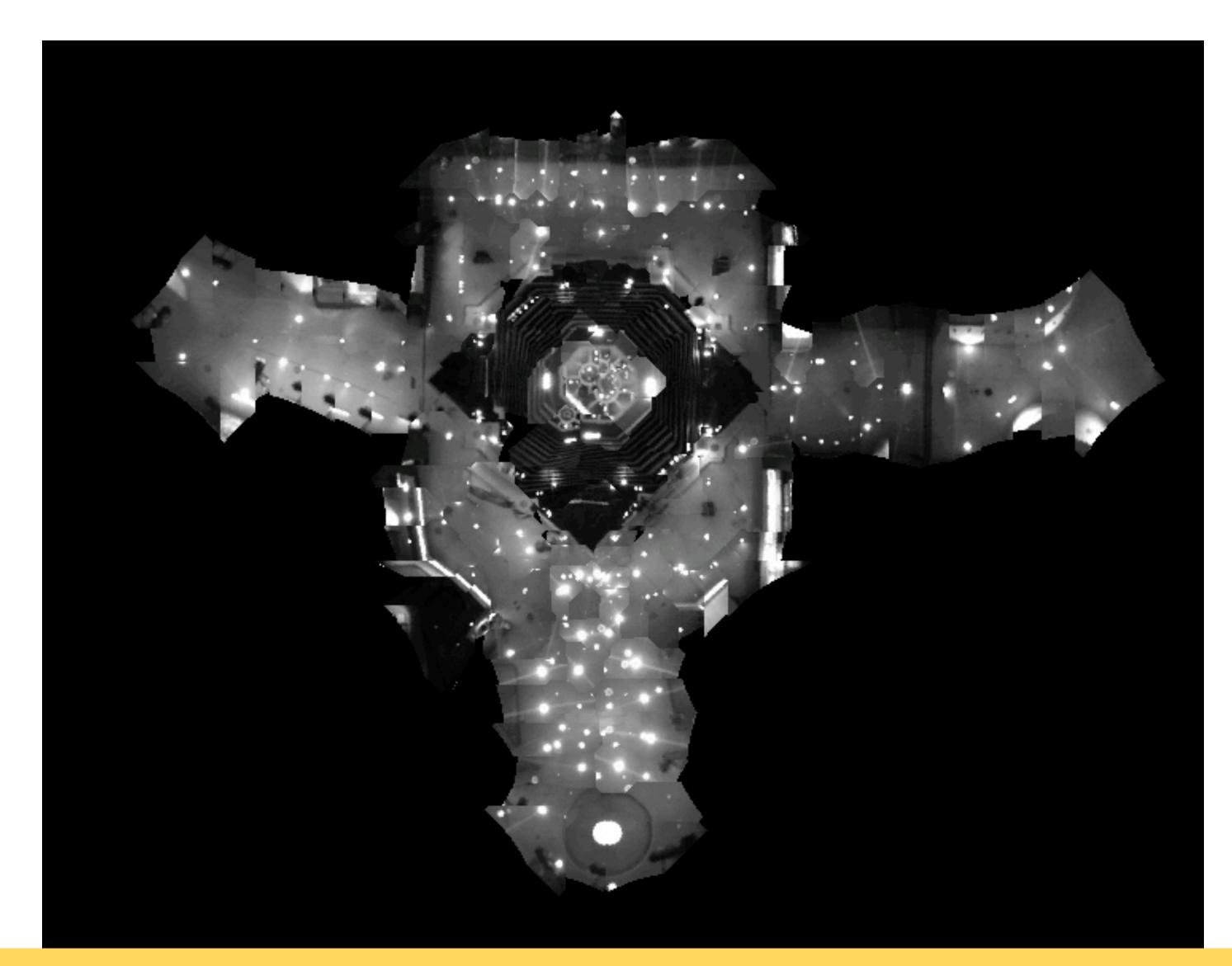
Measurement z:

P(z|x):



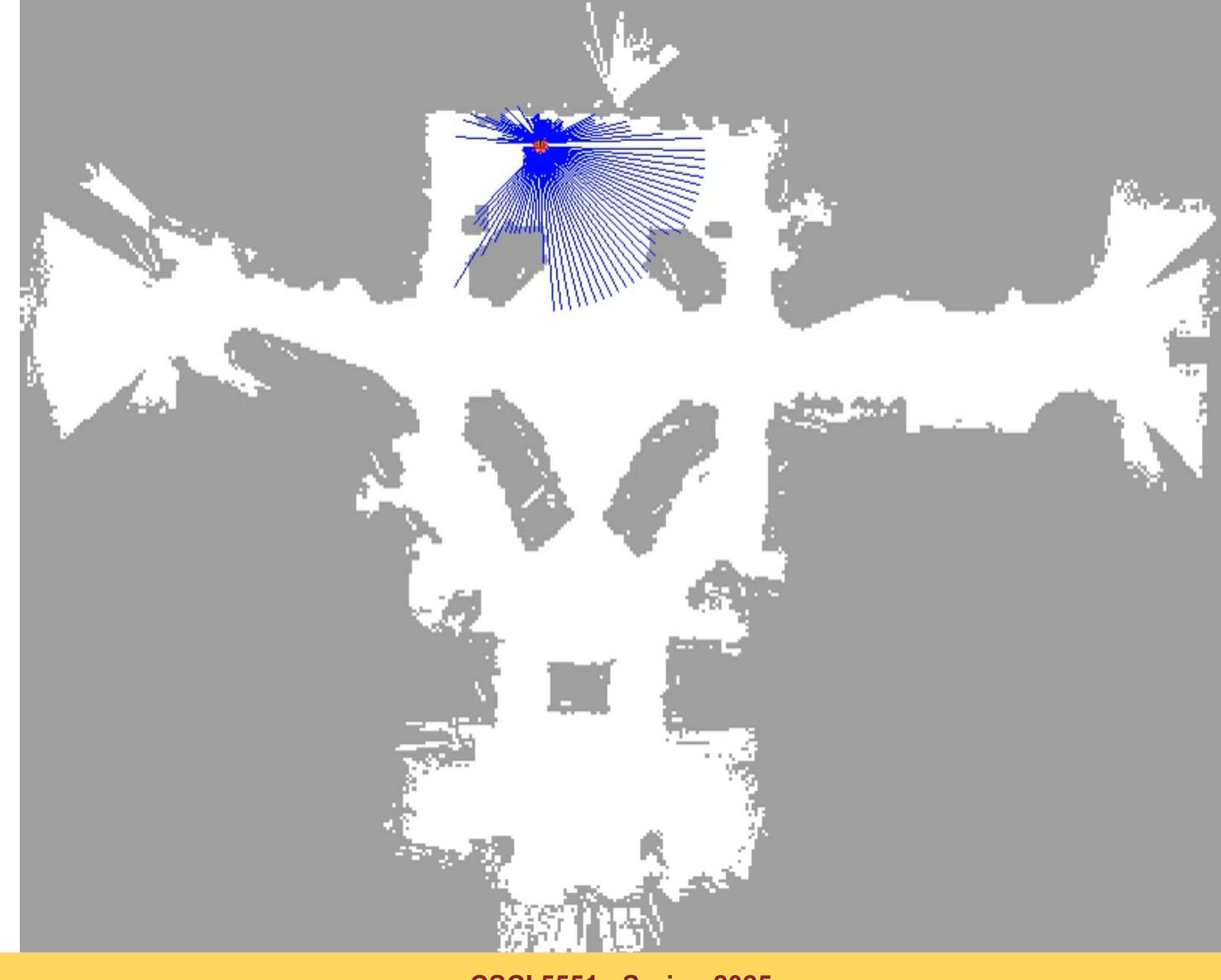
CSCI 5551 - Spring 2025

Global Localization Using Vision



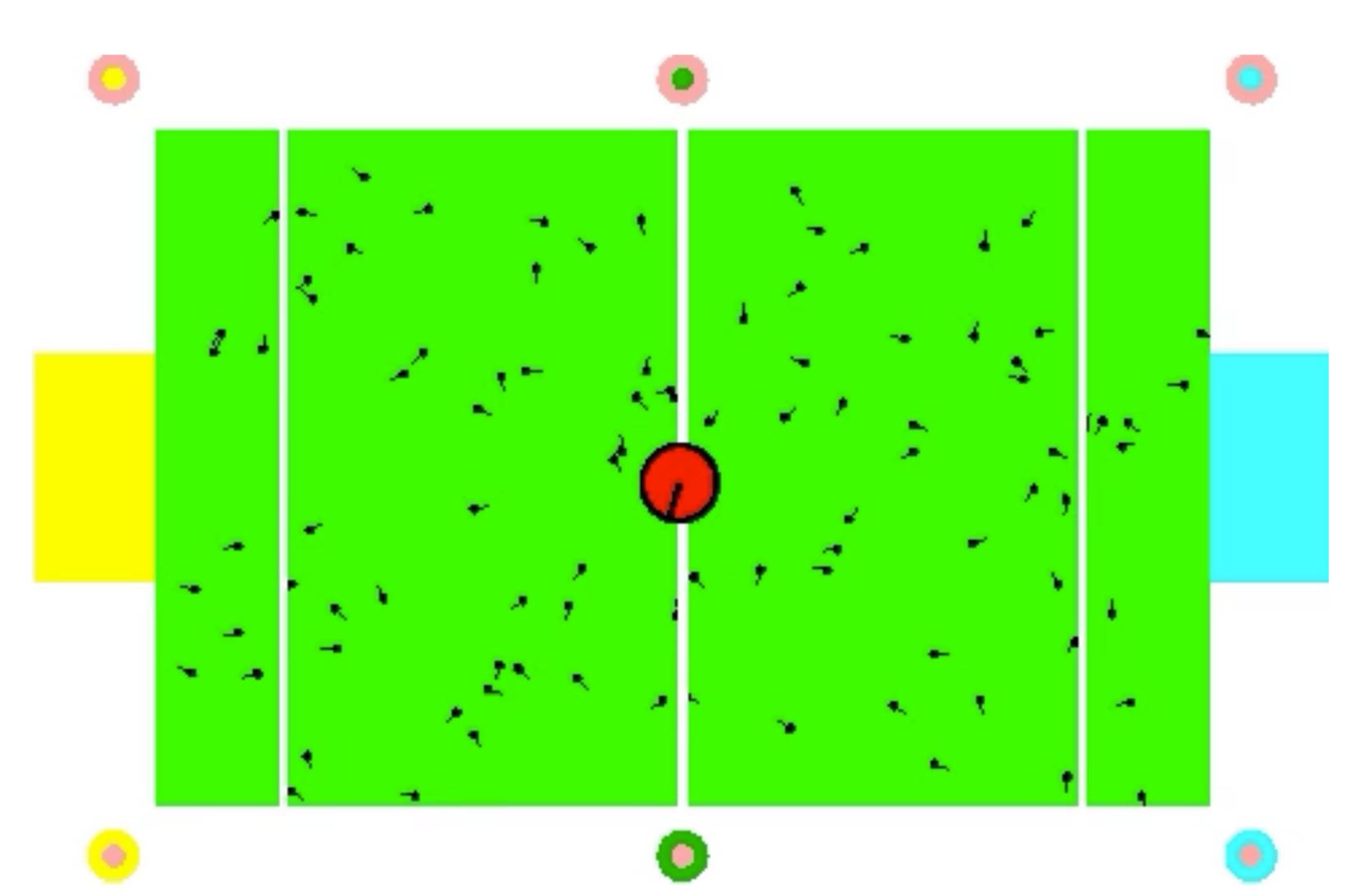
CSCI 5551 - Spring 2025

Recovery from Failure



CSCI 5551 - Spring 2025

Localization for AIBO robots



CSCI 5551 - Spring 2025

Next Lecture: More PF and Mapping

CSCI 5551 - Spring 2025