Lecture 18
Mobile Robotics - Il -
Kalman ST S—

From Wikipedia, the free encyclopedia

The native form of this personal name is Kalman Rudolf Emil. This article uses Western name order when mentioning individuals.

Rudolf Emil Kalman®! (May 19, 1930 - July 2, 2016) was a Hungarian-American electrical engineer,

Rudolf E. Kalman

mathematician, and inventor. He is most noted for his co-invention and development of the Kalman filter, a
mathematical algorithm that is widely used in signal processing, control systems, and guidance, navigation
and control. For this work, U.S. President Barack Obama awarded Kalman the National Medal of Science on
October 7, 2009.!*

Life and career |edit)

Rudolf Kalman was born in Budapest, Hungary, in 1930 to Otto and Ursula Kalman (née Grundmann). After
emigrating to the United States in 1943, he earned his bachelor's degree in 1953 and his master's degree in
1954, both from the Massachusetts Institute of Technology, in electrical engineering. Kalman completed his

doctorate in 1957 at Columbia University in New York City.™!

Born Rudolf Emil Kalméan!'!
Kalman worked as a Research Mathematician at the Research Institute for Advanced Studies in Baltimore, May 19, 1930
Maryland, from 1958 until 1964. He was a professor at Stanford University from 1964 until 1971, and then a Budapest, Hungary
Graduate Research Professor and the Director of the Center for Mathematical System Theory, at the Died July 2, 2016 (aged 86)'“
University of Florida from 1971 until 1992. He periodically returned to Fontainebleau from 1969 to 1972 at e
MINES ParisTech where he served as scientific advisor for Centre de recherches en automatique. Starting in
1973, he also held the chair of Mathematical System Theory at the Swiss Federal Institute of Technology in
Zurich, Switzerland.

Citizenship  Hungary
United States

Alma mater Massachusetts Institute of
Technology

Kalman died on the morning of July 2, 2016, at his home in Gainesville, Florida.'®’ Columbia University
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Course logistics
 Project 6 is posted on 03/24 and will be due 04/02 (this Wed).
e Quiz 9 will be posted tomorrow noon and will be due on Wed at noon.
 Group formations for P7 and Final projects are done.
 We will send a notification on Edstem with the final list.
 We will send a scheduler for P7 sessions.

 \We will announce detalls for Final Project Proposals today - they will be due
on 04/14
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Previously

Beam-based Sensor Model
Algorithm motion_model_odometry («,x, x'):

8 rams =\/(x—x')2+(y-yo2 e Scan z consists of K measurements.
e Robot moves from <x,5,6>to <x,y,0 > . s matan2G—55-9-08 4= w1000 pas)

Probabilistic Kinematics

Z=1{2/,25s00s Zx }

e Odometry information u=<6,,,,6

trans’ 6rot2 > . Orory = 0" — 0 — b,

e Individual measurements are independent
—, — — iven the robot position and a map.
8 pans = (F=X)? +(7'-7)" . J

S, ., =atan2(y'-y,x'-x)—6

ro

8 =00 -5,

ro ro

P(z|x,m)= HP(Zk | x,m)

Finding the posterior

Raw Sensor Data Approximation Results

8. | Py = Prob(8,ums — Spanss X0%ans + (2, + 82 ) Measured distances for expected distance of 300 cm.
9- ‘p:} = pI"Ob(5mt2 — 37‘01‘2’ algzotz + a232

tr ans)

/. | P = prOb(5r0t1 - Srotl’ 61132

rotl

+ )b’

trans)

10. Return D1 ¥, * ps

Noise Model for Motion

Algorithm sample_motion_model («,x):

. . . U=(0,,150,075Opans )»X = (X, 1,0
e The measured motion is given by the A (s Gz Gy % = (3.9:6)

. . . 0,1=0,, +sample(a, |0, |+a, O,
true motion corrupted with noise. o ™ o T (@[ 8,00 |+ Orans)

trans

. SrotZ = 5rot2 + Sample(al | 5rot2 | +a2 5trans) M iXtu I‘e DenSity

= 5rot1 + 8a1 |

= Jtrans + Sample(a3 §trans + a4 (l 5rot1 | + I 5rot2 |))

rotl 5rot1|+a2 |§trans|

x'=x+96,, cos(8+7J,,)

Y=Y 48,4 SIN(O+6,,,,) ) [ Bai(z|x,m) )
+ 5rot2 P(Z | x’ m) - )

11810021+ €2 |8 s | P .. (z|x,m)

Return (x',5',6")  Pana(z| x,m)

=0 _+¢&

trans trans aj |§trans |+a4 |5rotl +5rot2 |

A . 0'=0+6

Pinexp (2] X,1m)

rotl

5rot2 — 5rot2 + ga
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Continuing previous Lecture
Sensor Modeling
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Scan-based Model

e Beam-based model is ...
e not smooth for small obstacles and at edges.
e not very efficient.

e [dea: Instead of following along the

beam, just check the end point.
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Scan Matching

e Extract likelihood field from scan and
use it to match different scan.

CCCC
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Scan Matching

e Extract likelihood field from first scan
and use it to match second scan.

~(0.01 sec
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Properties of Scan-based Model

e Highly efficient, uses 2D tables only.

e Smooth w.r.t. to small changes in robot
position.

e Allows gradient descent, scan matching.
e Ignores physical properties of beams.

e Works for sonars?
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Additional Models of Proximity Sensors

e Map matching (sonar,laser): generate small,
local maps from sensor data and match
local maps against global model.

e Scan matching (laser): map is represented
by scan endpoints, match scan into this
map using ICP, correlation.

e Features (sonar, laser, vision): Extract
features such as doors, hallways from
sensor data.
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Landmarks

e Active beacons (e.g. radio, GPS)
e Passive (e.qg. visual, retro-reflective)
e Standard approach is triangulation

e Sensor provides
e distance, or
e bearing, or
e distance and bearing.
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Distance and Bearing

v_NV‘T(:*B
e X\

<) !v‘kRu( )
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Distributions
for P(z]|x)
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)
]
L
|
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Summary of Parametric Motion
and Sensor Models

e EXxplicitly modeling uncertainty in motion and sensing is key to
robustness.

e In many cases, good models can be found by the following
approach:
1. Determine parametric model of noise free motion or measurement.
2. Analyze sources of noise.

3. Add adequate noise to parameters (eventually mix densities for
noise).
4. Learn (and verify) parameters by fitting model to data.

5. Likelihood of measurement is given by “probabilistically
comparing” the actual with the expected measurement.

e Itis important to be aware of the underlying assumptions!
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Bayes Filter Reminder

® Prediction

bel(x,) = jp (x, [u,x,,) bel(x, ) dx,

® Correction

bel(x,) =1 p(z, | x,)bel(x,)
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Properties of Gaussians

X ~N(u,0°)

— Y~N(au+b,a’c’
Y=aX+b } (a )

0=

CSCI 5551 - Spring 2025 Slide borrowed from Dieter Fox



Properties of Gaussians

) B
X, ~N(w,07) . o/ 1
1 i 12 >:>p(X1)-p(X2)~]\f 2 : s Mt : Wk 2 )
X, ~N(u,,o, )J \ 01 170, O, +0, g o
S alf i i
o1k '}(‘ / \.\. '/ / \\.\.
00s |- /,ff \'\\ 5 00 |- Vi 4 \"\ :
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X ~ N(u,o’ )L

= Y ~N(au+b,a°c”)

Y=aX+b

X1~N(,u1,0'12)\ o, o, 1
= p(X))- p(X,) ~ : +— . .

Xz"“N(,uzaO'zz)J e 0'12"'0'22#1 0'12'|'0'22,u2 0'12"'0'22

® Marc

These properties transfer to
Multivariate Guassians

Multivariate Gaussians

Y=AX+B

X ~NuX)

. = Y~N(Au+B,AZ4")

X, ~N(u,Z,)
X2 NN(,uzazz))

4 34

31 I

= p(X))- p(X,)~N

Z,+3, S +X, M DI

M+ M,

inalization and conditioning in Gaussians results in Gaussians

and perform only linear transformations.
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Discrete Kalman Filter

Estimates the state x of a discrete-time

controlled process that is governed by the

linear stochastic difference equation

xt - A‘txt—l T Btut T 81‘

with a measurement

z =Cx, +0,
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Components of a Kalman Filter

y Matrix (nxn) that describes how the state
t| evolves from 1 to ¢+ without controls or

noise.

Matrix (nxl) that describes how the control ,
t| changes the state from ¢/ to ¢.

Matrix (kxn) that describes how to map the
Ct state x, to an observation z,.

Random variables representing the process

‘| and measurement noise that are assumed to
be independent and normally distributed

t| with covariance R, and O, respectively.
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Kalman Filter Updates in 1D
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L b

QzZF

Qis

Kalman Filter Updates in 1D

Prediction
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L b

Kalman Filter Updates in 1D

o1

QoS -
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L b

QzZF

Qis

L b

QzZF

Qis

a1

Q05 -

Kalman Filter Updates in 1D

Prediction

Correction

CSCI 5551 - Spring 2025

0=

QzZr

Qis

o1
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Kalman Filter Updates in 1D

— =au_ +bu
bel(xt)=< fl; tlth—l [t

O,

2 __2 2
=a. 0, +0

act ,t

.

A
fl"‘ = At:ut—l T Btut In case of

bel(xt)=<2t _ A3 A7 + R | multivariate

Q5 T T T T T 0zs
Correction
az at t-1 = oz f
15 | ais b Prediction
att

o1 o1k

QoS - 00s -

0 0 1
= 0 0 S 10 1< 20 = 20
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Kalman Filter Updates

QZ5 T
az azk Prediction _
att
Q1S - Q1S - -
o1k 1k -
005 - Q05 - -
0 0
< 20 = 20
0z 0= T T T T T
0z - Qz -
Q1S - - Q1S - -
.-—-\ -~ —.\
a1k - (L ) / N il
f-/ N\ f N
bN / p
.*" P / N
/ \ / \
4 \ 4 “
005 - /-" \\ _ 005 - /r’ "-\ -
0 1 | 1 I - 0 : G L 1 =
0 = 10 15 20 5 90 Q s 10 <) 20 = 20
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Kalman Filter Algorithm

Algorithm Kalman_filter(y,_ .2, ,.4,.z):
Discrete Kalman Filter

Estimates the state x of a discrete-time

; " . controlled process that is governed by the
Prec' ICtI on. linear stochastic difference equation

U, =Au_ +Bu, X, =Ax  +Bu +¢,
< T
Zt — Atzt—lAt + Rt with a measurement R, O

2 é‘t-/

Correction:

K =%.C'(CZC'+Q)
M= +K,(z,-CHu,)

> =(I-K.C)Z

Return L, ,Et
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Kalman Filter Updates in 1D

— =au_ +bu
bel(xt)=< fl; tlth—l [t

O,

2 __2 2
=a. 0, +0

act ,t

.

A
fl"‘ = At:ut—l T Btut In case of

bel(xt)=<2t _ A3 A7 + R | multivariate

Q5 T T T T T 0zs
Correction
az at t-1 = oz f
15 | ais b Prediction
att

o1 o1k

QoS - 00s -

0 0 1
= 0 0 S 10 1< 20 = 20
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Kalman Filter Updates

My = f+ Kz, — Ct/’t_t) , C252
bel(x,)= , _, with K = —
O, =(1_Kt)0-t Ctzgtz_l'aozbs,t
H, =aat +Kt(zt—ctll'_l’t) — —
bel(x,) = with K,=X.C/(CXZ.C,/ +Q,)"

> =(I-KC)Z,
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Kalman Filter Summary

e Highly efficient: Polynomial in
measurement dimensionality k and
state dimensionality n:

O(k2-376 + n2)

e Optimal for linear Gaussian systems!

e Most robotics systems are nonlinear!
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Going non-linear
EXTENDED KALMAN FILTER
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Linearity Assumption Revisited

6| |
pix) = N(% p, o)
&= Mean of p(x)

A
X
oo

2t

0

N N e 1
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Non-linear Function

4

piY)

— (Gaussian of piy)
X Mean of p{y)

— Function gix)
= Meanp

O o
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EKF Linearization (1)

4

piy)
— Gaussian of p(y)

— EFK Gaussian

6 -

O

Function g(x)

— Taylor approx,
= Meanp

Qi)
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EKF Linearization (2)

b 6
piy) — Function g(x)
— (Gaussian of p{y) — Taylor approx.
4 | — EFK Gaussian 4t 4= Mean p
O ol
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EKF Linearization (3)

6 6
Py — Function gix)
— (Gaussian of piy) — Taylor approx.
4 {| — EFK Gaussian 4t 4= Mean p
O

(- N
y=gx)
o N

-2 -2
4L ' -4 +
0 05 1 1.5 0 0.5 1
20 o= ﬂz)an W
“10}
0L
N n R 1
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Linearization

T = g(u,xe—1) + €t g (ug, Tp—1) =

Q(Ut, xt—l)

m~~
~

Q(Utaﬂt—l) + g/(ut,ﬂt—l) (ivt—l — Mt—l)
~— ——
- Gt

g(ue, pe—1) + G (Te—1 — pe—1)
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00N O U

EKF Algorithm

1.

Extended Kalman filtery _.XZ, .u,.z ):

Prediction:

:L—lt — g(uthl'lt—l)
> =GX_G +R

t= -1t

Correction:

K =XH (HXH"+Q)"
H, = ﬁt +Kt (Zt _h(/’_lt))

> =(I-K.H)Z
Return u,x

Ht — ah(l"_lt)
ox

4
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flt — Anut—l +Btut
> =A% A" +R

— Kt =gtCtT(CtitCtT+Qt)_l

H, = H, +Kt(Zt _Ctout)

> =([-K,C)Z

Gt — ag(ut > :th—l )
ox,_,
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Localization

“"Using sensory information to locate the robot
in its environment is the most fundamental

problem to providing a mobile robot with
autonomous capabilities.” [Cox 91]

® Given
e Map of the environment.
e Sequence of sensor measurements.

® Wanted
e Estimate of the robot’s position.

® Problem classes
e Position tracking
o Global localization
o Kidnapped robot problem (recovery)
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Next Lecture
| ocalization & Particle Filter
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