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Course logistics
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• Quiz 8 will be posted tomorrow 3pm and will be due on 03/26 noon.  

• Project 5 was posted on 03/05 and is due today 03/24. 

• Project 6 will be posted today 03/24 and will be on 04/02. 

• Group formation for P7 and Final Project this week.  

• How is that going?



Probabilistic Robotics

Key idea: Explicit representation of 
uncertainty  

(using the calculus of probability theory) 

• Perception  = state estimation 
• Action         = utility optimization
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Discrete Random Variables

•  denotes a random variable. 

•  can take on a countable number of values 
in . 

• , or , is the probability that the 
random variable  takes on value .  

•  is called probability mass function. 

• E.g. 

X

X
{x1, x2, …, xn}

P(X = xi) P(xi)
X xi

P( . )

P(room) = < 0.7,0.2,0.08,0.02 >
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Joint and Conditional Probability
•  =  

•  is the probability of  given  

   

   

• If  and  are independent then  
   

• If  and  are independent then 
            

P(X = x and Y = y) P(x, y)

P(x |y) x y

P(x |y) =
P(x, y)
P(y)

P(x, y) = P(x |y)P(y)

X Y
P(x, y) = P(x)P(y)

X Y
P(x |y) = P(x)
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Law of Total Probability, Marginals

Discrete Case

∑
x

P(x) = 1

P(x) = ∑
y

P(x, y)

P(x) = ∑
y

P(x |y)P(y)

Continuous Case

∫ p(x)dx = 1

p(x) = ∫ p(x, y)dy

p(x) = ∫ p(x |y)p(y)dy



Events

• P(+x, +y) ? 

• P(+x) ? 

• P(-y OR +x) ? 

• Independent? 

 

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1
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Marginal Distributions

X P
+x
-x

Y P
+y
-y
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X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1



Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

• P(+x | +y) ? 

• P(-x | +y) ? 

• P(-y | +x) ? 
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Bayes Formula

•Often causal knowledge is easier to 
obtain than diagnostic knowledge. 

• Bayes rule allows us to use causal 
knowledge.
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P(x, y) = P(x |y)P(y) = P(y |x)P(x)

P(x |y) =
P(y |x)P(x)

P(y)
=

likelihood × prior
evidence



Simple Example of State Estimation

• Suppose a robot obtains measurement  
• What is ?

z
P(open |z)
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Example

• z raises the probability that the door is open.
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P(z |open) = 0.6 P(z |¬open) = 0.3
P(open) = 0.5 P(¬open) = 0.5

P(open |z) =
P(z |open)P(open)

P(z |open)P(open) + P(z |¬open)P(¬open)

P(open |z) =
0.6 × 0.5

0.6 × 0.5 + 0.3 × 0.5
=

2
3

= 0.67
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Normalization

P(x |y) =
P(y |x)P(x)

P(y)
= ηP(y |x)P(x)

η = P(y)−1 =
1

∑x′ 

P(y |x′ )P(x′ )



Conditioning

• Bayes rule and background knowledge:
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P(x |y, z) =
P(y |x, z)P(x |z)

P(y |z)

P(x |y) = ∫ P(x |y, z)P(z)dz

= ∫ P(x |y, z)P(z |y)dz

= ∫ P(x |y, z)P(y |z)dz

?

?

?



Conditioning

• Bayes rule and background knowledge:
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P(x |y, z) =
P(y |x, z)P(x |z)

P(y |z)

P(x |y) = ∫ P(x |y, z)P(z |y)dz



Conditional Independence

•Equivalent to 
    
  and
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P(x, y |z) = P(x |z)P(y |z)

P(x |z) = P(x |z, y)

P(y |z) = P(y |z, x)



Simple Example of State Estimation

• Suppose our robot obtains another observation . 

• What is ?
z2

P(open |z1, z2)
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Recursive Bayesian Updating

Markov assumption:  is conditionally independent of 
 given .

zn
z1, . . . , zn−1 x
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P(x |z1, . . . zn) =
P(zn |x, z1, . . . zn−1)P(x |z1, . . . zn−1)

P(zn |z1, . . . zn−1)

P(x |z1, . . . zn) =
P(zn |x)P(x |z1, . . . zn−1)

P(zn |z1, . . . zn−1)

= ηP(zn |x)P(x |z1, . . . zn−1)

= η1..n ∏
i=1...n

P(zi |x)P(x)



Example: Second Measurement 

• z2 lowers the probability that the door is open.
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P(z2 |open) = 0.5 P(z2 |¬open) = 0.6
P(open |z1) = 2/3 P(¬open |z1) = 1/3

P(open |z2, z1) =
P(z2 |open)P(open |z1)

P(z2 |open)P(open |z1) + P(z2 |¬open)P(¬open |z1)

=
1/2 × 2/3

1/2 × 2/3 + 3/5 × 1/3
=

5
8

= 0.625



Bayes Filters: Framework

• Given: 
• Stream of observations  and action data : 

• Sensor model . 
• Action model . 
• Prior probability of the system state . 

• Wanted:  
• Estimate of the state  of a dynamical system. 
• The posterior of the state is also called Belief:

z u

P(z |x)
P(x |u, x′ )

P(x)

X
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dt = {u1, z2, . . . . ut−1, zt}

Bel(xt) = P(xt |u1, z2, . . . . ut−1, zt)



Bayes Filters for 
Robot Localization

𝐵𝑒𝑙(𝑥𝑡)

𝐵𝑒𝑙(𝑥𝑡)

P(𝑧 |𝑥)
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Bayes Filters for 
Robot Localization

𝐵𝑒𝑙(𝑥𝑡)

P(𝑧 |𝑥)
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𝐵𝑒𝑙(𝑥𝑡+1)



Bayes Filters for 
Robot Localization
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𝐵𝑒𝑙(𝑥𝑡+1)

𝐵𝑒𝑙(𝑥𝑡+1)

P(𝑧 |𝑥)



Bayes Filters for 
Robot Localization
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𝐵𝑒𝑙(𝑥𝑡+1)

P(𝑧 |𝑥)

𝐵𝑒𝑙(𝑥𝑡+2)
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Markov Assumption

Underlying Assumptions 
• Static world 
• Independent noise 
• Perfect model, no approximation errors
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P(zt |x0:t, z1:t−1, u1:t) = p(zt |xt)
P(xt |x1:t−1, z1:t−1, u1:t) = p(xt |xt−1, ut)



Bayes Filters are Familiar!

• Kalman filters 
• Particle filters 
• Hidden Markov models 
• Dynamic Bayesian networks 
• Partially Observable Markov Decision 

Processes (POMDPs)
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Bel(xt) = ηP(zt |xt)∫ P(xt |xt−1ut)Bel(xt−1)dxt−1



Summary

•Bayes rule allows us to compute 
probabilities that are hard to assess 
otherwise. 

• Under the Markov assumption, 
recursive Bayesian updating can be 
used to efficiently combine evidence. 

• Bayes filters are a probabilistic tool for 
estimating the state of dynamic 
systems.

Slide borrowed from Dieter FoxCSCI 5551 - Spring 2025



CSCI 5551 - Spring 2025

Next Lecture 
Mobile Robotics - II - Motion & 
Sensor Models



CSCI 5551 - Spring 2024

Final Project  
(Open ended)

31

Robots

Objects

Tasks

Rearrangment of a set of objects

Multi-robot task execution

Long horizon tasks

Think along these axes to 
decide your final project!

Evaluating your 
implementation/system with 
quantitative results are VERY 

important!


