Lecture 14 Planning - VI -Potential Fields

Start

CSCI 5551 - Spring 2025

Course Logistics

- Project 5 was posted on 03/05 and is due on 03/24 (NOTE: this is next Monday).
- Forming groups for P7 and Final Project
 - We will send a google-form today for students to form groups of 4.
 - This will be due on 03/24 (NOTE: this is next Monday).
 - 4). Karthik will reach out to them.
- Project 6 will be posted on 03/24 and will be due on 04/02.
- Quiz 7 will be posted tomorrow at noon and will be due on Wed at noon.
- Final Poster Presentation is planned on 05/05 12:30-2:30 pm.

UNITE students who are not attending in-person, will have different group formations (3 or

Three possible cases can occur based on evaluation of vertices of one triangle against the plane of the other triangle

1. Triangle does not intersect plane (all positive or all negative evaluations) return non-collision

Previously

2. Triangles are coplanar (all evaluations are zero)

3. Triangles are not coplanar (positive and negative evaluations)

Collision detection: ensure triangles of robot links do not intersect triangles of scene objects

CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

Extend graph towards a random configuration and repeat

```
BUILD_RRT(q_{init})
     T.init(q_{init});
 2
     for k = 1 to K do
 3
          q_{rand} \leftarrow \text{RANDOM\_CONFIG}();
          \text{EXTEND}(T, q_{rand});
     Return T
 5
```


[Kuffner, LaValle 2000]

Extend graph towards a random configuration and repeat

```
BUILD_RRT(q_{init})
      T.init(q_{init});
      for k = 1 to K do
           q_{rand} \leftarrow \text{RANDOM\_CONFIG}();
           \text{EXTEND}(\mathcal{T}, q_{rand});
      Return T
```


[Kuffner, LaValle 2000]

Figure 3: The EXTEND operation.

CSCI 5551 - Spring 2025

Extend graph towards a random configuration and repeat

Extend graph towards a random configuration

[Kuffner, LaValle 2000]

Figure 3: The EXTEND operation.

CSCI 5551 - Spring 2025

Extend graph towards a random configuration and repeat

[Kuffner, LaValle 2000]

CSCI 5551 - Spring 2025

Algorithm 6: RRT* 1 $V \leftarrow \{x_{\text{init}}\}; E \leftarrow \emptyset;$ **2** for i = 1, ..., n do $x_{\text{rand}} \leftarrow \text{SampleFree}_i;$ $\mathbf{3}$ $x_{\text{nearest}} \leftarrow \texttt{Nearest}(G = (V, E), x_{\text{rand}});$ $\mathbf{4}$ $x_{\text{new}} \leftarrow \texttt{Steer}(x_{\text{nearest}}, x_{\text{rand}});$ $\mathbf{5}$ if ObtacleFree $(x_{\text{nearest}}, x_{\text{new}})$ then 6 $X_{\text{near}} \leftarrow \text{Near}(G = (V, E), x_{\text{new}}, \min\{\gamma_{\text{RRT}^*}(\log(\text{car})\})\}$ $\mathbf{7}$ $V \leftarrow V \cup \{x_{\text{new}}\};$ 8 $x_{\min} \leftarrow x_{\text{nearest}}; c_{\min} \leftarrow \text{Cost}(x_{\text{nearest}}) + c(\text{Line}(x_{\text{nearest}}, x_{\text{new}}));$ 9 foreach $x_{near} \in X_{near}$ do 10if CollisionFree $(x_{near}, x_{new}) \wedge Cost(x_{near}) + c(Line(x_{near}, x_{new})) < c_{min}$ then $\mathbf{11}$ $x_{\min} \leftarrow x_{\text{near}}; c_{\min} \leftarrow \texttt{Cost}(x_{\text{near}}) + c(\texttt{Line}(x_{\text{near}}, x_{\text{new}}))$ $\mathbf{12}$ $E \leftarrow E \cup \{(x_{\min}, x_{new})\};$ $\mathbf{13}$ foreach $x_{near} \in X_{near}$ do $\mathbf{14}$ if CollisionFree $(x_{new}, x_{near}) \wedge Cost(x_{new}) + c(Line(x_{new}, x_{near})) < Cost(x_{near})$ $\mathbf{15}$ then $x_{\text{parent}} \leftarrow \texttt{Parent}(x_{\text{near}});$ $E \leftarrow (E \setminus \{(x_{\text{parent}}, x_{\text{near}})\}) \cup \{(x_{\text{new}}, x_{\text{near}})\}$ 1617 return G = (V, E);

RR *

$$\operatorname{cd}(V))/\operatorname{card}(V))^{1/d},\eta\});$$

// Connect along a minimum-cost path

// Rewire the tree

CSCI 5551 - Spring 2025

KKI*

// Connect along a minimum-cost path

Rewire the tree

FIND *x*_{*new*}

FIND neighbors to x_{new} in G ADD x_{new} to G

FIND edge to X_{new} from neighbors with least cost ADD that to G

REWIRE the edges in the neighborhood if any least cost path exists from the root to the neighbors via x_{new}

- Asymptotically optimal
- Main idea:
 - original (current) parent

Demonstration - https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

Swap new point in as parent for nearby vertices who can be reached along shorter path through new point than through their

CSCI 5551 - Spring 2025

Slide borrowed from Dieter Fox

CSCI 5551 - Spring 2025

Source: Karaman and Frazzo

Slide borrowed from Dieter Fox

RRT*

Source: Karaman and Frazzoli

CSCI 5551 - Spring 2025

Slide borrowed from Dieter Fox

Smoothing

execution: very jagged, often much longer than necessary.

- In practice: do smoothing before using the path \rightarrow
- Shortcutting:
 - along the found path, pick two vertices x_{t_1} , x_{t_2} and try to connect them directly (skipping over all intermediate vertices)
- Nonlinear optimization for optimal control
 - Allows to specify an objective function that includes smoothness in state, control, small control inputs, etc.

Randomized motion planners tend to find not so great paths for

Approaches to motion planning • Bug algorithms: Bug[0-2], Tangent Bug

- Graph Search (fixed graph)
 - Depth-first, Breadth-first, Dijkstra, A-star, Greedy best-first
- Sampling-based Search (build graph):
 - Probabilistic Road Maps, Rapidly-exploring Random Trees
- **Optimization and local search:** •
 - Gradient descent, Potential fields, Simulated annealing, Wavefront

Navigation (again)

CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

Gradient descent: Energy potential converges at goal

a little warmer

start: cold

colder

CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

How do we define a potential field?

CSCI 5551 - Spring 2025

Potential Field

- A potential field is a differentiable function U(q) that maps configurations to scalar "energy" value
- At any q, gradient $\mathcal{V}(q)$ is the vector that maximally increases U
- At goal q_{goal} , energy is minimized such that $\nabla U(q_{goal}) = 0$
- Navigation by descending field $\nabla U(q)$ to goal

Gradient Descent Algorithm:

$$q_{path}[0] \leftarrow q_{start}$$

 $i \leftarrow 0$
while $(|| \mathcal{W}(q[i])|| > \varepsilon)$
 $q_{path}[i+1] \leftarrow q_{path}[i] - \alpha \mathcal{W}(q_{path}[i])$
 $i \leftarrow i+1$
end
Derivative assumed to be direct
of steepest ascent away from g
 $\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n)$

CSCI 5551 - Spring 2025

X

Charged Particle Example

Positively charged particle follows potential energy to goal

CSCI 5551 - Spring 2025

Convergent Potentials let's call these "attractor landscapes"

Goal

basin of attraction

CSCI 5551 - Spring 2025

2D potential navigation

z: height indicates potential at location

1.2

0.8

0.6

0.4 -

0.2

0

100

50

 $q_d = Goal$

x-y plane: robot position

CSCI 5551 - Spring 2025

 $q_d = Goal$

"Attractor"

"Cone" Attractor

w: weight $(q - q_d)$: direction $||q - q_d||$: distance

CSCI 5551 - Spring 2025

"Cone" Attractor

w: weight $(q - q_d)$: direction $||q - q_d||$: distance

CSCI 5551 - Spring 2025

"Cone" Attractor

Goal

w: weight $(q_d - q)$: direction $||q_d - q||$: distance

Start

CSCI 5551 - Spring 2025

$\nabla U(q) = w(q - q_d) / ||q - q_d||$ x = Start

"Cone" Attractor

Goal

Start

w: weight (< 1) $(q - q_d)$: direction $||q - q_d||$: distance

side view

CSCI 5551 - Spring 2025

Can we modulate the range of a potential field?

CSCI 5551 - Spring 2025

"Bowl" Attractor $\nabla U(q) = \exp(-||q - q_d||/w) (q - q_d)$

Start

Goal side view

CSCI 5551 - Spring 2025

C \leftarrow \rightarrow desmos.com/calculator

Untitled Graph \$ **«** +exp(-d/w)× \wedge (x^2) 10 weights the influence of a potential × \wedge (x^2) × $\mathbf{\Lambda}$ $\frac{(x^2)}{2}$ X -5 $\mathbf{\Lambda}$ -3 -2 $\frac{(x^2)}{1}$ × $\frac{\left(x^2\right)}{0.5}$ е Х \mathbf{N} $\frac{\left(x^2\right)}{0.25}$ е Х $\frac{\left(x^2\right)}{0.1}$ ·····

CSCI 5551 - Spring 2025

Can we combine multiple potentials?

CSCI 5551 - Spring 2025

Multiple potentials

Output of potential field is a vector

Combine multiple potentials through vector summation

$U(q) = \sum_{i} U_{i}(q)$

CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

add sum of repulsive potentials $U(q) = U_{attracts}(q) + U_{repellors}(q)$

CSCI 5551 - Spring 2025

reverse direction

 $\nabla U(q) = w(q_d - q)/||q_d - q||$

"Cone" Repellor potential problems?

CSCI 5551 - Spring 2025

$\nabla U(q) = \exp(-||q_d-q||/w) (q_d - q)$

q = Start

top view

"Bowl" Repellor

CSCI 5551 - Spring 2025

Slide borrowed from Michigan Robotics autorob.org

side view

Start

repellor should only have local influence, repelling only around boundary improves path

CSCI 5551 - Spring 2025

2 Obstacle example

path from descent on gradient field

combined potential

resulting

gradient field

CSCI 5551 - Spring 2025

70

CSCI 5551 - Spring 2025

70

CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

Current

Slide borrowed from Michigan Robotics autorob.org

260

CSCI 5551 - Spring 2025

Current

Slide borrowed from Michigan Robotics autorob.org

260

Local Minima

CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

70

CSCI 5551 - Spring 2025

pfield.m [1 5 8 12]

matlab example

CSCI 5551 - Spring 2025

pfield.m [1 5 8 12]

CSCI 5551 - Spring 2025

matlab example

How to address local minima?

matlab example

CSCI 5551 - Spring 2025

How can we get out of local minima?

CSCI 5551 - Spring 2025

How can we get out of local minima?

Go back to planning.

CSCI 5551 - Spring 2025

Wavefront Planning

- Discretize potential field into grid
 - Cells store cost to goal with respect to potential field
 - Computed by Brushfire algorithm (essentially BFS)
- Grid search to find navigation path to goal

Once start reached, follow brushfire potential to goal

CSCI 5551 - Spring 2025

Example with Local Minima

CSCI 5551 - Spring 2025

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Kineval wavefront planner

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Planning Recap

CSCI 5551 - Spring 2025

Recap

- Bug algorithms: Bug[0-2], Tangent Bug
- Graph Search (fixed graph)
 - Depth-first, Breadth-first, Dijkstra, A-star, Greedy best-first
- Sampling-based Search (build graph):
 - Probabilistic Road Maps, Rapidly-exploring Random Trees
- Optimization and local search:

• Gradient descent, Potential fields, Simulated annealing, Wavefront

CSCI 5551 - Spring 2025

Next Lecture **Motion Control**

CSCI 5551 - Spring 2025