

Course Logistics

- Project 4 was posted on 02/19 and will be due on 03/05.
 - Start early!
- Quiz 5 will be posted tomorrow at noon and will be due at noon on Wed.

Previously in Manipulation Lectures

Robot Kinematics

Goal: Given the structure of a robot arm, compute

- Forward kinematics: infer the pose of the end-effector, given the state of each joint.
- Inverse kinematics: infer the joint states to reach a desired endeffector pose.

Inverse Kinematics: 2 possibilites

- Closed-form solution: geometrically infer satisfying configuration
- Speed: solution often computed in constant time
- Predictability: solution is selected in a consistent manner
- Solve by optimization: minimize error of endeffector to desired pose
- often some form of Gradient Descent (a la Jacobian Transpose)
- Generality: same solver can be used for many different robots

Matlab 5-link arm example: Jacobian transpose

Figure 5.1: Motion of the end-effector due to link i.

Ji for a prismatic joint

i-1th frame maps to ith column in

The Jacobian

A 6xN matrix

 $J = [J_1 J_2 \cdots J_n]$

consisting of two 3xN matrices

$$J = \left[\frac{J_{m{v}}}{J_{\omega}} \right]$$

Ji for a rotational joint

$$J_i = \left[egin{array}{c} z_{i-1} imes (o_n - o_{i-1}) \ z_{i-1} \end{array}
ight]$$

This lecture uses the structure and material from this review paper!

Previously in Planning, Decision Making, Control

Approaches to motion planning

- Bug algorithms: Bug[0-2], Tangent Bug
- Graph Search (fixed graph)
 - Depth-first, Breadth-first, Dijkstra, A-star
- Sampling-based Search (build graph):
 - Probabilistic Road Maps, Rapidly-exploring Random Trees
- Optimization (local search):
 - Gradient descent, potential fields, Wavefront

Should your robot's decision making

OR

fully think through solving a problem?

react quickly to changes in its world?

Deliberation v. Reaction

Sensors

reaction: subsumption, Finite State Machine controllers act in parallel

Deliberation

"Sense-Plan-Act" paradigm

- <u>sense</u>: build most complete model of world
- GPS, SLAM, 3D reconstruction, affordances
- plan: search over all possible outcomes
 - BFS, DFS, Dijkstra, A*, RRT
- <u>act</u>: execute plan through motor forces

Reaction

- No representation of state
- Typically, fast hardcoded rules
- Embodied intelligence
 - behavior := control + embodiment
 - ant analogy, stigmergy
- Subsumption architecture
 - prioritized reactive policies
- Ghengis hexpod video

MIT Genghis

https://www.youtube.com/watch?v=1j6CliOwRng

Robots have to make lots of decisions

Base Navigation

- How get from point A to point B
- What is the simplest policy to perform navigation?
 - Remember: simplest reactive policy?

Random Walk: Goal Seeking

- Move in a random direction until you hit something
- Then go in a new direction
- Stop when you get to the goal, assuming it can be recognized

Base Navigation

- How get from point A to point B
- What is the simplest policy to perform navigation?
 - random walk
 - <u>reactive</u>: embodied intelligence
- What is a "simple" deliberative policy?

Bug Algorithms

- Assume bounded world W
- Known: global goal
 - measurable distance d(x,y)
- Unknown: obstacles WOi
- Local sensing
 - tactile
 - distance traveled

CSCI 5551 - Spring 2025

Bug Algorithms

- Assume bounded world W
- Known: global goal
 - measurable distance d(x,y)
- Unknown: obstacles WOi
- Local sensing
 - bump sensor
 - distance traveled

bumper is essentially an on/off button

Interesting application of Bug algorithms?

http://mars.nasa.gov/mer/gallery/press/opportunity/20040921a.html

Bug Navigation

Plan navigation path from start q_s to goal q_d

as a sequence of hit/leave point pairs on obstacles

Hit point: q_i^H

Leave point: q_i^L

- I) Head towards goal
- 2) When hit point set, follow wall, until you can move towards goal again (leave point)
- 3) continue from (1)

Wall following

follow wall

One approach:

a) move forward with slight turn

b) when bumped, turn opposite direction

c) goto (a)

Trevor Jay

What map would foil Bug o?

- I) Head towards goal
- 2) When hit point set, follow wall, until you can move towards goal again (leave point)
- 3) continue from (I)

- I) Head towards goal
- 2) When hit point set, follow wall, until you can move towards goal again (leave point)
- 3) continue from (I)

Can you trace the Bug o path?

- I) Head towards goal
- 2) When hit point set, follow wall, until you can move towards goal again (leave point)
- 3) continue from (1)

Can you trace the Bug o path?

Can we make a better bug? How?

- 1) Head towards goal
- 2) When hit point set, circumnavigate obstacle, setting leave point as closest to goal
- 3) return to leave point
- 4) continue from (I)

- 1) Head towards goal
- 2) When hit point set, circumnavigate obstacle, setting leave point as closest to goal
- 3) return to leave point
- 4) continue from (I)

What map would foil Bug 1?

- I) Head towards goal
- 2) When hit point set, circumnavigate obstacle, setting leave point as closest to goal
- 3) return to leave point
- 4) continue from (I)

What map would foil Bug 1?

- 1) Head towards goal
- 2) When hit point set, circumnavigate obstacle, setting leave point as closest to goal
- 3) return to leave point
- 4) if bump current obstacle, return fail;else, continue from (1)

What map would foil Bug 1?

no path exists: line (q_1^L, q_d) intersects current obstacle failure bump occurs immediately

Bug I: Detecting Failure

- I) Head towards goal
- 2) When hit point set, circumnavigate obstacle, setting leave point as closest to goal
- 3) return to leave point
- 4) if bump current obstacle, return fail;else, continue from (1)

Bug I: Search Bounds

Bounds on path distance, assuming

D: distance start-to-goal

P_i: obstacle perimeter

Best case:

Worst case:

Bug I: Search Bounds

Bounds on path distance, assuming

D: distance start-to-goal

P_i: obstacle perimeter

Best case: D

Worst case:

Bug I: Search Bounds

Bounds on path distance, assuming

D: distance start-to-goal

P_i: obstacle perimeter

Best case: D

Worst case: $D + 1.5\sum_{i} P_{i}$

Is there a faster bug?

m-line: straight line path to goal

- I) Head towards goal on m-line
- 2) When hit point set, traverse obstacle until m-line is encountered
- 3) set leave point and exit obstacle
- 4) continue from (I)

- 1) Head towards goal on m-line
- 2) When hit point set, traverse obstacle until m-line is encountered
- 3) set leave point and exit obstacle
- 4) continue from (I)

What map would foil Bug 2?

- I) Head towards goal on m-line
- 2) When hit point set, traverse obstacle until m-line is encountered
- 3) set leave point and exit obstacle
- 4) continue from (I)

- I) Head towards goal on m-line
- 2) When hit point set, traverse obstacle until m-line is encountered
- 3) set leave point and exit obstacle
- 4) continue from (I)

- 1) Head towards goal on m-line
- 2) When hit point set, traverse obstacle until m-line is encountered& closer to the goal
- 3) set leave point and exit obstacle
- 4) continue from (I)

Bug 2: Detecting Failure

- 1) Head towards goal on m-line
- 2) When hit point set, traverse obstacle until m-line is encountered & closer to the goal or hit point reached
- 3) if not *i*th hit point, set leave pt. and exit
- 4) continue from (I)

Bug 2 in action

Kayle Gishen

m-line drawn on floor with tape recognizable by Create cliff sensor

Is Bug2 better than Bug1?

Bug I v. Bug 2:

Draw worlds where Bug 2 performs better than Bug I (and vice versa)

Bug 2: Search Bounds

Bounds on path distance, assuming

- D: distance start-to-goal
- P_i: obstacle perimeter
- *n_i*: number of m-line intersections for *WO_i*

Best case:

Worst case:

Bug 2: Search Bounds

Bounds on path distance, assuming

- D: distance start-to-goal
- P_i: obstacle perimeter
- *n_i*: number of m-line intersections for *WO_i*

Best case: D

Worst case:

Bug 2: Search Bounds

Bounds on path distance, assuming

- D: distance start-to-goal
- P_i: obstacle perimeter
- *n_i*: number of m-line intersections for *WO_i*

Best case: D

Worst case: $D + \sum_i (n_i/2)P_i$

Consider all leave points on m-line; only half are valid

Each leave pt might require traversing entire obstacle perimeter, including the outside

Bug 2: Search Bounds

Bounds on path distance, assuming

- D: distance start-to-goal
- P_i: obstacle perimeter
- *n_i*: number of m-line intersections for WO_i

Best case: D

Worst case: $D + \sum_i (n_i/2)P_i$

Search Bounds: Bug 1

Bounds on path distance, assuming

D: distance start-to-goal

P_i: obstacle perimeter

Best case: D

Worst case: $D + 1.5\sum_{i} P_{i}$

Bug 2

Bounds on path distance, assuming

- D: distance start-to-goal
- P_i: obstacle perimeter
- *n_i*: number of m-line intersections for WO_i

Best case: D

Worst case: $D + \sum_{i} (n_i/2)P_i$

Search Bounds:

Bug 2

Bounds on path distance, assuming

- D: distance start-to-goal
- Pi: obstacle perimeter
- *n_i*: number of m-line intersections for WO_i

Best case: D

Worst case: $D + \sum_i (n_i/2) P_i$

Suppose robot has a range sensor.

Is there a better Bug algorithm?

- Assume bounded world
- Known: global goal
 - measurable distance d(x,y)
- Local sensing
 - range finding
 - odometry

Laser Rangefinding (briefly)

Emit laser beam in a direction

Distance to nearest object related to time from emission to sensing of beam (assumes speed of light is known)

Planar range finding: reflect laser on spinning mirror (typically at 10Hz)

Tangent Bug: Heuristic Distance-to-Goal

Oi are visible obstacle extents

 $d(x,O_i)$: robot can see

 $d(O_i,q_{goal})$: best path robot cannot see

Continually move robot such that distance to goal is decreased

Note similarity to A* search heuristic

Tangent Bug: Heuristic Distance-to-Goal

CSCI 5551 - Spring 2025

Oi are visible obstacle extents

 $d(x,O_i)$: robot can see

 $d(O_{i},q_{goal})$: best path robot cannot see

Continually move robot such that distance to goal is decreased

Note similarity to A* search heuristic

 $d(x,O_2)+d(O_2,q_{goal})$ $d(x,O_4)+d(O_4,q_{goal})$ WO2

Range Segmentation

range scan $\rho(x,\Theta)$: sensed distance along ray at angle Θ within limit R

discontinuities $\{O_i\}$ in scan result from obstacles

{O_i} segments scan into intervals continuity, with obstacles and free space

Range Segmentation

range scan $\rho(x,\Theta)$: sensed distance along ray at angle Θ within limit R

discontinuities $\{O_i\}$ in scan result from obstacles

{O_i} segments scan into intervals continuity, with obstacles and free space

Tangent Bug Behaviors

Similar to other bug algorithms, Tangent Bug uses two behaviors:

motion-to-goal

boundary-follow

$$G(x) = d(x,O_i) + d(O_i,q_{goal})$$

- I) motion-to-goal: Move to current O_i to minimize G(x), until goal (success) or G(x) increases (local minima)
- 2) boundary-follow: move in while loop:
 - a) repeat updates $d_{reach} = \min d(q_{goal}, \{visible O_i\})$ $d_{follow} = \min d(q_{goal}, sensed(WO_j))$ $O_i = \operatorname{argmin}_i d(x, O_i) + d(O_i, q_{goal})$
 - b) until
 goal reached, (success)
 robot cycles around obstacle, (fail) $d_{reach} < d_{follow},$ (cleared obstacle or local minima)
- 3) continue from (1)

$$G(x) = d(x,O_2) + d(O_2,q_{goal})$$

$$Q_1$$

$$Q_2$$

$$Q_3$$

$$Q_4$$

min G(x) in red, others in yellow

- I) motion-to-goal: Move to current O_i to minimize G(x), until goal (success) or G(x) increases (local minima)
- 2) boundary-follow: move in while loop:
 - a) repeat updates $d_{reach} = \min d(q_{goal}, \{visible O_i\})$ $d_{follow} = \min d(q_{goal}, sensed(WO_j))$ $O_i = \operatorname{argmin}_i d(x, O_i) + d(O_i, q_{goal})$
 - b) until goal reached, (success) robot cycles around obstacle, (fail) $d_{reach} < d_{follow}$, (cleared obstacle or local minima)
- 3) continue from (I)

$$G(x) = d(x,O_I) + d(O_I,q_{goal})$$

min G(x) in red, others in yellow

- I) motion-to-goal: Move to current O_i to minimize G(x), until goal (success) or G(x) increases (local minima)
- 2) boundary-follow: move in while loop:
 - a) repeat updates $d_{reach} = \min d(q_{goal}, \{visible O_i\})$ $d_{follow} = \min d(q_{goal}, sensed(WO_j))$ $O_i = \operatorname{argmin}_i d(x, O_i) + d(O_i, q_{goal})$
 - b) until
 goal reached, (success)
 robot cycles around obstacle, (fail) $d_{reach} < d_{follow},$ (cleared obstacle or local minima)
- 3) continue from (I)

H_i: hit point

D_i: Depart point

Li: Leave point

Mi: local minima

min G(x) in red, others in yellow

motion-to-goal

follow-boundary Hi: hit point

start following: min $d(q_{goal}, \{visible O_i\}) < min d(q_{goal}, sensed(WO_j))$

end following: min $d(q_{goal}, \{visible O_i\}) < min d(q_{goal}, sensed(WO_j))$

H_i: hit point

D_i: Depart point

L_i: Leave point

Mi: local minima

H_i: hit point
D_i: Depart point
L_i: Leave point
M_i: local minima

H_i: hit point
D_i: Depart point
L_i: Leave point
M_i: local minima

H_i: hit point
D_i: Depart point
L_i: Leave point
M_i: local minima

Local minima at increase of $G(x) = d(x,O_i)+d(O_i,q_{goal})$

H_i: hit point
D_i: Depart point
L_i: Leave point
M_i: local minima

Local minima at increase of $G(x) = d(x,O_i)+d(O_i,q_{goal})$

H_i: hit point
D_i: Depart point
L_i: Leave point
M_i: local minima

Local minima at increase of $G(x) = d(x,O_i)+d(O_i,q_{goal})$

H_i: hit point
D_i: Depart point
L_i: Leave point
M_i: local minima

Tangent bug R=0

Tangent bug with limited radius

Localization: knowing the robot's location, at least wrt. distance to goal

Localization: knowing the robot's location, at least wrt. distance to goal

What do graph search algorithms assume that BugX does not?

Localization: knowing the robot's location, at least wrt. distance to goal

What do graph search algorithms assume that BugX does not?

A graph of valid locations that can be traversed

Localization: knowing the robot's location, at least wrt. distance to goal

What do graph search algorithms assume that BugX does not?

A graph of valid locations that can be traversed

Suppose we have or can build such a graph...

Next Lecture Planning - III - Configuration Space

Figure - https://www.youtube.com/watch?v=Z3yQHYNXPws

