

Course Logistics

- Quiz 3 was posted yesterday and was due at noon today.
- Project 2 was posted on 02/05 and will be due 02/12 (tonight).
- Project 3 will be posted today (02/12) and will be due on 02/19.
 - An announcement will be made when we release it.
- Any questions on the late day tokens?

Previously

Today's lecture

CSCI 5551 - Spring 2025

- Proportional-Integral-Derivative Control
- Sum of different responses to error
- Based on the mass spring and damper system
- Feedback correction based on the current error, past error, and predicted future error

Error signal:

$$e(t) = x_{desired}(t) - x(t)$$

Control signal:

$$u(t) = K_{p}e(t) + K_{i}\int_{0}^{t} e(\alpha)d\alpha + K_{a}$$

$$P \quad K_{p}e(t) \quad I \quad K_{i}\int_{0}^{t} e(\alpha)d\alpha \quad D$$

$$Current \quad Past \quad Fut$$

cure

CSCI 5551 - Spring 2025

Consider PID wrt. state over time

CSCI 5551 - Spring 2025

Desired State (Setpoint)

X_t Current State

CSCI 5551 - Spring 2025

Slide borrowed from Michigan Robotics autorob.org

Time

Desired State (Setpoint)

Integral term adds force until error is zero

CSCI 5551 - Spring 2025

Slide borrowed from Michigan Robotics autorob.org

Time

PID Convergence 1.4

CSCI 5551 - Spring 2025

PID as a spring and damper model

CSCI 5551 - Spring 2025

Error signal:

$$e(t) = x_{desired}(t) - x(t)$$

Control signal:

$$u(t) = K_{p}e(t) + K_{i}\int_{0}^{t} e(\alpha)d\alpha + K_{a}$$

$$P \quad K_{p}e(t) \quad I \quad K_{i}\int_{0}^{t} e(\alpha)d\alpha \quad D$$

$$Current \quad Past \quad Fut$$

ure

CSCI 5551 - Spring 2025

Hooke's Law

• Describes motion of mass spring damper system as

F = -kx

Robert Hooke (1635 - 1703)

CSCI 5551 - Spring 2025

Hooke's Law

Describes motion of mass spring damper system as

CSCI 5551 - Spring 2025

Error signal:

$$e(t) = x_{desired}(t) - x(t)$$

Control signal:

$$u(t) = K_p e(t) + K_i \int_0^t e(\alpha) d\alpha + K_d$$

$$P \quad K_r e(t) \quad I \quad K_i \int_0^t e(\alpha) d\alpha \quad D$$

$$Current \quad Past \quad Fut$$

cure

CSCI 5551 - Spring 2025

Spring and Damper $K_{^d} rac{de(t)}{dt}$. $K_{p}e(t)$ D $F = -kx + -b\dot{x}$ assuming constant set point, velocity is derivative of error

add damper to release energy

CSCI 5551 - Spring 2025

Error signal:

$$e(t) = x_{desired}(t) - x(t)$$

Control signal:

$$u(t) = K_p e(t) + K_i \int_0^t e(\alpha) d\alpha + K_d$$

$$P \quad K_r e(t) \quad I \quad K_i \int_0^t e(\alpha) d\alpha \quad D$$

$$Current \quad Past \quad Fut$$

ure

CSCI 5551 - Spring 2025

Steady state error

- Steady state error occurs when the system rests at equilibrium before reaching desired state
- Cause could be an significant external force, weak motor, low proportional gain, etc.
- PID integral term compensates by accumulating and acting against error toward convergence

CSCI 5551 - Spring 2025

15

- Implementing PID algorithm will not necessarily produce a good controller
- Selection of the gains will greatly affect the performance of the controller

$$u(t) = K_p e(t) + K_i \int_0^t e(\alpha) d\alpha + K_d \frac{d}{dt} e(t)$$

$$P \quad K_p e(t) \quad I \quad K_i \int_0^t e(\alpha) d\alpha \quad D \quad K_d \frac{de(t)}{dt}$$

Gain tuning

• PID gain tuning is more of an art than a science. Choose carefully.

CSCI 5551 - Spring 2025

Some tips to PID tuning (take it or leave it)

- Start all gains at zero : $K_i = K_d = K_p = 0$
- Increase spring gain K_p until system roughly meets desired state
 - overshooting and oscillation about the desired state can be expected
- Increase damping gain K_d until the system is consistently stable
 - damping stabilizes motion, but system will have steady state error
- Increase integral gain K_i until the system consistently reaches desired
- Refine gains as needed to improve performance; Test from different states

Inverse Kinematics

CSCI 5551 - Spring 2025

Robot Kinematics

Goal: Given the structure of a robot arm, compute

- Forward kinematics: infer the pose of the end-effector, given the state of each joint

- Inverse kinematics: inferring the joint states necessary to reach a desired end-effector pose.

CSCI 5551 - Spring 2025

Forward kinematics: many-to-one mapping of robot configuration to reachable workspace endeffector poses

CSCI 5551 - Spring 2025

Inverse kinematics: one-to-many mapping of workspace endeffector pose to robot configuration

CSCI 5551 - Spring 2025

Inverse kinematics: how to solve for $q = \{\theta_1, \dots, \theta_N\}$ from T_0^N ?

CSCI 5551 - Spring 2025

Inverse Kinematics: 2 possibilites

- **Closed-form solution**: geometrically infer satisfying configuration
 - Speed: solution often computed in constant time
 - Predictability: solution is selected in a consistent manner
- Solve by optimization: minimize error of endeffector to desired pose
 - often some form of Gradient Descent (a la Jacobian Transpose)
 - Generality: same solver can be used for many different robots

Let's define IK starting from FK

CSCI 5551 - Spring 2025

Consider a planar 3-link arm as an example

CSCI 5551 - Spring 2025

with 2 shown links with length α_i , ...

CSCI 5551 - Spring 2025

with 3 links, 2 joints (0, 1), ...

CSCI 5551 - Spring 2025

with 3 links, 2 joints (0, 1), coordinate frames at

CSCI 5551 - Spring 2025

CSCI 5551 - Spring 2025

and N+1 link frames

CSCI 5551 - Spring 2025

Consider a planar 3-link arm as an example Frame 2 is the "tool frame"

Robot **endeffector** is the gripper pose in world frame

 y_0

Endeffector pose has position **o**⁰_N and can consider orientation \mathbf{R}^{0}_{N}

Endeffector defines "tool frame" with transform $H=T^{0}N$ to world frame 7/7/7/

CSCI 5551 - Spring 2025

Endeffector axes

CSCI 5551 - Spring 2025

What are end-effectors?

https://www.tthk.ee/inlearcs/7-robot-end-of-arm-tooling/

What are end-effectors?

Shi, Haochen, Huazhe Xu, Samuel Clarke, Yunzhu Li, and Jiajun Wu. "RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with Diverse Tools." arXiv preprint arXiv:2306.14447 (2023). https://hshi74.github.io/robocook/

https://www.tthk.ee/inlearcs/7-robot-end-of-arm-tooling/

CSCI 5551 - Spring 2025

Forward kinematics: "given configuration, compute endeffector" y_2 x_2 y_0 p^0 y_1 Robot configuration x_1 defined by DoF state 2 angular DOFs $q = [\theta_1, \theta_2]$ x_0 7////

CSCI 5551 - Spring 2025

Forward kinematics: $[\mathbf{o}_{N}, \mathbf{R}_{N}] = f(\mathbf{q})$ y_0 y_1 Robot configuration defined by DoF state 2 angular DOFs $q = [\theta_1, \theta_2]$ 11///

CSCI 5551 - Spring 2025

Forward kinematics: $[\mathbf{0}^{0}N, \mathbf{R}^{0}N] = f(\mathbf{q})$

What are the elements of this matrix?

 $\mathbf{R}_N^0 =$

$$d_2^0 =$$

$$\mathbf{o}_N^0 = \begin{bmatrix} W^t \end{bmatrix}$$

Start with:

- $= R_1 0 d_2 1 + d_1 0$
- substitute in variables then perform operations: $\begin{bmatrix} \cos\theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{bmatrix} \begin{bmatrix} \alpha_2 \cos\theta_2 \\ \alpha_2 \sin\theta_2 \end{bmatrix} + \begin{bmatrix} \alpha_1 \cos\theta_1 \\ \alpha_1 \sin\theta_1 \end{bmatrix}$
 - then substitute trig identities cos(x + y) = cos(x)cos(y) - sin(x)sin(y)sin(x + y) = sin(x)cos(y) + cos(x)sin(y)to get:

nat are the elements of this vector?

CSCI 5551 - Spring 2025

Forward kinematics: $[\mathbf{O}_{N}, \mathbf{R}_{N}] =$

$$f(\mathbf{q})$$

$$y_{2}$$

$$p^{0}$$

$$p^{0} = f(\theta_{1}, \theta_{2})$$

$$p^{0} = T_{1}^{0}T_{2}^{1}p^{2}$$

$$p^{0} = T_{2}^{0}p^{2}$$

$$p^{0} = T_{2}^{0}(\theta_{1}, \theta_{2})p$$

$$p^{0} = T_{1}^{0}(\theta_{1}, \theta_{2})p$$

$$p^{0} = T_{1}^{0}(\theta_{1}, \theta_{2})p$$

$$p^{0} = T_{1}^{0}(\theta_{1}, \theta_{2})p$$

CSCI 5551 - Spring 2025

Inverse kinematics: "given endeffector, compute configuration" y_2 x_2 y_0 y_1 x_1

1/1//

CSCI 5551 - Spring 2025

Inverse kinematics: $q = f^{-1}([o_N, R_N])$ y_0 y_1 11/1/

CSCI 5551 - Spring 2025

Inverse kinematics: $\mathbf{q} = f^{-1}([\mathbf{o}_{N_1} \mathbf{R}_{N_1}])$ $[\theta_{1,\theta_2}] = f^{-1}(\mathbf{x},\mathbf{y})$ y_0 y_1

CSCI 5551 - Spring 2025

Inverse kinematics: $\mathbf{q} = f^{-1}([\mathbf{o}_N, \mathbf{R}_N])$ $[\theta_1, \theta_2] = f^{-1}(\mathbf{x}, \mathbf{y})$ y_0 y_1 /////

CSCI 5551 - Spring 2025

inverse kinematics: $(\theta_1, \theta_2) = f^{-1}(x, y)$

CSCI 5551 - Spring 2025

elbow down

CSCI 5551 - Spring 2025

when is there one solution?

elbow down

CSCI 5551 - Spring 2025

when is there no solution?

CSCI 5551 - Spring 2025

when is there no

CSCI 5551 - Spring 2025

:=: Try this http://scratch.mit.edu/projects/10607750/ Instructions - Steer blue arm using up/down keys - Steer green arm using right/left keys - Steer orange arm using A/D keys Touch the blue dot with the tip of the arm as many times as you can in 60 seconds!

Touch this to start!

CSCI 5551 - Spring 2025

Inverse Kinematics: 2D

 $T_n^0(q_1,\ldots,q_n) = H$

CSCI 5551 - Spring 2025

Inverse Kinematics: 2D

Configuration $T_n^0(q_1,\ldots,q_n) = H$ endeffector frame to world frame $H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix}$

 $H = \begin{bmatrix} r_{11} & r_{12} & o_x \\ r_{21} & r_{22} & o_y \\ 0 & 0 & 1 \end{bmatrix}$

CSCI 5551 - Spring 2025

Inverse Kinematics: 2D

Configuration $T_n^0(q_1,\ldots,q_n) = H$ Transform from endeffector

$$H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix}$$

Closed form solution $H = \begin{bmatrix} r_{11} & r_{12} & o_x \\ r_{21} & r_{22} & o_y \\ 0 & 0 & 1 \end{bmatrix}$

CSCI 5551 - Spring 2025

Closed form solution

$$\pi - \theta_2 = \cos^{-1}(\frac{\alpha_1^2 + \alpha_2^2 - x^2 - y^2}{2\alpha_1 \alpha_2})$$
 $\theta_1 = \tan^{-1}(y/x) - \tan^{-1}\left(\frac{\alpha_2 \sin \theta_2}{\alpha_1 + \alpha_2 \cos \theta_2}\right)$
 $H = \begin{bmatrix} r_{11} & r_{12} & o_x \\ r_{21} & r_{22} & o_y \\ 0 & 0 & 1 \end{bmatrix}$

Inverse Kinematics: 2D

$$\ldots, q_n) = H$$
 Transform from $from H$ endeffector

$$H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix}$$

CSCI 5551 - Spring 2025

Inverse Kinematics: 3D

Configuration $T_n^0(q_1, \ldots, q_n) = H$ Transform from endeffector

$$H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix}$$

CSCI 5551 - Spring 2025

Inverse Kinematics: 3D

Configuration $T_n^0(q_1, \ldots, q_n) = H$ Transform from endeffector

$$H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix}$$

 $H = \begin{bmatrix} r_{11} & r_{12} & r_{13} & o_x \\ r_{21} & r_{22} & r_{23} & o_y \\ r_{31} & r_{32} & r_{33} & o_z \end{bmatrix}$ Le BOF position and J orientation of endeffector

CSCI 5551 - Spring 2025

Stanford Manipulator

$$c_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] - s_1(s_4c_5c_6 + c_4s_6) = r$$

$$s_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] + c_1(s_4c_5c_6 + c_4s_6) = r$$

$$-s_2(c_4c_5c_6 - s_4s_6) - c_2s_5s_6 = r$$

$$-c_2(c_4c_5s_6 + s_4c_6) + s_2s_5s_6] - s_1(-s_4c_5s_6 + c_4c_6) = r$$

$$-c_2(c_4c_5s_6 + s_4c_6) + s_2s_5s_6] + c_1(-s_4c_5s_6 + c_4c_6) = r$$

$$s_2(c_4c_5s_6 + s_4c_6) + c_2s_5s_6 = i$$

$$c_1(c_2c_4s_5 + s_2c_5) - s_1s_4s_5 = r$$

$$s_1(c_2c_4s_5 + s_2c_5) + c_1s_4s_5 = r$$

$$-s_2c_4s_5+c_2c_5 = r$$

$$c_1s_2d_3 - s_1d_2 + d_6(c_1c_2c_4s_5 + c_1c_5s_2 - s_1s_4s_5) = c_1s_1s_2d_3 - s_1s_2d_3 - s_1s_2d_$$

- $s_1s_2d_3 + c_1d_2 + d_6(c_1s_4s_5 + c_2c_4s_1s_5 + c_5s_1s_2)$
 - $c_2d_3 + d_6(c_2c_5 c_4s_2s_5)$ = o_z .

Slide borrowed from Michigan Robotics autorob.org

 r_{11} 21**^**31 r_{12} r_{22} r_{32} r_{13} r_{23} r_{33} o_x o_y 5

Detect, pick, and place each character A student project Michigan

CSCI 5551 - Spring 2025

RexArm from the above videos

Find: configuration $\boldsymbol{q} = [\boldsymbol{\theta}_1 \ \boldsymbol{\theta}_2 \ \boldsymbol{\theta}_3 \ \boldsymbol{\theta}_4]$ as robot joint angles

CSCI 5551 - Spring 2025

link lengths (L₄,L₃,L₂,L₁)

Find: configuration $\boldsymbol{q} = [\boldsymbol{\theta}_1 \ \boldsymbol{\theta}_2 \ \boldsymbol{\theta}_3 \ \boldsymbol{\theta}_4]$ as robot joint angles

元。

10,

171

03

G=∆r

1 1 2 1 1

12

5

CSCI 5551 - Spring 2025

do al

- -

Slide borrowed from Michigan Robotics autorob.org

link lengths (L₄,L₃,L₂,L₁)

endeffector position $[x_g y_g z_g]$ wrt. base frame

Zg

Find: configuration $\boldsymbol{q} = [\boldsymbol{\theta}_1 \ \boldsymbol{\theta}_2 \ \boldsymbol{\theta}_3 \ \boldsymbol{\theta}_4]$ as robot joint angles

无。

,10,

111

03

G=∆r

1:

rg.

- 1 1 2 1 1

CSCI 5551 - Spring 2025

Given:

link lengths (L_4, L_3, L_2, L_1)

endeffector orientation ϕ as angle wrt. plane centered at **0**₃ and parallel to ground plane

endeffector position $[x_g y_g z_g]$ wrt. base frame

Find: configuration $\boldsymbol{q} = [\boldsymbol{\theta}_1 \ \boldsymbol{\theta}_2 \ \boldsymbol{\theta}_3 \ \boldsymbol{\theta}_4]$ as robot joint angles

え

0

CSCI 5551 - Spring 2025

rg.

Slide borrowed from Michigan Robotics autorob.org

11

G= ≤ Ar

1 1

solve for θ_1

CSCI 5551 - Spring 2025

solve for θ_1 Q= atan2 (yq, Xg

solve for θ_3

CSCI 5551 - Spring 2025

Decoupling: separate endeffector from rest of the robot at last joint

solve for θ_3

CSCI 5551 - Spring 2025

Decoupling: separate endeffector from rest of the robot at last joint

solve for θ_3

CSCI 5551 - Spring 2025

Decoupling: separate endeffector from rest of the robot at last joint

and joint 1 from rest of robot

solve for θ_1 Q= atan2 (yq, Xg S. 0 ZOK solve for θ_3 C 02 Zo. 03

03

solve for θ_1 Q= atan2 (yg, Xg) solve for θ_3 Φ $\cos \Theta_3 = \frac{\Delta 2 + \Delta r^2 - L_2^2 - L_3^2}{2L_2L_3}$ solver for θ_2 $\Theta_2 =) \frac{\pi}{2} - \beta = \psi$ if $\Theta_2 \ge 0$ 'Elbow up' 1-B+4 + 03<0 "Elbow-down" solve θ_4 03

solve for θ_1 Q= atan2 (yg, Xg) solve for θ_3 $\cos \Theta_3 = \frac{\Delta 2 + \Delta r^2 - L_2 - L_3^2}{2L_2L_3}$ solver for θ_2 $\Theta_2 =)\frac{\pi}{2} - \beta = \psi$ if $\Theta_2 \ge 0$ 'Elbow up' 12-B+4 + 03<0 "Elbow-down" Equilvalence relation for for θ_4 solve adding angles from

Why Closed Form?

- Advantages
 - <u>Speed</u>: IK solution computed in constant time
 - <u>Predictability</u>: consistency in selecting satisfying IK solution
- Disadvantage

• <u>Generality</u>: general form for arbitrary kinematics difficult to express

CSCI 5551 - Spring 2025

Inverse Kinematics: 2 possibilites

- **Closed-form solution**: geometrically infer satisfying configuration
 - Speed: solution often computed in constant time
 - Predictability: solution is selected in a consistent manner
- Solve by optimization: minimize error of endeffector to desired pose
 - often some form of Gradient Descent (a la Jacobian Transpose)
 - Generality: same solver can be used for many different robots

Next lecture: Inverse Kinematics continued ...

CSCI 5551 - Spring 2025

https://en.wikipedia.org/wiki/Canadarm

CSCI 5551 - Spring 2025

