
CSCI 5551 - Spring 2025

Lecture 02
Planning - I - Path Planning

CSCI 5551 - Spring 2025

Course Logistics
• Quiz 1 will be released tomorrow evening 6pm on Gradescope and will be due on 01/29 12pm (before the Wed Lecture)

• Quiz will be released every week at 6pm on Tuesdays and will be due at 12pm on Wednesdays.

• You are allowed to refer the course material to answer them.

• You can discuss the quiz on Ed discussion after the due time.

• Each Quiz will have 2 questions for 0.5 pts each.

• They are designed to be answered in less than 5 mins each.

• When you start the quiz, you will have 20 mins to answer them.

• Best 10 quizzes out of 12 will be used for final grades.

• Use of AI tools is NOT PERMITTED.

• Project 1 will be posted on 01/29 and will be due 02/05

• Start early!

• EdStem - I will add all the students to the discussion board by today evening and send an announcement.

• Note: Starting tomorrow, all the announcements will be via Ed and NOT Canvas

2

CSCI 5551 - Spring 2025

Path Planning

CSCI 5551 - Spring 2025 4

CMDragons 2015 Pass-ahead Goal
Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 5

CMDragons 2015 slow-motion multi-pass goal
Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 6

CMDragons 2015 slow-motion multi-pass goal
Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 7

http://www.cs.cmu.edu/~coral/projects/cobot/

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 8

http://www.cs.cmu.edu/~coral/projects/cobot/

over 1,000km navigated
around CMU

https://www.joydeepb.com/research.html
Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 9

https://www.joydeepb.com/research.html

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 10

Localization and Mapping - Alphonsus Adu-Bredu - https://youtu.be/wH0QhWgtmuA
Slide borrowed from Michigan Robotics autorob.org

https://youtu.be/wH0QhWgtmuA

CSCI 5551 - Spring 2025 11

Autonomous Navigation - Alphonsus Adu-Bredu - https://youtu.be/wH0QhWgtmuA
Slide borrowed from Michigan Robotics autorob.org

https://youtu.be/wH0QhWgtmuA

CSCI 5551 - Spring 2025

How do we get from A to B?

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 13

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Consider all possible poses as uniformly distributed array of cells in a graph

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 14

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Consider all possible poses as uniformly distributed array of cells in a graph

Edges connect adjacent cells, weighted by distance

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 15

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Consider all possible poses as uniformly distributed array of cells in a graph

Edges connect adjacent cells, weighted by distance

Cells are invalid where its associated robot pose results in a collision

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 16

Consider all possible poses as uniformly distributed array of cells in a graph

Edges connect adjacent cells, weighted by distance

Cells are invalid where its associated robot pose results in a collision

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

How to find a valid path in this graph?

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Approaches to motion planning

• Bug algorithms: Bug[0-2], Tangent Bug

• Graph Search (fixed graph)

• Depth-first, Breadth-first, Dijkstra, A-star, Greedy best-first

• Sampling-based Search (build graph):

• Probabilistic Road Maps, Rapidly-exploring Random Trees

• Optimization (local search):

• Gradient descent, potential fields, Wavefront

17Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Consider a simple search graph

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Consider a simple search graph

19

start

goal
Consider each possible robot pose as a
node Vi in a graph G(V,E)

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Consider each possible robot pose as a
node Vi in a graph G(V,E)

Graph edges E connect poses that can be
reliably moved between without collision

Consider a simple search graph

20

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Consider each possible robot pose as a
node Vi in a graph G(V,E)

Graph edges E connect poses that can be
reliably moved between without collision

Edges have a cost for traversal

Consider a simple search graph

21

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Consider each possible robot pose as a
node Vi in a graph G(V,E)

Graph edges E connect poses that can be
reliably moved between without collision

Edges have a cost for traversal

Each node maintains the distance
traveled from start as a scalar cost

Consider a simple search graph

22

start

goal

∞

∞

∞

∞
∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

∞

0
Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

9

10
0

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

10

start

goal

0

6

5

7

5

6

9

10
7

10

Which route is best to optimize distance
traveled from start?

Which parent node should be used to
specify route between goal and start?

Consider a simple search graph

23

Consider each possible robot pose as a
node Vi in a graph G(V,E)

Graph edges E connect poses that can be
reliably moved between without collision

Edges have a cost for traversal

Each node maintains the distance
traveled from start as a scalar cost

Each node has a parent node that
specifies its route to the start node start

goal

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

∞

0

0+5

5+1

6+3

5+2
7+3

6+4

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

9

10
0

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

10

start

goal

0

6

5

7

Path Planning as Graph Search

24

Which route is best to optimize distance
traveled from start?

Which parent node should be used to
specify route between goal and start?

We will use a single algorithm template
for our graph search computation

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Depth-first search intuition and
walkthrough

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

26Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Goal
location

Start
location

Depth-first search

27

Start pose of the robot is a 2D vector qinit and
the goal pose is qgoal in world coordinates

qinit

qgoal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

28

Assume G is a 2D array of square cells with
• row and column indices i,j
• ϵ-length sides
• 2D center location (in world coordinates)

qinit

qgoal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

29

What happens when the robot pose is
not directly on the cell center?

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

x

Graph Accessibility

30

What happens when the robot pose is
not directly on the cell center?

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

x

q

Graph Accessibility

31

A graph node Gi,j represents a region of
space contained by its cell

Start node: the robot accesses graph G
at the cell that contains location qinit

Goal node: the robot departs graph G at
the cell that contains location qgoal

ϵ/2

ϵ/2

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Goal node

Start node

Depth-first search

32Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Goal node

Start node

Depth-first search

33

Start node is “visited” first ;
it is assigned zero distance and no parent

0

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Goal node

Start node

Depth-first search

34

Add neighbor nodes to “visit list”

0

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Goal
location

Start
location

Depth-first search

35

Add neighbor nodes to “visit list”

2 1

note the order which nodes are added
(ESWN for this example)

0

3
2

1
4 3

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

36

2

3

1

For each neighbor:
if the currently visited node becomes the parent,

will the path distance back to start be shorter?
if yes, store this parent and distance at the neighbor node

1 1

1

0∞ ∞

∞

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

37

2

3

1

assuming distance ϵ = 1
between node locations ϵ

ϵ

For each neighbor:
if the currently visited node becomes the parent,

will the path distance back to start be shorter?
if yes, store this parent and distance at the neighbor node

∞ ∞

∞

1 1

1

0

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

38

2

3

1
1 1

1

Visit a neighbor based on order added to visit list
(Most recent for DFS)

0

1

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

39

2

X

1
01 1

1Mark this node as visited 1

Visit a neighbor based on order added to visit list
(Most recent for DFS)

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

40

2

X

1
01 1

11

Repeat:
Add neighbor nodes to “visit list”

and note order added

4 3

5

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

41

2

X

1
01 1

1
4 3

5

Repeat:
For each neighbor:

 choose parent node that minimizes path distance back to start
AND store this distance (ϵ +) at the neighbor node

1

1

2

22

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

42

2

X

1
01 1

1
4 3

X

2 2

Repeat:
Visit a neighbor based on order added to visit list

and mark as visited

1

2

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

43

2

X

1
01 1

1
4 3

2 2

Continue to next visit iteration

1

2
X6 5

7

3 3

3

2

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

44

2

X

1
01 1

1
4 3

2 21

2
XX6 5

7

3 2

3

2

if neighbor location is in collision,
do not add to visit list

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

45

2

X

1
01 1

1
4 3

2 21

2
XX6 5

3 22

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

46

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 22

continue to next iteration

6
4 3

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

47

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 22

2

2

6
4

2

3

do not add neighbors if they are in collision
or have already been visited or queued

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

48

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 22

continue to next iteration

X
4 3

6
5

7
5 4

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

49

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 22

continue to next iteration

X
4 3

6
5

X
5 4

7
6

8
6 5

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

50

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 22

continue to next iteration

X
4 3

6
5

7
6

8
7

X
5 4

X
6 5

9
7 6

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

51

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 22

continue to next iteration

6
5

7
6

8
7

X
4 3

X
5 4

X
6 57 6

X10

9

11

8

8

8

7

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

52

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 22

continue to next iteration

X
4 3

6
5

7
6

8
7

X
5 4

X
6 57 6

X10

9

X

8

8

8

7

11

12

9

9

8

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

53

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 22

continue to next iteration

X
4 3

6
5

7
6

8
7

X
5 4

X
6 57 6

X10

9

X

8

8

8

7

11

X

9

9

8

12

13

10

10

9

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

54

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 22
X

4 3

goal node now in visit list
and will be visited next

6
5

X
5 4

7
6

8
7

X
6 57 6

X10

9

X

8

8

8

7

11

X

9

9

8

12

X

10

10

9

13
11 10

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

55

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 22
X

4 3

Path found when goal node visited

6
5

X
5 4

7
6

8
7

X
6 57 6

X10

9

X

8

8

8

7

11

X

9

9

8

12

X

10

10

9

X
11 1011

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Let’s turn this idea into code

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

57

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distStraightLine(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distStraightLine(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance start

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

goal∞

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

58

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distStraightLine(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distStraightLine(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

Initialization
- each node has a distance and a parent
 distance: distance along route from start
 parent: routing from node to start

- visit a chosen start node first
- all other nodes are unvisited and have high distance

start

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

goal∞

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

59

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distStraightLine(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distStraightLine(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

Main Loop
- visits every node to compute its distance and parent
- at each iteration:

- select the node to visit based on its priority
- remove current node from visit_list

start

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

goal∞

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

60

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distStraightLine(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distStraightLine(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance start

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

goal∞

For each iteration on a single node
- add all unvisited neighbors of the node to the visit list
- assign node as a parent to a neighbor, if it creates a shorter route

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

61

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance start

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

goal∞

Output the resulting routing and path distance at each node

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Depth-first search

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

63

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

64

Depth-first search
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_stack ← start_node

while visit_stack != empty && current_node != goal
 cur_node ← pop(visit_stack)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 push(nbr to visit_stack)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

Priority:
Most recent

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Stack data structure

65

A stack is a “last in, first out” (or LIFO) structure, with two operations:

push: to add an element to the top of the stack

pop: to remove and element from the top of the stack

Stack example for reversing
the order of six elements

Push
Push

Push
Push

Push

Pop
Pop

Pop
Pop

Pop

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 66Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Breadth-first search

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

68

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

69

Breadth-first search
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← dequeue(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

Priority:
Least recent

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Queue data structure

70

A queue is a “first in, first out” (or FIFO) structure, with two operations

enqueue: to add an element to the back of the stack

dequeue: to remove an element from the front of the stack

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 71Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Dijkstra’s algorithm

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

73

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

74

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

Priority:
Minimum route distance

from start

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

75

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

Dijkstra walkthrough

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

∞ > 0+5

∞ > 0+8current_node
Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

76

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

5

∞

∞

∞

∞

0 8

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

∞ > 5+1

8 > 5+2

∞ > 5+6

Dijkstra walkthrough

current_node

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

77

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

11

∞

∞

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal
∞ > 6+4

11 > 6+3

Dijkstra walkthrough

current_node

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

78

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

∞

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

∞ > 7+3

9 !> 7+3

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

79

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal
10 !> 9+5

10 !> 9+2
Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

80

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

10 !> 10+2
Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

81

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

Slide borrowed from Michigan Robotics autorob.org
empty queue

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

82

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

What will search with Dijkstra’s algorithm look like in this case?

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

83Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

What will search with Dijkstra’s algorithm look like in this case?

84Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

What will search with Dijkstra’s algorithm look like in this case?

85Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

What will search with Dijkstra’s algorithm look like in this case?

86

Dijkstra BFS

Why does their visit pattern look similar?
Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

A-star Algorithm

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 88

Hart, Nilsson, and Raphael

IEEE Transactions of System Science and Cybernetics, 4(2):100-107, 1968

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

“nice” recognizer�

state ← start

while state != success and state != error

token ← next character

switch (state)

case start

if token = “n” then state ← n_found

else state ← error

89

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

empty

queueSlide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 90

A-star shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while (visit_queue != empty) && current_node != goal
 cur_node ← dequeue(visit_queue, f_score)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 f_score ← distancenbr + line_distancenbr,goal

 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

empty

queueSlide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 91

A-star shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while (visit_queue != empty) && current_node != goal
 cur_node ← dequeue(visit_queue, f_score)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 f_score ← distancenbr + line_distancenbr,goal

 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

empty

queue

g_score: distance
along current path

back to start

h_score:

best possible
distance to goal

priority queue wrt. f_score
(implement min binary heap)

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

A-star shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while (visit_queue != empty) && current_node != goal
 cur_node ← dequeue(visit_queue, f_score)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 f_score ← distancenbr + line_distancenbr,goal

 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

empty

queue

g_score: distance
along current path

back to start

h_score:

best possible
distance to goal

priority queue wrt. f_score
(implement min binary heap)

Why is A-star advantageous?

92Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 93Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 94

A-Star Dijkstra

How can A-star visit few nodes?
Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 95

A-Star uses an admissible heuristic to

estimate the cost to goal from a node

How can A-star visit few nodes?

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 96

The straight line h_score is an admissible and
consistent heuristic function.

A heuristic function is admissible if it never
overestimates the cost of reaching the goal.

Thus, h_score(x) is less than or equal to the
lowest possible cost from current location to
the goal.

A heuristic function is consistent if obeys the
triangle inequality

Thus, h_score(x) is less than or equal to
cost(x,action,x’) + h_score(x’)

g

h

true cost to goal
x

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025 97

https://www.cs.cmu.edu/~./awm/tutorials/astar08.pdf

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2025

Next Lecture

Linear Algebra Refresher

