

Course logistics

- Project 6 was posted on 03/20 and is due 04/01 (extended)
- Quiz 10 will be posted tomorrow noon and will be due of
- Project 7:
- Groups are formed.
- Two parts ($\sim 1 \mathrm{hr}$ each) - Instructions will be providec

1. Beginner's guide.
2. Real Robot Challenge.

- Scheduler is shared with the class.
- Please book your 2 1-hour sessions.
- Both the parts needs to be completed by 04/15.
- No TA OHs between 03/28 and 04/12.

- Karthik's OH will be available to discuss final projects.
- Chahyon and Xun's OH are cancelled between 03/28 and 04/12. They maybe available upon request for the UNITE team.
- Final Poster Session: 05/04/2024 - Saturday - 1pm - 4pm, Shepherd Labs 164 - mark your calendars

Final (Open) Project timeline

Final (Open) Project timeline

- Proposal Slides: (template will be provided)
- 1-4 Slides
- Title, Motivation, Input - Output, Evaluation, Deliverables, Timeline, Who is doing what?
- Where does your project stand not the 3 -axes (robots, objects, tasks)?
- Backup plan
- In-class proposal presentation (<8mins) :
- Teams will get feedback from the class
- Final video:

Final Project: 15%

- Project proposal slides + presentation: $\mathbf{2 \%}$
- Final project video: 5\%
- Poster presentation (evaluation by judges): 3\%
- Describing the project idea and the outcome.
- Poster presentation: (template will be provided)
- Presenting the project idea and the outcome to audience.

Final Project (Open ended)

Think along these axes to decide your final project!

Evaluating your implementation/system with quantitative results are VERY important!

Objects

Rearrangment of a set of objects

You may use:

- Kineval codebase
- Other sim environments (pybullet, Gazebo, DRAKE, Isaac sim)
- Turtlebot3 (provided only upon compelling proposal, only 5 are available)
- Other robots you may have access to.

Multi-robot task execution

Robots

Tasks

Continuing previous Lecture PF and localization

Particle Filter for Localization

Particle Filter

Particle_filter $\left(\mathcal{X}_{t-1}, u_{t}, z_{t}\right)$:
1: $\quad \overline{\mathcal{X}}_{t}=\mathcal{X}_{t}=\emptyset$
2: \quad for $j=1$ to J do
sample $x_{t}^{[j]} \sim \pi\left(x_{t}\right)$
$w_{t}^{[j]}=\frac{p\left(x_{t}^{[j]}\right)}{\pi\left(x_{t}^{[j]}\right)}$
$\overline{\mathcal{X}}_{t}=\overline{\mathcal{X}}_{t}+\left\langle x_{t}^{[j]}, w_{t}^{[j]}\right\rangle$
endfor
for $j=1$ to J do
draw $i \in 1, \ldots, J$ with probability $\propto w_{t}^{[i]}$ add $x_{t}^{[i]}$ to \mathcal{X}_{t}
endfor
return \mathcal{X}_{t}

Particle_filter $\left(\mathcal{X}_{t-1}, u_{t}, z_{t}\right)$:
1: $\quad \overline{\mathcal{X}}_{t}=\mathcal{X}_{t}=\emptyset$
2: \quad for $j=1$ to J do
3:
4:
5:
6:
7:
8:
9:
10:
11: return \mathcal{X}_{t}

Particle Filters

Sensor Information: Importance Sampling

Robot Motion

Sensor Information: Importance Sampling

Robot Motion

Why have constant number of particles through out?

Adaptive Sampling

为名

KLD-Sampling Sonar

Adapt number of particles on the fly based on statistical approximation measure

KLD-Sampling Laser

What if the localization is not about the robot?

Hierarchical Policy - Goal-Directed Low-Level Controllers

"Controlling Contact-Rich Manipulation Under Partial Observability"
Florian Wirnshofer (Siemens AG)*; Philipp Sebastian Schmitt (Siemens AG); Georg von Wichert (Siemens AG); Wolfram Burgard (University of Freiburg) RSS 2020

Zhiqiang Sui, Lingzhu Xiang, Odest Chadwicke Jenkins, Karthik Desingh,
"Goal-directed Robot Manipulation through Axiomatic Scene Estimation," IJRR 2017.

Physically Plausible Scene Estimation for Manipulation in Clutter

Karthik Desingh ${ }^{1}$, Odest Chadwicke Jenkins ${ }^{1}$, Lionel Reveret ${ }^{2}$, Zhiqiang Sui ${ }^{1}$
${ }^{1}$ University of Michigan, Ann Arbor, USA ${ }^{2}$ INRIA Rhône-Alpes, Saint Ismier, France

Raw Object Detection

Retrognizéd @lbjectßaritłBebisés

Zhen Zeng, Adrian Röfer, Odest Chadwicke Jenkins, "SLiM: Semantic Linking Maps for Active Visual Object Search.," ICRA 2020

Probabilistic Articulated Real-Time Tracking for Robot Manipulation. Garcia Cifuentes, Cristina and Jan Issac and Manuel Wüthrich and Stefan Schaal and Jeannette Bohg. IEEE Robotics and Automation Letters (RA-L) 2017.

Next Lecture: Mapping

