

Course Logistics

- Project 5 was posted on 02/28 and is due on 03/20 (extended by a week).
- Forming groups for P7 and Final Project
- We will send a google-form today for students to form groups of 4 .
- This will be due on 03/20.
- UNITE students will have different group formations 3 and 4. Karthik will reach out to them.
- Project 6 will be posted on $03 / 20$ and will be due on $03 / 27$.
- Quiz 7 will be posted tomorrow at noon and will be due on Wed at noon.

Updated accordingly

Course Logistics

- Project 5 was posted on 02/28 and
- Forming groups for P7 and Final Prc
- We will send a google-form today
- This will be due on 03/20.
- UNITE students will have differen out to them.
- Project 6 will be posted on 03/20 an
- Quiz 7 will be posted tomorrow at nc

Snapshot of Planned Schedule

CSCI5551-Spring-24-Calendar : Sheet1					
Lec \#	Date	Topic	Project Announcement	Project Due	Pre-class Quiz
1	01/17	Introduction			
2	01/22	Planning I - Path Planning			
3	01/24	Linear Algebra Refresher	P1: JS, BFS, DFS		Q1
4	01/29	Representations I- Transformations			
5	01/31	Representations II - Rotations - Quaternions	P2: Forward Kinematics	P1: Due	Q2
6	02/05	Manipulation I- Forward Kinematics			
7	02/07	Manipulation II - Inverse Kinematics	P3: Robot Dance	P2: Due	Q3
8	02/12	Manipulation III - Inverse Kinematics			
9	02/14	Manipulation - New Frontiers	P4: Inverse Kinematics	P3: Due (extended to 02/15)	Q4
10	02/19	Planning II - Bug Algorithms			
11	02/21	Planning III - Configuration Space			Q5
12	02/26	Planning IV - Sampling-based Planning			
13	02/28	Planning V - Collision Detection	P5: Planning	P4: Due	Q6
14	03/04	Spring Break			
15	03/06	Spring Break			
16	03/11	Planning VI - Potential Fields	Forming groups for P7 and FP		
17	03/13	Motion Control			Q7
18	03/18	Mobile Robotics I- Probability			
19	03/20	Mobile Robotics II - Sensor and Motion Models	P6: Mobile Manipulation	P5: Due	Q8
20	03/25	Mobile Robotics III - Kalman	FP Proposals Request		
21	03/27	Mobile Robotics IV - Localization	P7: Real Robot Challenge	P6: Due	Q9
22	04/01	Mobile Robotics V - Localization			
23	04/03	Mobile Robotics VI - Mapping			Q10
24	04/08	Mobile Robotics VII - SLAM		FP Proposals Due	
25	04/10	Open Ended Final Project Pitches			Q11
26	04/15	Open Ended Final Project Pitches			
27	04/17	Open Ended Final Project Pitches		P7: Due	Q12
28	04/22	Guest Lectures / Extra office hours			
29	04/24	Guest Lectures / Extra office hours			Extra Q13
30	04/29	Guest Lectures / Extra office hours			
31	05/01	Guest Lectures / Extra office hours		FP Posters Due	
32	05/06	Poster Day		FP Videos Due	

RRT Algorithm

RRT Algorithm

Extend graph towards a random configuration and repeat

```
BUILD_RRT( }\mp@subsup{q}{\mathrm{ init }}{}
    T.init (qinit ;
    for }k=1\mathrm{ to }K\mathrm{ do
            q}\mp@subsup{q}{\mathrm{ rand }}{}\leftarrow\mathrm{ RANDOM_CONFIG();
            EXTEND( }\mathcal{T},\mp@subsup{q}{rand}{})
    Return T
```


RRT Algorithm

Extend graph towards a random configuration and repeat

```
BUILD_RRT( }\mp@subsup{q}{\mathrm{ init }}{}
    T}\mathrm{ .init (q}\mp@subsup{q}{init}{*})
    for }k=1\mathrm{ to }K\mathrm{ do
            q
            EXTEND(\mathcal{T},\mp@subsup{q}{\mathrm{ rand }}{});
    Return T
```


$q_{\text {rand }}$

Extension Goal (randomly selected)

Figure 3: The EXTEND operation.

RRT Algorithm

Extend graph towards a random configuration and repeat

$q_{\text {rand }}$

Extension Goal (randomly selected)

Figure 3: The EXTEND operation.
Extend graph towards a random configuration

RRT Algorithm

Extend graph towards a random configuration and repeat

Extend graph towards a random configuration

Generate and test new configuration along vector in C-space from $\mathrm{q}_{\text {near }}$ to $\mathrm{q}_{\text {rand }}$

RRT* Algorithm

RRT*

```
Algorithm 6: RRT*
\(V \leftarrow\left\{x_{\text {init }}\right\} ; E \leftarrow \emptyset ;\)
for \(i=1, \ldots, n\) do
    \(x_{\text {rand }} \leftarrow\) SampleFree \({ }_{i}\);
        \(x_{\text {nearest }} \leftarrow \operatorname{Nearest}\left(G=(V, E), x_{\text {rand }}\right)\);
        \(x_{\text {new }} \leftarrow \operatorname{Steer}\left(x_{\text {nearest }}, x_{\text {rand }}\right)\);
        if ObtacleFree \(\left(x_{\text {nearest }}, x_{\text {new }}\right)\) then
            \(X_{\text {near }} \leftarrow \operatorname{Near}\left(G=(V, E), x_{\text {new }}, \min \left\{\gamma_{\text {RRT }^{*}}(\log (\operatorname{card}(V)) / \operatorname{card}(V))^{1 / d}, \eta\right\}\right) ;\)
            \(V \leftarrow V \cup\left\{x_{\text {new }}\right\} ;\)
            \(x_{\text {min }} \leftarrow x_{\text {nearest }} ; c_{\text {min }} \leftarrow \operatorname{Cost}\left(x_{\text {nearest }}\right)+c\left(\right.\) Line \(\left.\left(x_{\text {nearest }}, x_{\text {new }}\right)\right) ;\)
            foreach \(x_{\text {near }} \in X_{\text {near }}\) do // Connect along a minimum-cost path
                if CollisionFree \(\left(x_{\text {near }}, x_{\text {new }}\right) \wedge \operatorname{Cost}\left(x_{\text {near }}\right)+c\left(\right.\) Line \(\left.\left(x_{\text {near }}, x_{\text {new }}\right)\right)<c_{\text {min }}\) then
                \(x_{\text {min }} \leftarrow x_{\text {near }} ; c_{\text {min }} \leftarrow \operatorname{Cost}\left(x_{\text {near }}\right)+c\left(\right.\) Line \(\left.\left(x_{\text {near }}, x_{\text {new }}\right)\right)\)
            \(E \leftarrow E \cup\left\{\left(x_{\min }, x_{\text {new }}\right)\right\} ;\)
            foreach \(x_{\text {near }} \in X_{\text {near }}\) do // Rewire the tree
            if CollisionFree \(\left(x_{\text {new }}, x_{\text {near }}\right) \wedge \operatorname{Cost}\left(x_{\text {new }}\right)+c\left(\right.\) Line \(\left.\left(x_{\text {new }}, x_{\text {near }}\right)\right)<\operatorname{Cost}\left(x_{\text {near }}\right)\)
            then \(x_{\text {parent }} \leftarrow \operatorname{Parent}\left(x_{\text {near }}\right)\);
            \(E \leftarrow\left(E \backslash\left\{\left(x_{\text {parent }}, x_{\text {near }}\right)\right\}\right) \cup\left\{\left(x_{\text {new }}, x_{\text {near }}\right)\right\}\)
return \(G=(V, E)\);
```


RRT*

```
Algorithm 6: RRT*
\(V \leftarrow\left\{x_{\text {init }}\right\} ; E \leftarrow \emptyset ;\)
for \(i=1, \ldots, n\) do
\(x_{\text {rand }} \leftarrow\) SampleFree \(_{i}\);
    \(x_{\text {nearest }} \leftarrow \operatorname{Nearest}\left(G=(V, E), x_{\text {rand }}\right)\);
    \(x_{\text {new }} \leftarrow \operatorname{Steer}\left(x_{\text {nearest }}, x_{\text {rand }}\right)\)
    if ObtacleFree \(\left(x_{\text {nearest }}, x_{\text {new }}\right)\) then
    \(X_{\text {near }} \leftarrow \operatorname{Near}\left(G=(V, E), x_{\text {new }}, \min \left\{\gamma_{\mathrm{RRT}^{*}}(\log (\operatorname{card}(V)) / \operatorname{card}(V))^{1 / d}, \eta\right\}\right) ;\)
    \(V \leftarrow V \cup\left\{x_{\text {new }}\right\} ;\)
    \(x_{\text {min }} \leftarrow x_{\text {nearest }} ; c_{\text {min }} \leftarrow \operatorname{Cost}\left(x_{\text {nearest }}\right)+c\left(\operatorname{Line}\left(x_{\text {nearest }}, x_{\text {new }}\right)\right)\);
    foreach \(x_{\text {near }} \in X_{\text {near }}\) do // Connect along a minimum-cost path
            if CollisionFree \(\left(x_{\text {near }}, x_{\text {new }}\right) \wedge \operatorname{Cost}\left(x_{\text {near }}\right)+c\left(\right.\) Line \(\left.\left(x_{\text {near }}, x_{\text {new }}\right)\right)<c_{\text {min }}\) then
                \(x_{\text {min }} \leftarrow x_{\text {near }} ; c_{\text {min }} \leftarrow \operatorname{Cost}\left(x_{\text {near }}\right)+c\left(\right.\) Line \(\left.\left(x_{\text {near }}, x_{\text {new }}\right)\right)\)
            \(E \leftarrow E \cup\left\{\left(x_{\min }, x_{\text {new }}\right)\right\} ;\)
            foreach \(x_{\text {near }} \in X_{\text {near }}\) do
                // Rewire the tree
            if CollisionFree \(\left(x_{\text {new }}, x_{\text {near }}\right) \wedge \operatorname{Cost}\left(x_{\text {new }}\right)+c\left(\right.\) Line \(\left.\left(x_{\text {new }}, x_{\text {near }}\right)\right)<\operatorname{Cost}\left(x_{\text {near }}\right)\)
            then \(x_{\text {parent }} \leftarrow \operatorname{Parent}\left(x_{\text {near }}\right)\);
            \(E \leftarrow\left(E \backslash\left\{\left(x_{\text {parent }}, x_{\text {near }}\right)\right\}\right) \cup\left\{\left(x_{\text {new }}, x_{\text {near }}\right)\right\}\)
return \(G=(V, E)\);
```

FIND $x_{\text {new }}$

FIND neighbors to $x_{\text {new }}$ in G ADD $x_{\text {new }}$ to G

FIND edge to $x_{\text {new }}$ from neighbors with least cost ADD that to G

REWIRE the edges in the neighborhood if any least cost path exists from the root to the neighbors via $x_{\text {new }}$

RRT*

- Asymptotically optimal
- Main idea:
- Swap new point in as parent for nearby vertices who can be reached along shorter path through new point than through their original (current) parent

Demonstration - https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

RRT*

Source: Karaman and Frazzo

RRT*

RRT

RRT*

Source: Karaman and Frazzoli

Smoothing

Randomized motion planners tend to find not so great paths for execution: very jagged, often much longer than necessary.
\rightarrow In practice: do smoothing before using the path

- Shortcutting:
- along the found path, pick two vertices $\mathrm{x}_{\mathrm{t} 1}, \mathrm{x}_{\mathrm{t} 2}$ and try to connect them directly (skipping over all intermediate vertices)
- Nonlinear optimization for optimal control
- Allows to specify an objective function that includes smoothness in state, control, small control inputs, etc.

Approaches to motion planning

- Bug algorithms: Bug[0-2], Tangent Bug
- Graph Search (fixed graph)
- Depth-first, Breadth-first, Dijkstra, A-star, Greedy best-first
- Sampling-based Search (build graph):
- Probabilistic Road Maps, Rapidly-exploring Random Trees
- Optimization and local search:
- Gradient descent, Potential fields, Simulated annealing, Wavefront

Navigation (again)

Potential field

(like a game of "warmer-colder")

Potential field

(like a game of "warmer-colder")

goal:

volcanic

Potential field

(like a game of "warmer-colder")

goal:

volcanic

Potential field

(like a game of "warmer-colder")
goal: volcanic

Potential field

(like a game of "warmer-colder")

How do we define a potential field?

Potential Field

- A potential field is a differentiable function $U(q)$ that maps configurations to scalar "energy" value
- At any q, gradient $\nabla(q)$ is the vector that maximally increases U
- At goal $q_{\text {goal }}$, energy is minimized such that $\nabla\left(q_{\text {goal }}\right)=0$
- Navigation by descending field $-\nabla(q)$ to goal

Potential Energy

- Energy stored in a physical system
- Kinetic motion caused by system moving to lower energy state
- For objects acting only w.r.t. gravity
- potential_energy $=$ mass*height*gravity

Charged Particle Example

Positively charged particle follows potential energy to goal

Convergent Potentials

2D potential navigation

z: height indicates potential at location

top view

"Cone" Attractor

"Cone" Attractor

"Cone" Attractor

Start

side view

"Cone" Attractor

side view

Can we modulate the range of a potential field?

"Bowl" Attractor

$e^{-\frac{\left(x^{2}\right)}{10}}$

$$
\exp (-d / w)
$$

Can we combine multiple potentials?

Multiple potentials

- Output of potential field is a vector
- Combine multiple potentials through vector summation

$U(q)=\Sigma_{i} U_{i}(q)$

describe performance for this case

describe performance for this case

describe performance for this case
how do we deal with repellors?

add sum of repulsive potentials
$\mathrm{U}(\mathrm{q})=\mathrm{U}_{\text {attracts }}(\mathrm{q})+U_{\text {repellors }}(\mathrm{q})$

"Cone" Repellor

potential problems?

"Bowl" Repellor

top view
repellor should only have local influence, repelling only around boundary improves path

2 Obstacle example

attractor field repellor fields

combined potential gradient field

describe performance for this case with cone attractor to goal and bowl repellors with limited weight

describe performance for this case with cone attractor to goal and bowl repellors with limited weight

describe performance for this case with cone attractor to goal and bowl repellors with limited weight

describe performance for this case with cone attractor to goal and bowl repellors with limited weight

Local Minima

describe performance for this case

describe performance for this case

describe performance for this case

matlab example

pfield.m [llllllllllllll

matlab example

matlab example

How to address local minima?

How can we get out of local minima?

How can we get out of local minima?

Go back to planning.

Wavefront Planning

- Discretize potential field into grid
- Cells store cost to goal with respect to potential field
- Computed by Brushfire algorithm (essentially BFS)
- Grid search to find navigation path to goal

Obstacles: mark with 1


```
1718:97:56:16:17,18:18:20:21:2
```



```
16,15,14:13 1 1 16,17 1 1 1 1 2, 1, 1, l
15:14:13:42 1 1 15:16 1 1 1 1 20,21,22
14;13;12:111 1 1 14;'15 1 1 18:19:20;21;2!.
```



```
1110;9:8 1 1 1112,1314<15,16;1718,19:202122,
10:9:8:7 1 1 10:11:12:13:14:15:16:17:18:19:20:21:22:
```



```
9:8.7.6 1 1 9,y011:12:13:14:15,16:17:18:19:2022122 %
```



```
7;6;5;4;5;6;7;8;5;10:11;12;43,14;15,18:47;18:19;20:21,22:
```



```
7;8;5;4:5;6;7:8;9;10;11;12;13;14;15;16;17;18;10;2;21;2;
```


Once start reached, follow brushfire potential to goal

Example with Local Minima

Example with Local Minima

$18,17,16: 15: 16.170^{*} 19,20,21 ; 22,23,24: 25: 26,27,28,29$								
1716151415	1718							
16, 15.14 13 1	16, 17							
151413	$1{ }^{15}{ }^{\circ} 16^{\prime}$							
14:13:12: 11	114	1	1	1				28,27,2
13:12 1110	13.14.	16: 1	18	8:19	11			$126^{\prime \prime} 27.28{ }^{\prime \prime} 29$
12, $11: 10$	1 12, 13, 14	1516	17	718:	$19: 20$	1		124:25;26, 27,28
11:10.9 8	1 11\% 12	14			18:19			
109	10, 11, 12	13 14			17:18			$1 ; 22: 23 ; 24 ; 25,26$
988	9110	12.13			16:17			
8766	$8: 9$	11 12			15.16			9;20;21;22;23;24
65								319620 1222
615:434	61 71	9110		12'	13: 14	15	17	18:19120'21:22
$5: 4382$	51.6				12.13	14	16	¢1718'19'20゙2
6.5443	5; 6; 7							8:19:20, 21:22
								8!19!20; 21:22!23

18:17: 16: $15: 16: 17$								
1716.15 1415								
16.15,14:13								
15:14:13:12								
14:13:12: 11								
$13 \times 12{ }^{\circ} 11{ }^{\text {a }}$								
12, 11:9								
11.109 ${ }^{\circ}$								
10968								
$61513{ }^{5}$								

local minima avoided

19:18:17:16:17:18:19:20, $21: 22 \cdot 23,2425 \quad 26,27 \cdot 28: 39: 31 \cdot 32 \cdot 33 \cdot 34: 35$

 15:14:13:12 $1 \times 1.15 \cdot 16$
 (13*12 $11^{\prime \prime} 100_{0} 1$

 $9\left\{8^{\circ}, 77^{\circ} 6^{\circ}\right.$ 8:7 6 $76: 5: 5 \cdot 6,7,9 \cdot 10 \cdot 11 \cdot 13 \cdot 14 \cdot 15 \cdot 17 \cdot 181920$ H1

 $7: 6: 5: 4: 5: 7: 8: 9: 10^{\prime} 11: 12: 13: 14: 15: 16: 17118: 19: 20 ; 21: 22: 23$

Kineval wavefront planner

iteration: 1468 | visited: $0 \mid$ queue size: 296
path length: 61.00

』89』 80 』73 168 65

586
$4^{48} 3^{29} a^{27} 3^{76}$
185

』7 7^{768} ! 61 ! 56

』1
- 165 ॥ 36 | 49 』144

Planning Recap

Recap

Bug X

- Complete
- Non-optimal
- Planar

Subsumption and FSMs

- Fast but not adaptive
- Emphasis on good design

Potential Fields

- Complete in special cases
- Non-optimal
- General C-spaces
- Scales w/dimensionality

Grid Search/Wavefront

- Complete
- General C-spaces
- Limited dimensionality

Random walk

- Will find path eventually

Sampling roadmaps/RRT

- Probabilistically complete
- General
- Tractable (with good sampling)
- Scales w/dimensionality
- Not necessarily optimal

Next Lecture Motion Control

