Lecture 14 Planning - V - Potential Fields

Start

CSCI 5551 - Spring 2024

Course Logistics

- Project 5 was posted on 02/28 and is due on 03/20 (extended by a week). Forming groups for P7 and Final Project
 - We will send a google-form today for students to form groups of 4.
 - This will be due on 03/20.
 - UNITE students will have different group formations 3 and 4. Karthik will reach out to them.
- Project 6 will be posted on 03/20 and will be due on 03/27.
- Quiz 7 will be posted tomorrow at noon and will be due on Wed at noon.

Course Logistics

- Project 5 was posted on 02/28 and i
- Forming groups for P7 and Final Pre
 - We will send a google-form today
 - This will be due on 03/20.
 - UNITE students will have different out to them.
- Project 6 will be posted on 03/20 an
- Quiz 7 will be posted tomorrow at no

Updated accordingly

Snapshot of Planned Schedule

CSCI5551-Spring-24-Calendar : Sheet1

00010		pring-24-balendar . oneett			
Lec #	Date	Торіс	Project Announcement	Project Due	Pre-
1	01/17	Introduction			
2	01/22	Planning I - Path Planning			
3	01/24	Linear Algebra Refresher	P1: JS, BFS, DFS		C
4	01/29	Representations I - Transformations			
5	01/31	Representations II - Rotations - Quaternions	P2: Forward Kinematics	P1: Due	G
6	02/05	Manipulation I - Forward Kinematics			
7	02/07	Manipulation II - Inverse Kinematics	P3: Robot Dance	P2: Due	C
8	02/12	Manipulation III - Inverse Kinematics			
9	02/14	Manipulation - New Frontiers	P4: Inverse Kinematics	P3: Due (extended to 02/15)	G
10	02/19	Planning II - Bug Algorithms			
11	02/21	Planning III - Configuration Space			C
12	02/26	Planning IV - Sampling-based Planning			
13	02/28	Planning V - Collision Detection	P5: Planning	P4: Due	G
14	03/04	Spring Break			
15	03/06	Spring Break			
16	03/11	Planning VI - Potential Fields	Forming groups for P7 and FP		
17	03/13	Motion Control			C
18	03/18	Mobile Robotics I - Probability			
19	03/20	Mobile Robotics II - Sensor and Motion Models	P6: Mobile Manipulation	P5: Due	C
20	03/25	Mobile Robotics III - Kalman	FP Proposals Request		
21	03/27	Mobile Robotics IV - Localization	P7: Real Robot Challenge	P6: Due	G
22	04/01	Mobile Robotics V - Localization			
23	04/03	Mobile Robotics VI - Mapping			Q
24	04/08	Mobile Robotics VII - SLAM		FP Proposals Due	
25	04/10	Open Ended Final Project Pitches			Q
26	04/15	Open Ended Final Project Pitches			
27	04/17	Open Ended Final Project Pitches		P7: Due	Q
28	04/22	Guest Lectures / Extra office hours			
29	04/24	Guest Lectures / Extra office hours			Extra
30	04/29	Guest Lectures / Extra office hours			
31	05/01	Guest Lectures / Extra office hours		FP Posters Due	
32	05/06	Poster Day		FP Videos Due	

	- 11
	- 11
-class uiz	
luiz	
	1
ຊ1	
3(1	
22	
	1
23	
Q4	
25	1
3,0	
Q6	
27	
21	
28	
	1
29	
40	
- / 2	
210	
211	1
212	1
12	
a Q13	
	1

CSCI 5551 - Spring 2024

Extend graph towards a random configuration and repeat

```
BUILD_RRT(q_{init})
     T.init(q_{init});
 2
     for k = 1 to K do
 3
          q_{rand} \leftarrow \text{RANDOM\_CONFIG}();
          \text{EXTEND}(T, q_{rand});
     Return T
 5
```


[Kuffner, LaValle 2000]

Extend graph towards a random configuration and repeat

```
BUILD_RRT(q_{init})
      T.init(q_{init});
      for k = 1 to K do
           q_{rand} \leftarrow \text{RANDOM\_CONFIG}();
           \text{EXTEND}(\mathcal{T}, q_{rand});
      Return T
```


[Kuffner, LaValle 2000]

Figure 3: The EXTEND operation.

CSCI 5551 - Spring 2024

Extend graph towards a random configuration and repeat

Extend graph towards a random configuration

[Kuffner, LaValle 2000]

Figure 3: The EXTEND operation.

CSCI 5551 - Spring 2024

Extend graph towards a random configuration and repeat

[Kuffner, LaValle 2000]

CSCI 5551 - Spring 2024

Algorithm 6: RRT* 1 $V \leftarrow \{x_{\text{init}}\}; E \leftarrow \emptyset;$ **2** for i = 1, ..., n do $x_{\text{rand}} \leftarrow \text{SampleFree}_i;$ $\mathbf{3}$ $x_{\text{nearest}} \leftarrow \texttt{Nearest}(G = (V, E), x_{\text{rand}});$ $\mathbf{4}$ $x_{\text{new}} \leftarrow \texttt{Steer}(x_{\text{nearest}}, x_{\text{rand}});$ $\mathbf{5}$ if ObtacleFree $(x_{nearest}, x_{new})$ then 6 $X_{\text{near}} \leftarrow \text{Near}(G = (V, E), x_{\text{new}}, \min\{\gamma_{\text{RRT}^*}(\log(\text{car})\})\}$ $\mathbf{7}$ $V \leftarrow V \cup \{x_{\text{new}}\};$ 8 $x_{\min} \leftarrow x_{\text{nearest}}; c_{\min} \leftarrow \text{Cost}(x_{\text{nearest}}) + c(\text{Line}(x_{\text{nearest}}, x_{\text{new}}));$ 9 foreach $x_{near} \in X_{near}$ do 10if CollisionFree $(x_{near}, x_{new}) \wedge Cost(x_{near}) + c(Line(x_{near}, x_{new})) < c_{min}$ then $\mathbf{11}$ $x_{\min} \leftarrow x_{\text{near}}; c_{\min} \leftarrow \texttt{Cost}(x_{\text{near}}) + c(\texttt{Line}(x_{\text{near}}, x_{\text{new}}))$ $\mathbf{12}$ $E \leftarrow E \cup \{(x_{\min}, x_{new})\};$ $\mathbf{13}$ foreach $x_{near} \in X_{near}$ do $\mathbf{14}$ if CollisionFree $(x_{new}, x_{near}) \wedge Cost(x_{new}) + c(Line(x_{new}, x_{near})) < Cost(x_{near})$ $\mathbf{15}$ then $x_{\text{parent}} \leftarrow \texttt{Parent}(x_{\text{near}});$ $E \leftarrow (E \setminus \{(x_{\text{parent}}, x_{\text{near}})\}) \cup \{(x_{\text{new}}, x_{\text{near}})\}$ 1617 return G = (V, E);

RR *

$$\operatorname{cd}(V))/\operatorname{card}(V))^{1/d},\eta\});$$

// Connect along a minimum-cost path

// Rewire the tree

CSCI 5551 - Spring 2024

KKI*

// Connect along a minimum-cost path

Rewire the tree

FIND *x*_{*new*}

FIND neighbors to x_{new} in G ADD x_{new} to G

FIND edge to x_{new} from neighbors with least cost ADD that to G

REWIRE the edges in the neighborhood if any least cost path exists from the root to the neighbors via x_{new}

- Asymptotically optimal
- Main idea:
 - original (current) parent

Demonstration - https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

Swap new point in as parent for nearby vertices who can be reached along shorter path through new point than through their

CSCI 5551 - Spring 2024

Slide borrowed from Dieter Fox

Source: Karaman and Frazzo

CSCI 5551 - Spring 2024

Slide borrowed from Dieter Fox

RRT*

Source: Karaman and Frazzoli

CSCI 5551 - Spring 2024

Slide borrowed from Dieter Fox

Smoothing

execution: very jagged, often much longer than necessary.

- In practice: do smoothing before using the path \rightarrow
- Shortcutting:
 - along the found path, pick two vertices x_{t_1} , x_{t_2} and try to connect them directly (skipping over all intermediate vertices)
- Nonlinear optimization for optimal control
 - Allows to specify an objective function that includes smoothness in state, control, small control inputs, etc.

Randomized motion planners tend to find not so great paths for

Approaches to motion planning • Bug algorithms: Bug[0-2], Tangent Bug

- Graph Search (fixed graph)
 - Depth-first, Breadth-first, Dijkstra, A-star, Greedy best-first
- Sampling-based Search (build graph):
 - Probabilistic Road Maps, Rapidly-exploring Random Trees
- **Optimization and local search:** •
 - Gradient descent, Potential fields, Simulated annealing, Wavefront

Navigation (again)

CSCI 5551 - Spring 2024

CSCI 5551 - Spring 2024

CSCI 5551 - Spring 2024

CSCI 5551 - Spring 2024

Gradient descent: Energy potential converges at goal

a little warmer

start: cold

colder

CSCI 5551 - Spring 2024

CSCI 5551 - Spring 2024

How do we define a potential field?

CSCI 5551 - Spring 2024

Potential Field

- A potential field is a differentiable function U(q) that maps configurations to scalar "energy" value
- At any q, gradient $\mathcal{V}(q)$ is the vector that maximally increases U
- At goal q_{goal} , energy is minimized such that $\nabla U(q_{goal}) = 0$
- Navigation by descending field $\nabla U(q)$ to goal

Gradient Descent Algorithm:

$$q_{path}[0] \leftarrow q_{start}$$

 $i \leftarrow 0$
while $(|| \mathcal{W}(q[i])|| > \varepsilon)$
 $q_{path}[i+1] \leftarrow q_{path}[i] - \alpha \mathcal{W}(q_{path}[i])$
 $i \leftarrow i+1$
end
Derivative assumed to be direct
of steepest ascent away from g
 $\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n)$

CSCI 5551 - Spring 2024

Potential Energy

- Energy stored in a physical system
- Kinetic motion caused by system moving to lower energy state
- For objects acting only w.r.t. gravity
 - potential_energy = mass*height*gravity

Charged Particle Example

Positively charged particle follows potential energy to goal

CSCI 5551 - Spring 2024

Convergent Potentials let's call these "attractor landscapes"

Goal

basin of attraction

CSCI 5551 - Spring 2024

2D potential navigation

z: height indicates potential at location

1.2

0.8

0.6

0.4 -

0.2

0

100

50

x-y plane: robot position

CSCI 5551 - Spring 2024

 $q_d = Goal$

"Attractor"

"Cone" Attractor

w: weight $(q - q_d)$: direction $||q - q_d||$: distance

CSCI 5551 - Spring 2024

"Cone" Attractor

w: weight $(q - q_d)$: direction $||q - q_d||$: distance

CSCI 5551 - Spring 2024

"Cone" Attractor

Goal

w: weight $(q_d - q)$: direction $||q_d - q||$: distance

Start

side view

CSCI 5551 - Spring 2024

$\nabla U(q) = w(q - q_d) / ||q - q_d||$ x = Start

"Cone" Attractor

Goal

Start

w: weight (< 1) $(q - q_d)$: direction $||q - q_d||$: distance

side view

CSCI 5551 - Spring 2024

Can we modulate the range of a potential field?

CSCI 5551 - Spring 2024

"Bowl" Attractor $\nabla U(q) = \exp(-||q - q_d||/w) (q - q_d)$

Start

CSCI 5551 - Spring 2024

$\leftarrow \rightarrow$ C desmos.com/calculator

$ = \text{Untitled Graph} $ $ + \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e}$								
$ \begin{array}{c} $	Ξ	Untitled Graph						C
$e^{-\frac{(x^2)}{4}}$ $e^{-\frac{(x^2)}{2}}$ $e^{-\frac{(x^2)}{2}}$ $e^{-\frac{(x^2)}{1}}$ $e^{-\frac{(x^2)}{1}}$ $e^{-\frac{(x^2)}{1}}$ $e^{-\frac{(x^2)}{0.5}}$ $e^{-\frac{(x^2)}{0.5}}$ $e^{-\frac{(x^2)}{0.5}}$	+	5	\$ ≪					
$ \begin{array}{c} $		$e^{-\frac{(x^2)}{10}}$	×					
$ \begin{array}{c} $	2	$e^{-rac{\left(x^2 ight)}{4}}$	×		eights ti	he Intlu	ence (
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 X		×					
$e^{-\frac{(x^2)}{0.5}}$ $e^{-\frac{(x^2)}{0.5}}$ (x^2)	4	$e^{-\frac{(x^2)}{1}}$	X	-5	-4	-3		-2
\sum_{x^2}	5	$e^{-rac{(x^2)}{0.5}}$	×					
		$e^{-\frac{(x^2)}{0.25}}$	×					
$\frac{(x^2)}{01}$			×					

CSCI 5551 - Spring 2024

Can we combine multiple potentials?

CSCI 5551 - Spring 2024

Multiple potentials

Output of potential field is a vector

Combine multiple potentials through vector summation

$U(q) = \sum_{i} U_{i}(q)$

CSCI 5551 - Spring 2024

CSCI 5551 - Spring 2024

add sum of repulsive potentials $U(q) = U_{attracts}(q) + U_{repellors}(q)$

CSCI 5551 - Spring 2024

reverse direction

 $\nabla U(q) = w(q_d-q)/||q_d-q||$

"Cone" Repellor potential problems?

CSCI 5551 - Spring 2024

$\nabla U(q) = \exp(-||q_d-q||/w) (q_d - q)$

q = Start

top view

"Bowl" Repellor

CSCI 5551 - Spring 2024

Slide borrowed from Michigan Robotics autorob.org

side view

Start

repellor should only have local influence, repelling only around boundary improves path

CSCI 5551 - Spring 2024

2 Obstacle example

path from descent on gradient field

combined potential

resulting

gradient field

CSCI 5551 - Spring 2024

70

CSCI 5551 - Spring 2024

70

CSCI 5551 - Spring 2024

CSCI 5551 - Spring 2024

Current

Slide borrowed from Michigan Robotics autorob.org

260

CSCI 5551 - Spring 2024

Current

Slide borrowed from Michigan Robotics autorob.org

260

Local Minima

CSCI 5551 - Spring 2024

CSCI 5551 - Spring 2024

CSCI 5551 - Spring 2024

70

CSCI 5551 - Spring 2024

pfield.m [1 5 8 12]

matlab example

CSCI 5551 - Spring 2024

pfield.m [1 5 8 12]

CSCI 5551 - Spring 2024

matlab example

How to address local minima?

matlab example

CSCI 5551 - Spring 2024

How can we get out of local minima?

CSCI 5551 - Spring 2024

How can we get out of local minima?

Go back to planning.

CSCI 5551 - Spring 2024

Wavefront Planning

- Discretize potential field into grid
 - Cells store cost to goal with respect to potential field
 - Computed by Brushfire algorithm (essentially BFS)
- Grid search to find navigation path to goal

Once start reached, follow brushfire potential to goal

CSCI 5551 - Spring 2024

Example with Local Minima

CSCI 5551 - Spring 2024

Slide borrowed from Michigan Robotics autorob.org

CSCI 5551 - Spring 2024

Kineval wavefront planner

CSCI 5551 - Fall 2023 - Section 002

Planning Recap

CSCI 5551 - Spring 2024

Recap

Bug X • Complete

- Non-optimal
- Planar

Subsumption and FSMs

- Fast but not adaptive
- Emphasis on good design

Potential Fields

- Complete in special cases
- Non-optimal
- General C-spaces
- Scales w/dimensionality

Grid Search/Wavefront

- Complete
- General C-spaces
- Limited dimensionality

Random walk

• Will find path eventually

Sampling roadmaps/RRT

- Probabilistically complete
- General
- Tractable (with good sampling)
- Scales w/dimensionality
- Not necessarily optimal

Next Lecture **Motion Control**

CSCI 5551 - Spring 2024