

Course Logistics

- Quiz 1 will be released tomorrow evening 6pm on Gradescope and will be due on 01/24 12pm (before the Wed Lecture)
- Quiz will be released every week at 6 pm on Tuesdays and will be due at 12 pm on Wednesdays.
- You are allowed to refer the course material to answer them.
- You can discuss the quiz on Ed discussion after the due time.
- Each Quiz will have 2 questions for 0.5 pts each.
- They are designed to be answered in less than 5 mins each.
- When you start the quiz, you will have 20 mins to answer them
- Best 10 quizzes out of 12 will be used for final grades
- Use of AI tools is NOT PERMITTED.
- Project 1 will be posted on 01/24 and will be due $01 / 31$
- Start early!
- EdStem - I have added all the students to the discussion board
- Note: Starting today, all the announcements will be via Ed and NOT Canvas

Path Planning

CMDragons 2015 slow-motion multi-pass goal

CMDragons 2015 slow-motion multi-pass goal
http://www.cs.cmu.edu/~coral/projects/cobot/

http://www.cs.cmu.edu/~coral/projects/cobot/

https：／／www．joydeepb．com／research．html

Filtered Point Cloud
$t^{t} \theta$ 年

Localization and Mapping - Alphonsus Adu-Bredu - https://youtu.be/wH0QhWgtmuA

Autonomous Navigation - Alphonsus Adu-Bredu - https://youtu.be/wH0QhWgtmuA

How do we get from A to B ?

Consider all possible poses as uniformly distributed array of cells in a graph

Consider all possible poses as uniformly distributed array of cells in a graph Edges connect adjacent cells, weighted by distance

Consider all possible poses as uniformly distributed array of cells in a graph Edges connect adjacent cells, weighted by distance Cells are invalid where its associated robot pose results in a collision

Consider all possible poses as uniformly distributed array of cells in a graph Edges connect adjacent cells, weighted by distance Cells are invalid where its associated robot pose results in a collision How to find a valid path in this graph?

Approaches to motion planning

- Bug algorithms: Bug[0-2], Tangent Bug
- Graph Search (fixed graph)
- Depth-first, Breadth-first, Dijkstra, A-star, Greedy best-first
- Sampling-based Search (build graph):
- Probabilistic Road Maps, Rapidly-exploring Random Trees
- Optimization (local search)
- Gradient descent, potential fields, Wavefront

Consider a simple search graph

Consider a simple search graph

Consider each possible robot pose as a node V_{i} in a graph $G(V, E)$

Consider a simple search graph

Consider each possible robot pose as a node V_{i} in a graph $G(V, E)$

Graph edges E connect poses that can be reliably moved between without collision

Consider a simple search graph

Consider each possible robot pose as a node V_{i} in a graph $G(V, E)$

Graph edges E connect poses that can be reliably moved between without collision

Edges have a cost for traversal

Consider a simple search graph

Consider each possible robot pose as a node V_{i} in a graph $G(V, E)$

Graph edges E connect poses that can be reliably moved between without collision

Edges have a cost for traversal
Each node maintains the distance traveled from start as a scalar cost

Consider a simple search graph

Consider each possible robot pose as a node V_{i} in a graph $G(V, E)$

Graph edges E connect poses that can be reliably moved between without collision

Edges have a cost for traversal
Each node maintains the distance traveled from start as a scalar cost

Each node has a parent node that specifies its route to the start node

Path Planning as Graph Search

Which route is best to optimize distance traveled from start?

Which parent node should be used to specify route between goal and start?

We will use a single algorithm template for our graph search computation

Depth-first search intuition and walkthrough

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Graph Accessibility

What happens when the robot pose is not directly on the cell center?

Graph Accessibility

A graph node $G_{i, j}$ represents a region of space contained by its cell

Start node: the robot accesses graph G at the cell that contains location $\boldsymbol{q}_{\text {init }}$

Goal node: the robot departs graph G at the cell that contains location qgoal $^{\prime}$

Depth-first search

CSCI 5551 - Spring 2024

Depth-first search

For each neighbor:
if the currently visited node becomes the parent, will the path distance back to start be shorter?
if yes, store this parent and distance at the neighbor node

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Repeat:

For each neighbor:
choose parent node that minimizes path distance back to start
AND store this distance ($\epsilon+\odot)$ at the neighbor node

Depth-first search

Repeat:
Visit a neighbor based on order added to visit list and mark as visited

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Depth-first search

Let's turn this idea into code

Search algorithm template

all nodes \leftarrow diststart $^{\text {infinity, parent }}$ start \leftarrow none, visited start $^{\leftarrow \text { false }\}}$
start_node \leftarrow \{diststart $\leftarrow 0$, parentstart \leftarrow none, visited start $^{\leftarrow \text { true }\}}$
visit_list \leftarrow start_node
while visit_list != empty \&\& current_node != goal
cur_node \leftarrow highestPriority(visit_list)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
add(nbr to visit_list)
if dist $_{n b r}>$ dist $_{\text {cur_node }}+$ distStraightLine(nbr,cur_node) $^{\text {(nen }}$ parent ${ }_{n b r} \leftarrow$ current_node distnbr $^{\leftarrow}$ dist $_{\text {cur_node }}+$ distStraightLine(nbr,cur_node) end if end for loop
end while loop
output \leftarrow parent, distance

Search algorithm template

all nodes \leftarrow diststart $^{\text {dinfinity, parent }}$ start $^{\leftarrow}$ none, visited start $^{\text {false }\}}$ start_node \leftarrow \{diststart $\leftarrow 0$, parent start $^{\text {s none, visited }}$ start \leftarrow true $\}$ visit_list \leftarrow start_node
whila vicit lict I- amnty \& \& ciurent nnde I- nnal

Initialization

each node has a distance and a parent distance: distance along route from start parent: routing from node to start

- visit a chosen start node first
- all other nodes are unvisited and have high distance
distnbr \leftarrow distcur_node + distStraightLine(nbr,cur_node) end if
end for loop
end while loop

Search algorithm template

all nodes \leftarrow diststart $^{\text {infinity, parent }}$ start $^{\text {none, visited }}{ }_{\text {start }} \leftarrow$ false $\}$ start_node \leftarrow \{diststart $\leftarrow 0$, parent start $^{\leftarrow}$ none, visited start $^{\leftarrow}$ true $\}$ visit_list \leftarrow start_node
while visit_list != empty \&\& current_node != goal cur_node \leftarrow highestPriority(visit_list) visited $_{\text {cur_node }} \leftarrow$ true
fnr aqnh nhrin nnt yicitan (anianont(nise nnna))

Main Loop

- visits every node to compute its distance and parent - at each iteration:
- select the node to visit based on its priority
- remove current node from visit_list

Search algorithm template

all nodes \leftarrow diststart $^{\text {infinity, parent }}{ }_{\text {start }} \leftarrow$ none, visited start $^{\leftarrow \text { false }\}}$
start_node \leftarrow ddiststart $^{\text {}}$ 0, parentstart \leftarrow none $^{\text {, visited }}$ start \leftarrow true $\}$
visit_list \leftarrow start_node
while visit_list != empty \&\& current_node != goal cur_node \leftarrow highestPriority(visit_list) visited $_{\text {cur_node }} \leftarrow$ true for each nbr in not_visited(adjacent(cur_node)) add(nbr to visit_list) if dist $_{n b r}>$ dist $_{\text {cur_node }}+$ distStraightLine(nbr,cur_node) parent ${ }_{n b r} \leftarrow$ current_node distnbr $^{\leftarrow}$ dist $_{\text {cur_node }}+$ distStraightLine(nbr,cur_node) end if

For each iteration on a single node

- add all unvisited neighbors of the node to the visit list
assign node as a parent to a neighbor, if it creates a shorter route

Search algorithm template

all nodes \leftarrow diststart $^{\text {infinity, parent }}$ start $^{\leftarrow}$ none, visited start $^{\leftarrow \text { false }\}}$ start_node \leftarrow \{diststart $\leftarrow 0$, parentstart \leftarrow none , visited start $^{\leftarrow}$ true $\}$ visit_list \leftarrow start_node
while visit_list != empty \&\& current_node != goal
cur_node \leftarrow highestPriority(visit_list)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
add(nbr to visit_list)
if dist ${ }_{\text {nbr }}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {(n }}$ parent ${ }_{n b r} \leftarrow$ current_node dist $_{\text {nbr }} \leftarrow$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) end if end for loop
end while loop output \leftarrow parent, distance

Output the resulting routing and path distance at each node

Depth-first search

Search algorithm template

all nodes \leftarrow diststart $^{\text {infinity, parent }}$ start \leftarrow none, visited start $^{\leftarrow \text { false }\}}$
start_node \leftarrow \{diststart $\leftarrow 0$, parentstart \leftarrow none , visited start $^{\leftarrow}$ true $\}$
visit_list \leftarrow start_node
while visit_list != empty \&\& current_node != goal
cur_node \leftarrow highestPriority(visit_list)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
add(nbr to visit_list)
if dist ${ }_{\text {nbr }}>$ dist $_{\text {cur_node }}+$ distance(nbr,cur_node) $^{\text {(n }}$
parent ${ }_{n b r} \leftarrow$ current_node
distnbr $^{\leftarrow}$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Depth-first search

start_node \leftarrow \{diststart $\leftarrow 0$, parent start $^{\leftarrow}$ none, visited start $^{\leftarrow}$ true $\}$

visit_stack \leftarrow start_node

while visit_stack != empty \&\& current_node != goal
cur_node \leftarrow pop(visit_stack)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
push(nbr to visit_stack)
if dist $_{n b r}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$
parent ${ }_{n b r} \leftarrow$ current_node
distnbr $^{\leftarrow}$ distcur_node + distance(nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Priority:

Most recent

Stack data structure

A stack is a "last in, first out" (or LIFO) structure, with two operations: push: to add an element to the top of the stack pop: to remove and element from the top of the stack

Stack example for reversing the order of six elements

depth-first progress: succeeded
start: 0,0 | goal: 4,4
iteration: 1355 | visited: 1355 | queue size: 797
path length: 65.00
mouse (5.93,-0.03)

Breadth-first search

Search algorithm template

start_node \leftarrow \{diststart $\leftarrow 0$, parentstart \leftarrow none, visited start $^{\leftarrow \text { true }\}}$
visit_list \leftarrow start_node
while visit_list != empty \&\& current_node != goal
cur_node \leftarrow highestPriority(visit_list)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
add(nbr to visit_list)
if dist $_{n b r}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$
parent ${ }_{n b r} \leftarrow$ current_node
dist $_{n b r} \leftarrow$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Breadth-first search

start_node \leftarrow \{diststart $\leftarrow 0$, parent start $^{\leftarrow}$ none, visited start $^{\leftarrow}$ true $\}$

visit_queue \leftarrow start_node

while visit_queue != empty \&\& current_node != goal
cur_node \leftarrow dequeue(visit_queue)
visited $_{\text {cur_node }} \leftarrow$ true

Priority:

for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{n b r}>$ dist $_{\text {cur_node }}+$ distance(nbr,cur_node) $^{\text {(n }}$
parent ${ }_{n b r} \leftarrow$ current_node
dist $_{\text {nbr }} \leftarrow$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Queue data structure

A queue is a "first in, first out" (or FIFO) structure, with two operations enqueue: to add an element to the back of the stack dequeue: to remove an element from the front of the stack

Dijkstra's algorithm

Search algorithm template

all nodes \leftarrow diststart $^{\text {infinity, parent }}$ start \leftarrow none, visited start $^{\leftarrow \text { false }\}}$
start_node \leftarrow \{diststart $\leftarrow 0$, parentstart \leftarrow none, visited start $^{\leftarrow \text { true }\}}$
visit_list \leftarrow start_node
while visit_list != empty \&\& current_node != goal
cur_node \leftarrow highestPriority(visit_list)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
add(nbr to visit_list)
if dist $_{n b r}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$
parent ${ }_{n b r} \leftarrow$ current_node
distnbr $^{\leftarrow}$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Dijkstra shortest path algorithm

start_node \leftarrow \{diststart $\leftarrow 0$, parent start $^{\leftarrow \text { none, visited }}$ start \leftarrow true $\}$
visit_queue \leftarrow start_node
while visit_queue != empty \&\&-current_node != goal
cur_node \leftarrow min_distance(visit_queue)

Priority:
visited $_{\text {cur_node }} \leftarrow$ true

Minimum route distance

 from startfor each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{n b r}>$ dist $_{\text {cur_node }}+$ distance(nbr,cur_node) $^{\text {(n }}$
parent ${ }_{n b r} \leftarrow$ current_node dist $_{\text {nbr }} \leftarrow$ dist $_{\text {cur_node }}+$ distance(nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Dijkstra shortest path algorithm

$$
\text { all nodes } \left.\leftarrow \text { diststart }^{\text {infinity, parent }} \text { start } \leftarrow \text { none, visited }{ }_{\text {start }} \leftarrow \text { false }\right\}
$$

$$
\text { start_node } \leftarrow\left\{\text { dist }_{\text {start }} \leftarrow 0, \text { parent }_{\text {start }} \leftarrow \text { none }, ~ v i s i t e d ~_{\text {start }} \leftarrow \text { true }\right\}
$$

$$
\text { visit_queue } \leftarrow \text { start_node }
$$

while visit_queue != empty \&\¤t_node != goal
cur_node \leftarrow min_distance(visit_queue)
visited $_{\text {cur_node }} \leftarrow$ true

Diikstra walkthrouah

for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{n b r}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$
parent ${ }_{n b r} \leftarrow$ current_node dist $_{n b r} \leftarrow$ dist $_{\text {cur_node }}+$ distance(nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Dijkstra shortest path algorithm

$$
\text { all nodes } \left.\leftarrow \text { diststart }^{\text {infinity, parent }} \text { start } \leftarrow \text { none, visited }{ }_{\text {start }} \leftarrow \text { false }\right\}
$$

$$
\text { start_node }^{\left.\leftarrow \text { \{diststart } \leftarrow 0, \text { parent }_{\text {start }} \leftarrow \text { none, visited }_{\text {start }} \leftarrow \text { true }\right\}}
$$

$$
\text { visit_queue } \leftarrow \text { start_node }
$$

while visit_queue != empty \&\¤t_node != goal
cur_node \leftarrow min_distance(visit_queue)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{\text {nbr }}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$
parent ${ }_{n b r} \leftarrow$ current_node distnbr $^{\leftarrow}$ distcur_node + distance(nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Dijkstra walkthrough

Dijkstra shortest path algorithm

$$
\text { all nodes } \left.\leftarrow \text { diststart }^{\text {infinity, parent }} \text { start } \leftarrow \text { none, visited }{ }_{\text {start }} \leftarrow \text { false }\right\}
$$

$$
\text { start_node }^{\left.\leftarrow \text { \{diststart } \leftarrow 0, \text { parent }_{\text {start }} \leftarrow \text { none, visited }_{\text {start }} \leftarrow \text { true }\right\}}
$$

$$
\text { visit_queue } \leftarrow \text { start_node }
$$

while visit_queue != empty \&\¤t_node != goat
cur_node \leftarrow min_distance(visit_queue)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{\text {nbr }}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$
parent ${ }_{n b r} \leftarrow$ current_node distnbr $^{\leftarrow}$ distcur_node + distance (nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Dijkstra walkthrough

Dijkstra shortest path algorithm

$$
\text { all nodes } \left.\leftarrow \text { diststart }^{\text {infinity, parent }} \text { start } \leftarrow \text { none, visited }{ }_{\text {start }} \leftarrow \text { false }\right\}
$$

$$
\text { start_node }^{\left.\leftarrow \text { \{diststart } \leftarrow 0, \text { parent }_{\text {start }} \leftarrow \text { none, visited }_{\text {start }} \leftarrow \text { true }\right\}}
$$

$$
\text { visit_queue } \leftarrow \text { start_node }
$$

while visit_queue != empty \&\¤t_node != goat
cur_node \leftarrow min_distance(visit_queue)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{\text {nbr }}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$ parent ${ }_{n b r} \leftarrow$ current_node distnbr $^{\leftarrow}$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Dijkstra shortest path algorithm

$$
\text { all nodes } \left.\leftarrow \text { diststart }^{\text {infinity, parent }} \text { start } \leftarrow \text { none, visited }{ }_{\text {start }} \leftarrow \text { false }\right\}
$$

$$
\text { start_node }^{\left.\leftarrow \text { \{diststart } \leftarrow 0, \text { parent }_{\text {start }} \leftarrow \text { none, visited }_{\text {start }} \leftarrow \text { true }\right\}}
$$

visit_queue \leftarrow start_node

while visit_queue != empty \&\¤t_node != goat
cur_node \leftarrow min_distance(visit_queue)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{\text {nbr }}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$
parent ${ }_{n b r} \leftarrow$ current_node distnbr $^{\leftarrow \text { dist }_{\text {cur_node }}+\text { distance (nbr,cur_node) }}$ end if
end for loop
end while loop
output \leftarrow parent, distance

Dijkstra shortest path algorithm

$$
\text { all nodes } \left.\leftarrow \text { diststart }^{\text {infinity, parent }} \text { start } \leftarrow \text { none, visited }{ }_{\text {start }} \leftarrow \text { false }\right\}
$$

$$
\text { start_node }^{\left.\leftarrow \text { \{diststart } \leftarrow 0, \text { parent }_{\text {start }} \leftarrow \text { none, visited }_{\text {start }} \leftarrow \text { true }\right\}}
$$

$$
\text { visit_queue } \leftarrow \text { start_node }
$$

while visit_queue != empty \&\¤t_node != goat
cur_node \leftarrow min_distance(visit_queue)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{\text {nbr }}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$
parent ${ }_{n b r} \leftarrow$ current_node distnbr $^{\leftarrow}$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Dijkstra shortest path algorithm

$$
\text { all nodes } \left.\leftarrow \text { diststart }^{\text {infinity, parent }} \text { start } \leftarrow \text { none, visited }{ }_{\text {start }} \leftarrow \text { false }\right\}
$$

visit_queue \leftarrow start_node

while visit_queue != empty \&\¤t_node != goat
cur_node \leftarrow min_distance(visit_queue)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{\text {nbr }}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$
parent ${ }_{n b r} \leftarrow$ current_node distnbr $^{\leftarrow}$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Dijkstra shortest path algorithm

$$
\text { all nodes } \left.\leftarrow \text { diststart }^{\text {infinity, parent }} \text { start } \leftarrow \text { none, visited }{ }_{\text {start }} \leftarrow \text { false }\right\}
$$

visit_queue \leftarrow start_node

while visit_queue != empty \&\¤t_node != goat
cur_node \leftarrow min_distance(visit_queue)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{\text {nbr }}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$
parent ${ }_{n b r} \leftarrow$ current_node distnbr $^{\leftarrow}$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

Dijkstra shortest path algorithm

all sta What will search with Dijkstra's algorithm look like in this case?

visit_queue \leftarrow start_node
while visit_queue != empty \&\¤t_node != goal
curtanode start min_distance(visit_queue)
visitited $_{\text {cur node }} \leftarrow$ true
while state $1=$ success and state $=$ error
for each nbr in not visited(adjacent(cur_node))
token \leftarrow next character
enquueue (nbr to virsit_queue)
suyitchis(ntate) ${ }^{\text {tate }}$ distcur_node + distance(nbr,cur_node)
case startentnbr \leftarrow current_node
if tokelistning" "thedistatif_node_falisidhnce(nbr,cur_node)
elondaiffe \leftarrow error
end for loop
end while loop
output \leftarrow parent, distance

What will search with Dijkstra's algorithm look like in this case?

Dijkstra progress: succeeded
start: 0,0 | goal: 4,

Dijkstra
BFS

Why does their visit pattern look similar?

A-star Algorithm

A Formal Basis for the Heuristic Determination of Minimum Cost Paths

PE'TER E. HART, member, ieee, NILS J. NILSSON, member, ieee, and BERTRAM RAPHAEL,

Abstract-Although the problem of determining the minimum cost path through a graph arises naturally in a number of interesting applications, there has been no underlying theory to guide the evelopment of efficient search procedures. Moreover, there is no adequate conceptual framework within which the various ad hoc search strategies proposed to date can be compared. This paper escribes how heuristic information from the problem domain can be incorporated into a formal mathematical theory of graph searching and demonstrates an optimality property of a class of search strategies.

I. Introduction

A. The Problem of Finding Palhs Through Graphs

Many problems of engineering and scientific 1 importance can be related to the general problem of finding a path through a graph. Examples of such problems include routing of telephone traffic, navigation through a maze, layout of printed circuit boards, and

Manuscript received November 24, 1967.
The authors are with the Artificial Intelligence Group of the Applied Physics Laboratory, Stanford Research Institute, Menlo
Park, Calif.
mechanical theorem-proving and problem-solving. These problems have usually been approached in one of two ways, which we shall call the mathematical approach and the heuristic approach.

1) The mathematical approach typically deals with the properties of abstract graphs and with algorithms that prescribe an orderly examination of nodes of a graph to establish a minimum cost path. For example, Pollock and Wiebenson ${ }^{[1]}$ review several algorithms which are guaranteed to find such a path for any graph. Busacker and Saaty ${ }^{[2]}$ also discuss several algorithms, one of which uses the concept of dynamic programming. ${ }^{[8]}$ The mathematical approach is generally more concerned with the ultimate achievement of solutions than it is with the computational feasibility of the algorithms developed.
2) The heuristic approach typically uses special knowledge about the domain of the problem being represented by a graph to improve the computational efficiency of solutions to particular graph-searching problems. For example, Gelernter's ${ }^{[4]}$ program used Euclidean diagrams to direct the search for geometric proofs. Samuel ${ }^{[5]}$ and others have used ad hoc characteristics of particular games to reduce

Dijkstra shortest path algorithm

$$
\text { all nodes } \left.\leftarrow \text { diststart }^{\text {infinity, parent }} \text { start } \leftarrow \text { none, visited }{ }_{\text {start }} \leftarrow \text { false }\right\}
$$

$$
\text { start_node } \leftarrow\left\{\text { diststart }^{4} \text { 0, parentstart } \leftarrow \text { none }, \text { visited }_{\text {start }} \leftarrow \text { true }\right\}
$$

visit_queue \leftarrow start_node

while visit_queue != empty \&\&-current_node !=goal
cur_node \leftarrow min_distance(visit_queue)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{\text {nbr }}>$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) $^{\text {n }}$
parent ${ }_{n b r} \leftarrow$ current_node distnbr $^{\leftarrow}$ dist $_{\text {cur_node }}+$ distance (nbr,cur_node) end if
end for loop
end while loop
output \leftarrow parent, distance

A-star shortest path algorithm

all nodes \leftarrow dist $_{\text {start }} \leftarrow$ infinity, parent start $^{\text {none, visited }}{ }_{\text {start }} \leftarrow$ false $\}$
start_node $\leftarrow\left\{\right.$ dist $_{\text {start }} \leftarrow 0$, parent start $^{\text {p none, visited }}{ }_{\text {start }} \leftarrow$ true $\}$
visit_queue \leftarrow start_node
while (visit_queue != empty) \&\& current_node != goal
cur_node \leftarrow dequeue(visit_queue, f_score)
visited $_{\text {cur_node }} \leftarrow$ true
for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if distnbr $>$ dist $_{\text {cur_node }}+$ distance(nbr,cur_node)
parent ${ }_{n b r} \leftarrow$ current_node dist $_{n b r} \leftarrow$ dist $_{\text {cur_node }}+$ distance(nbr,cur_node) $^{\text {_ }}$ f_score \leftarrow distancenbr + line_distancenbr,goal end if
end for loop
end while loop
output \leftarrow parent, distance

A-star shortest path algorithm

all nodes \leftarrow dist $_{\text {start }} \leftarrow$ infinity, parent start $^{\text {none, visited }}{ }_{\text {start }} \leftarrow$ false $\}$
start_node $\leftarrow\left\{\right.$ dist $_{\text {start }} \leftarrow 0$, parent start \leftarrow none, visited start $^{\leftarrow}$ true $\}$
visit_queue \leftarrow start_node
while (visit_queue != empty) \&\& current_node != goal
cur_node \leftarrow dequeue(visit_queue, f_score)
visited $_{\text {cur_node }} \leftarrow$ true
priority queue wrt. f_score
(implement min binary heap)
for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{\text {nbr }}>$ dist $_{\text {cur_node }}+$ distance(nbr,cur_node)
parent ${ }_{n b r} \leftarrow$ current_node dist $_{n b r} \leftarrow$ dist $_{\text {cur_node }}+$ distance(nbr,cur_node) f_score \leftarrow distance $_{\text {nbr }}+$ line_distance $n b r$, goal end if
end for loop
end while loop output \leftarrow parent, distance
g_score: distance along current path back to start

while (visit_queue != empty) \&\& current_node != goal
cur_node \leftarrow dequeue(visit_queue, f_score)

priority queue wrt. f_score
(implement min binary heap)
for each nbr in not_visited(adjacent(cur_node))
enqueue(nbr to visit_queue)
if dist $_{n b r}>$ dist $_{\text {cur_node }}+$ distance(nbr,cur_node) $^{\text {(n }}$

$$
\text { parentnbr } \leftarrow \text { current_node }
$$ distnbr $^{\leftarrow \text { dist }_{\text {cur_node }}+\text { distance(nbr,cur_node) }}$ f_score \leftarrow distance $_{\text {nbr }}+$ line_distance $_{\text {nbr,goal }}$ end if

end for loop
end while loop output \leftarrow parent, distance

$$
\begin{aligned}
& \text { g_score: distance } \\
& \text { along current path } \\
& \text { back to start }
\end{aligned}
$$

nouse (6.1,-0.36

य日组组

 븝블

，

 ，

 1

 4BBEMBEBEBEBEBEBEBEB

A-Star

Dijkstra

How can A-star visit few nodes?

How can A-star visit few nodes?

A-Star uses an admissible heuristic to estimate the cost to goal from a node
https://www.cs.cmu.edu/~./awm/tutorials/astar08.pdf

Proof: A* with Admissible Heuristic Guarantees Optimal Path

- Suppose it finds a suboptimal path, ending in goal state G_{1} where $f\left(G_{1}\right)>f^{*}$ where $f^{*}=h^{*}($ start $)=$ cost of optimal path.
- There must exist a node n which is
- Unexpanded
- The path from start to n (stored in the BackPointers(n) values) is the start of a true optimal path
- $f(n)>=f\left(G_{1}\right)$ (else search wouldn't have ended)
- Also $f(n)=g(n)+h(n) \quad \begin{aligned} & \text { because it's on } \\ & \text { optimal path }\end{aligned}$
$=g^{*}(n)+h(n)$ optimal path

$=f^{*} \xrightarrow{\begin{array}{l}\text { Because } n \text { is on } \\ \text { the optimal path }\end{array}} \begin{aligned} & \text { admissibility } \\ & \text { assumption }\end{aligned}$

Why must such a node
exist? Consider any optimal path $s, n 1, n 2 \ldots$ goal. If all along it were expanded, the goal would've been reached along the shortest path.

So $f^{*}>=f(n)>=f\left(G_{1}\right) \quad \quad \begin{aligned} & \text { contradicting } \\ & \text { top of slide }\end{aligned}$

Next Lecture
 Linear Algebra Refresher

